Review
BibTex RIS Cite

Elektropüskürtme Yönteminin Probiyotik Mikroorganizmaların Mikrokapsülasyonunda Kullanımı

Year 2017, , 281 - 287, 22.10.2017
https://doi.org/10.24323/akademik-gida.345268

Abstract

Probiyotik bir üründen beklenen faydaların sağlanabilmesi için ürünün
raf ömrü sonuna kadar en az
108-109
kob/g düzeyinde canlı probiyotik mikroorganizma bulundurması gerekmektedir.
Probiyotik mikroorganizmaları olumsuz koşullara karşı korumak amacıyla çok
sayıda yöntem geliştirilmiştir. Konu ile ilgili yapılan çalışmalar, probiyotik
mikroorganizmaların canlılığını korumada en etkili yöntemlerden birinin
mikrokapsülasyon olduğunu göstermektedir. Bununla birlikte, mikrokapsülasyon
işlemi sırasında probiyotik mikroorganizmalar yüksek sıcaklık, dehidrasyon,
yüksek osmolarite gibi olumsuz koşullara maruz kalabilmektedir. Elektrohidrodinamik
atomizasyon yani elektroeğirme ve elektropüskürtme yöntemleri kullanılarak söz
konusu olumsuz koşulların üstesinden gelinebilmektedir. Son zamanlarda yapılan
çalışmalarda; yüksek voltaj altında kapsüller (elektropüskürtme) veya lifler
(elektroeğirme) üretilmesini sağlayan elektrohidrodinamik atomizasyon tekniğinin,
probiyotik mikroorganizmaların canlılıklarının korunması açısından diğer
mikrokapsülasyon yöntemlerine alternatif olabileceği belirtilmiştir.
Bu derlemede, elektrohidrodinamik
atomizasyon tekniğinin temelleri ve elektropüskürtme yönteminin probiyotik
mikroorganizmaların mikrokapsülasyonunda kullanım olanakları ile ilgili bilgi
verilmesi amaçlanmıştır.

References

  • [1] Terpou, A., Bekatorou, A., Kanellaki, M., Koutinas, A. A., Nigam, P., 2017. Enhanced probiotic viability and aromatic profile of yogurts produced using wheat bran (Triticum aestivum) as cell immobilization carrier. Process Biochemistry 55: 1-10.
  • [2] Riaz Rajoka, M. S., Mehwish, H. M., Siddiq, M., Haobin, Z., Zhu, J., Yan, L., Shao, D., Xu, X., Shi, J., Identification, characterization, and probiotic potential of Lactobacillus rhamnosus isolated from human milk. LWT - Food Science and Technology: Accepted manuscript.
  • [3] Anonim, 2006. FAO/WHO. Probiotics in food: Health and nutritional properties and guidelines for evaluation.
  • [4] Chaikham, P., Kemsawasd, V., Seesuriyachan, P., 2017. Spray drying probiotics along with maoluang juice plus Tiliacora triandra gum for exposure to the in vitro gastrointestinal environments. LWT - Food Science and Technology 78: 31-40.
  • [5] Shori, A.B., 2017. Microencapsulation Improved Probiotics Survival During Gastric Transit. HAYATI Journal of Biosciences 24(1): 1-5.
  • [6] Rather, S. A., Akhter, R., Masoodi, F. A., Gani, A., Wani, S. M., 2017. Effect of double alginate microencapsulation on in vitro digestibility and thermal tolerance of Lactobacillus plantarum NCDC201 and L. casei NCDC297. LWT - Food Science and Technology 83: 50-58.
  • [7] Çomak Göçer, E. M., Aşcı Arslan, A., Ergin, F., Küçükçetin, A., 2013. Probiyotik Bakterilerin Mikroenkapsülasyonu. Yetişkin ve Çocuklarda Probiyotikler (1): 63-69.
  • [8] Martín, M. J., Lara-Villoslada, F., Ruiz, M. A., Morales, M. E., 2015. Microencapsulation of bacteria: A review of different technologies and their impact on the probiotic effects. Innovative Food Science & Emerging Technologies 27: 15-25.
  • [9] Ribeiro, M. C. E., Chaves, K. S., Gebara, C., Infante, F. N. S., Grosso, C. R. F., Gigante, M. L., 2014. Effect of microencapsulation of Lactobacillus acidophilus LA-5 on physicochemical, sensory and microbiological characteristics of stirred probiotic yoghurt. Food Research International 66: 424-431.
  • [10] Eratte, D., Dowling, K., Barrow, C. J., Adhikari, B. P., 2017. In-vitro digestion of probiotic bacteria and omega-3 oil co-microencapsulated in whey protein isolate-gum Arabic complex coacervates. Food Chemistry 227: 129-136.
  • [11] Laelorspoen, N., Wongsasulak, S., Yoovidhya, T., Devahastin, S., 2014. Microencapsulation of Lactobacillus acidophilus in zein–alginate core–shell microcapsules via electrospraying. Journal of Functional Foods 7: 342-349.
  • [12] Coghetto, C. C., Flores, S. H., Brinques, G. B., Ayub, M. A. Z., 2016. Viability and alternative uses of a dried powder, microencapsulated Lactobacillus plantarum without the use of cold chain or dairy products. LWT-Food Science and Technology 71: 54-59.
  • [13] Karakaya, M. C., Abdullahoğlu, R., Tunçer, O., Kızıl, H., Trabzon, l., 2014. Bir elektrosprey enjektörün deneysel incelenmesi. Isı Bilimi ve Teknigi Dergisi/Journal of Thermal Science & Technology 34(1): 63-76.
  • [14] Badıllı, U., Tarımcı, N., Elektro-püskürtme yöntemi ve nanoteknolojideki uygulamaları. Ankara Eczacılık Fakültesi Dergisi 38(2): 117-135.
  • [15] Anu Bhushani, J., Anandharamakrishnan, C., 2014. Electrospinning and electrospraying techniques: Potential food based applications. Trends in Food Science & Technology 38(1): 21-33.
  • [16] Jaworek, A., Krupa, A., 1999. Classification of the modes of EHD spraying. Journal of Aerosol Science 30(7): 873-893.
  • [17] Jaworek, A., Sobczyk, A., 2008. Electrospraying route to nanotechnology: an overview. Journal of electrostatics 66(3): 197-219.
  • [18] Bock, N., Dargaville, T. R., Woodruff, M. A., 2012. Electrospraying of polymers with therapeutic molecules: state of the art. Progress in polymer science 37(11): 1510-1551.
  • [19] Okutan, N., Terzi, P., Altay, F., 2014. Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers. Food Hydrocolloids 39: 19-26.
  • [20] Cloupeau, M., Prunet-Foch, B., 1994. Electrohydrodynamic spraying functioning modes: a critical review. Journal of Aerosol Science 25(6): 1021-1036.
  • [21] Jaworek, A., Krupa, A., 1999. Jet and drops formation in electrohydrodynamic spraying of liquids. A systematic approach. Experiments in fluids 27(1): 43-52.
  • [22] Enayati, M., Chang, M.-W., Bragman, F., Edirisinghe, M., Stride, E., 2011. Electrohydrodynamic preparation of particles, capsules and bubbles for biomedical engineering applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects 382(1): 154-164.
  • [23] Chen, H.-Y., Li, X.-Y., Liu, B.-J., Meng, X. H., 2017. Microencapsulation of Lactobacillus bulgaricus and survival assays under simulated gastrointestinal conditions. Journal of Functional Foods 29: 248-255.
  • [24] Ghorani, B., Tucker, N., 2015. Fundamentals of electrospinning as a novel delivery vehicle for bioactive compounds in food nanotechnology. Food Hydrocolloids 51: 227-240.
  • [25] Gomez-Mascaraque, L. G., Morfin, R. C., Pérez-Masiá, R., Sanchez, G., Lopez-Rubio, A., 2016. Optimization of electrospraying conditions for the microencapsulation of probiotics and evaluation of their resistance during storage and in-vitro digestion. LWT-Food Science and Technology 69: 438-446.
  • [26] Librán, C., Castro, S., Lagaron, J., 2017. Encapsulation by electrospray coating atomization of probiotic strains. Innovative Food Science & Emerging Technologies 39: 216-222.
  • [27] López-Rubio, A., Sanchez, E., Wilkanowicz, S., Sanz, Y., Lagaron, J. M., 2012. Electrospinning as a useful technique for the encapsulation of living bifidobacteria in food hydrocolloids. Food Hydrocolloids 28(1): 159-167.
  • [28] Coghetto, C. C., Brinques, G. B., Siqueira, N. M., Pletsch, J., Soares, R. M. D., Ayub, M. A. Z., 2016. Electrospraying microencapsulation of Lactobacillus plantarum enhances cell viability under refrigeration storage and simulated gastric and intestinal fluids. Journal of Functional Foods 24: 316-326.
  • [29] Khan, M. K. I., Nazir, A., Maan, A. A., 2017. Electrospraying: a Novel Technique for Efficient Coating of Foods. Food Engineering Reviews: 1-8.

Use of Electrospray Technique in Microencapsulation of Probiotic Microorganisms

Year 2017, , 281 - 287, 22.10.2017
https://doi.org/10.24323/akademik-gida.345268

Abstract

To
provide
the
expected
benefits of probiotic
products, a
product must contain 108-109cfu/g of viable probiotic microorganism
until end of the shelf life.
Numerous methods have been developed to protect
probiotic microorganisms against adverse conditions. Studies on the issue show
that microencapsulation is one of the most
efficient methods for protecting the viability of probiotic microorganisms.

However, probiotic microorganisms are exposed adverse conditions such as high
temperature, dehydration, high osmolarity etc. during the microencapsulation process.
These adverse conditions can be overcome in many
cases by using electrohydrodynamic atomization (EHDA), either electrospinning
or electrospraying. Recent studies have reported
that the electrohydrodynamic atomization technique, which generates the
production of capsules (electrospray) or fibers (electrospining) under high
voltage, can be an alternative to other microencapsulation methods in terms of
protecting the viability of probiotic microorganisms. In this review, it is
aimed to give information about the basics of electrohydrodynamic atomization
technique and the possibilities of using electrospray method in microencapsulation
of probiotic microorganisms.

References

  • [1] Terpou, A., Bekatorou, A., Kanellaki, M., Koutinas, A. A., Nigam, P., 2017. Enhanced probiotic viability and aromatic profile of yogurts produced using wheat bran (Triticum aestivum) as cell immobilization carrier. Process Biochemistry 55: 1-10.
  • [2] Riaz Rajoka, M. S., Mehwish, H. M., Siddiq, M., Haobin, Z., Zhu, J., Yan, L., Shao, D., Xu, X., Shi, J., Identification, characterization, and probiotic potential of Lactobacillus rhamnosus isolated from human milk. LWT - Food Science and Technology: Accepted manuscript.
  • [3] Anonim, 2006. FAO/WHO. Probiotics in food: Health and nutritional properties and guidelines for evaluation.
  • [4] Chaikham, P., Kemsawasd, V., Seesuriyachan, P., 2017. Spray drying probiotics along with maoluang juice plus Tiliacora triandra gum for exposure to the in vitro gastrointestinal environments. LWT - Food Science and Technology 78: 31-40.
  • [5] Shori, A.B., 2017. Microencapsulation Improved Probiotics Survival During Gastric Transit. HAYATI Journal of Biosciences 24(1): 1-5.
  • [6] Rather, S. A., Akhter, R., Masoodi, F. A., Gani, A., Wani, S. M., 2017. Effect of double alginate microencapsulation on in vitro digestibility and thermal tolerance of Lactobacillus plantarum NCDC201 and L. casei NCDC297. LWT - Food Science and Technology 83: 50-58.
  • [7] Çomak Göçer, E. M., Aşcı Arslan, A., Ergin, F., Küçükçetin, A., 2013. Probiyotik Bakterilerin Mikroenkapsülasyonu. Yetişkin ve Çocuklarda Probiyotikler (1): 63-69.
  • [8] Martín, M. J., Lara-Villoslada, F., Ruiz, M. A., Morales, M. E., 2015. Microencapsulation of bacteria: A review of different technologies and their impact on the probiotic effects. Innovative Food Science & Emerging Technologies 27: 15-25.
  • [9] Ribeiro, M. C. E., Chaves, K. S., Gebara, C., Infante, F. N. S., Grosso, C. R. F., Gigante, M. L., 2014. Effect of microencapsulation of Lactobacillus acidophilus LA-5 on physicochemical, sensory and microbiological characteristics of stirred probiotic yoghurt. Food Research International 66: 424-431.
  • [10] Eratte, D., Dowling, K., Barrow, C. J., Adhikari, B. P., 2017. In-vitro digestion of probiotic bacteria and omega-3 oil co-microencapsulated in whey protein isolate-gum Arabic complex coacervates. Food Chemistry 227: 129-136.
  • [11] Laelorspoen, N., Wongsasulak, S., Yoovidhya, T., Devahastin, S., 2014. Microencapsulation of Lactobacillus acidophilus in zein–alginate core–shell microcapsules via electrospraying. Journal of Functional Foods 7: 342-349.
  • [12] Coghetto, C. C., Flores, S. H., Brinques, G. B., Ayub, M. A. Z., 2016. Viability and alternative uses of a dried powder, microencapsulated Lactobacillus plantarum without the use of cold chain or dairy products. LWT-Food Science and Technology 71: 54-59.
  • [13] Karakaya, M. C., Abdullahoğlu, R., Tunçer, O., Kızıl, H., Trabzon, l., 2014. Bir elektrosprey enjektörün deneysel incelenmesi. Isı Bilimi ve Teknigi Dergisi/Journal of Thermal Science & Technology 34(1): 63-76.
  • [14] Badıllı, U., Tarımcı, N., Elektro-püskürtme yöntemi ve nanoteknolojideki uygulamaları. Ankara Eczacılık Fakültesi Dergisi 38(2): 117-135.
  • [15] Anu Bhushani, J., Anandharamakrishnan, C., 2014. Electrospinning and electrospraying techniques: Potential food based applications. Trends in Food Science & Technology 38(1): 21-33.
  • [16] Jaworek, A., Krupa, A., 1999. Classification of the modes of EHD spraying. Journal of Aerosol Science 30(7): 873-893.
  • [17] Jaworek, A., Sobczyk, A., 2008. Electrospraying route to nanotechnology: an overview. Journal of electrostatics 66(3): 197-219.
  • [18] Bock, N., Dargaville, T. R., Woodruff, M. A., 2012. Electrospraying of polymers with therapeutic molecules: state of the art. Progress in polymer science 37(11): 1510-1551.
  • [19] Okutan, N., Terzi, P., Altay, F., 2014. Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers. Food Hydrocolloids 39: 19-26.
  • [20] Cloupeau, M., Prunet-Foch, B., 1994. Electrohydrodynamic spraying functioning modes: a critical review. Journal of Aerosol Science 25(6): 1021-1036.
  • [21] Jaworek, A., Krupa, A., 1999. Jet and drops formation in electrohydrodynamic spraying of liquids. A systematic approach. Experiments in fluids 27(1): 43-52.
  • [22] Enayati, M., Chang, M.-W., Bragman, F., Edirisinghe, M., Stride, E., 2011. Electrohydrodynamic preparation of particles, capsules and bubbles for biomedical engineering applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects 382(1): 154-164.
  • [23] Chen, H.-Y., Li, X.-Y., Liu, B.-J., Meng, X. H., 2017. Microencapsulation of Lactobacillus bulgaricus and survival assays under simulated gastrointestinal conditions. Journal of Functional Foods 29: 248-255.
  • [24] Ghorani, B., Tucker, N., 2015. Fundamentals of electrospinning as a novel delivery vehicle for bioactive compounds in food nanotechnology. Food Hydrocolloids 51: 227-240.
  • [25] Gomez-Mascaraque, L. G., Morfin, R. C., Pérez-Masiá, R., Sanchez, G., Lopez-Rubio, A., 2016. Optimization of electrospraying conditions for the microencapsulation of probiotics and evaluation of their resistance during storage and in-vitro digestion. LWT-Food Science and Technology 69: 438-446.
  • [26] Librán, C., Castro, S., Lagaron, J., 2017. Encapsulation by electrospray coating atomization of probiotic strains. Innovative Food Science & Emerging Technologies 39: 216-222.
  • [27] López-Rubio, A., Sanchez, E., Wilkanowicz, S., Sanz, Y., Lagaron, J. M., 2012. Electrospinning as a useful technique for the encapsulation of living bifidobacteria in food hydrocolloids. Food Hydrocolloids 28(1): 159-167.
  • [28] Coghetto, C. C., Brinques, G. B., Siqueira, N. M., Pletsch, J., Soares, R. M. D., Ayub, M. A. Z., 2016. Electrospraying microencapsulation of Lactobacillus plantarum enhances cell viability under refrigeration storage and simulated gastric and intestinal fluids. Journal of Functional Foods 24: 316-326.
  • [29] Khan, M. K. I., Nazir, A., Maan, A. A., 2017. Electrospraying: a Novel Technique for Efficient Coating of Foods. Food Engineering Reviews: 1-8.
There are 29 citations in total.

Details

Subjects Food Engineering
Journal Section Review Papers
Authors

Firuze Ergin This is me

Ahmet Küçükçetin

Ayhan Oral This is me

Oğuz Gürsoy

Publication Date October 22, 2017
Submission Date October 20, 2017
Published in Issue Year 2017

Cite

APA Ergin, F., Küçükçetin, A., Oral, A., Gürsoy, O. (2017). Elektropüskürtme Yönteminin Probiyotik Mikroorganizmaların Mikrokapsülasyonunda Kullanımı. Akademik Gıda, 15(3), 281-287. https://doi.org/10.24323/akademik-gida.345268
AMA Ergin F, Küçükçetin A, Oral A, Gürsoy O. Elektropüskürtme Yönteminin Probiyotik Mikroorganizmaların Mikrokapsülasyonunda Kullanımı. Akademik Gıda. October 2017;15(3):281-287. doi:10.24323/akademik-gida.345268
Chicago Ergin, Firuze, Ahmet Küçükçetin, Ayhan Oral, and Oğuz Gürsoy. “Elektropüskürtme Yönteminin Probiyotik Mikroorganizmaların Mikrokapsülasyonunda Kullanımı”. Akademik Gıda 15, no. 3 (October 2017): 281-87. https://doi.org/10.24323/akademik-gida.345268.
EndNote Ergin F, Küçükçetin A, Oral A, Gürsoy O (October 1, 2017) Elektropüskürtme Yönteminin Probiyotik Mikroorganizmaların Mikrokapsülasyonunda Kullanımı. Akademik Gıda 15 3 281–287.
IEEE F. Ergin, A. Küçükçetin, A. Oral, and O. Gürsoy, “Elektropüskürtme Yönteminin Probiyotik Mikroorganizmaların Mikrokapsülasyonunda Kullanımı”, Akademik Gıda, vol. 15, no. 3, pp. 281–287, 2017, doi: 10.24323/akademik-gida.345268.
ISNAD Ergin, Firuze et al. “Elektropüskürtme Yönteminin Probiyotik Mikroorganizmaların Mikrokapsülasyonunda Kullanımı”. Akademik Gıda 15/3 (October 2017), 281-287. https://doi.org/10.24323/akademik-gida.345268.
JAMA Ergin F, Küçükçetin A, Oral A, Gürsoy O. Elektropüskürtme Yönteminin Probiyotik Mikroorganizmaların Mikrokapsülasyonunda Kullanımı. Akademik Gıda. 2017;15:281–287.
MLA Ergin, Firuze et al. “Elektropüskürtme Yönteminin Probiyotik Mikroorganizmaların Mikrokapsülasyonunda Kullanımı”. Akademik Gıda, vol. 15, no. 3, 2017, pp. 281-7, doi:10.24323/akademik-gida.345268.
Vancouver Ergin F, Küçükçetin A, Oral A, Gürsoy O. Elektropüskürtme Yönteminin Probiyotik Mikroorganizmaların Mikrokapsülasyonunda Kullanımı. Akademik Gıda. 2017;15(3):281-7.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).