Research Article
BibTex RIS Cite

Farklı Kurutma Tekniklerinin Smilax excelsa Genç Sürgünlerinin Antioksidan Aktivitesi ve Bazı Fizikokimyasal Özellikleri Üzerine Etkisi

Year 2021, Volume: 52 Issue: 3, 314 - 324, 26.09.2021
https://doi.org/10.17097/ataunizfd.816887

Abstract

Dünyada tropik ve ılıman bölgelerde yetişen Smilax cinsi, Smilacaceae familyasından tırmanıcı dallara sahip, dikenli gövdeli çok yıllık bitkilerdir. Smilax excelsa L., Türkiye'nin özellikle Karadeniz Bölgesi’nde beslenmede ve tıbbi özelliklerinden dolayı halk hekimliğinde yaygın olarak kullanılmaktadır. Bu araştırmada S. excelsa L.’nin yeşil ve kırmızımsı renge sahip olan genç sürgünleri kullanılmıştır. Bu iki grup, liyofilizatörde (5 mm-Hg basınç, -50°C, 20 sa), mikrodalga fırında (500 W, 5 dk), gölgede (25±2°C, 7 gün) ve kurutma fırınında (50°C, 4 sa) olmak üzere dört farklı yöntem ile kurutulmuştur. Taze ve kurutulmuş yeşil ve kırmızımsı sürgünlerin toplam fenolik madde miktarları, toplam monomerik antosiyanin miktarları ve antioksidan aktiviteleri ile nem ve renk değerleri belirlenmiştir. Antioksidan aktivite, DPPH serbest radikali giderme aktivitesi ve Fe3+ indirgeme kapasitesi (FRAP) yöntemleri ile tespit edilmiştir. Kurutulmuş sürgünlerin nem içerikleri %10.11- %19.09 aralığında değişim göstermiştir. Uygulanan tüm kurutma yöntemleri sürgünlerin L* değerlerini önemli düzeyde (p<0.05) artırmıştır. Kurutulmuş bitkilerin a* değerleri yeşil grupta -3.24 ile 7.75 aralığında, kırmızımsı grupta ise 7.17-11.65 aralığında değişim göstermiştir. Tüm gruplarda b* değerlerinin taze örneklerden yüksek olduğu belirlenmiştir (p<0.05). En düşük ΔE değerleri liyofilize edilmiş sürgünlerde tespit edilirken en yüksek değerler fırında kurutulanlarda saptanmıştır. Kurutulmuş örnekler arasında en yüksek toplam fenolik madde ve toplam monomerik antosiyanin miktarları liyofilize edilmiş kırmızımsı sürgünlerde sırasıyla 33.58 mg gallik asit eşdeğeri/g kuru ağırlık ve 0.46 mg siyanidin-3-glikozit/g kuru ağırlık olarak belirlenmiştir. Kurutulmuş örneklerin DPPH radikal giderme aktivitesi (IC50) ve Fe3+ indirgeme kapasitesi değerleri sırasıyla; 1.88- 3.65 mg/g kuru ağırlık ve 2.51-5.76 gallik asit eşdeğeri/g kuru ağırlık aralığında tespit edilmiştir. Genel olarak tüm kurutma yöntemlerinin antioksidan aktiviteyi önemli düzeyde azalttığı saptanmıştır (p<0.05). Uygulanan kurutma yöntemleri arasında antioksidan aktivitenin en iyi korunduğu yöntemin liyofilize kurutma olduğu belirlenmiştir.

References

  • Abdullah, S., Shaari, A.R., Azimi, A., 2012. Effect of drying methods on metabolites composition of misai kucing (Orthosiphon stamineus) leaves. APCBEE Procedia, 2: 178-182.
  • AOAC, 2000. Official method of analysis. 16th ed. Association of Official Analytical Chemists. Washington, DC.
  • Ardağ, A., 2008. Antioksidan Kapasite Tayin Yöntemlerinin Analitik Açıdan Karşılaştırılması. Adnan Menderes Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Aydın, 53 s.
  • Babac, M.T., Uslu, E., Yasin B., 2002. Turkish Plants Data Service. Taxon page of Smilax excelsa, http://194.27.225.161/yasin/tubives/index.php?sayfa=1&tax_id=8812 (Erişim Tarihi: 21 Ağustos 2020).
  • Babu, A.K., Kumaresan, G., Raj, V.A.A., Velraj, R., 2018. Review of leaf drying: Mechanism and influencing parameters, drying methods, nutrient preservation, and mathematical models. Renew. Sust. Energ. Rev., 90: 536-556.
  • Balaydın, H.T., Gülçin, İ., Menzek, A., Göksu, S., Şahin, E., 2010. Synthesis and antioxidant properties of diphenylmethane derivative bromophenols including a natural product. J. Enzym İnhib. Med. Chem., 25 (5): 685-695.
  • Bayan, Y., Genç, N., 2016. Salvia verticillata subsp. amasiaca’nın toplam fenolik madde ve antioksidan kapasitesinin belirlenmesi. Nevşehir Bil. Tekn. Derg., 5 (2): 158-166.
  • Baytop, T., 1999. Therapy with Medicinal Plants in Turkey Past and Present. 2nd Edition, Nobel Tıp Kitabevi, Istanbul, 342 p.
  • Bhatta, S., Stevanovic Janezic, T., Ratti, C., 2020. Freeze-drying of plant-based foods. Foods, 9 (1): 87.
  • Braga, M.C., Vieira, E.C.S., de Oliveira, T.F., 2018. Curcuma longa L. leaves: Characterization (bioactive and antinutritional compounds) for use in human food in Brazil. Food Chem., 265: 308-315.
  • Buchaillot, A., Caffin, N., Bhandari, B., 2009. Drying of lemon myrtle (Backhousia citriodora) leaves: retention of volatiles and color. Dry Technol., 27 (3): 445-450.
  • Changrue, V., Raghavan, V.G., Orsat, V., Vijaya Raghavan, G., 2006. Microwave drying of fruits and vegetables. Stewart Postharvest Rev., 2 (6): 1-7.
  • Chen, L., Yin, Y., Yi, H., Xu, Q., Chen, T., 2007. Simultaneous quantification of five major bioactive flavonoids in Rhizoma smilacis glabrae by high-performance liquid chromatography. J. Pharm. Biomed., 43 (5): 1715-1720.
  • Chen, T., Li, J. X., Xu, Q., 2000. Phenylpropanoid glycosides from Smilax glabra. Phytochemistry, 53 (8): 1051-1055.
  • Chen, T., Li, J., Cao, J., Xu, Q., Komatsu, K., Namba, T., 1999. A new flavanone isolated from rhizoma Smilacis glabrae and the structural requirements of its derivatives for preventing immunological hepatocyte damage. Planta Med., 65 (1): 56-59.
  • Chen, X., 2008. Food drying fundamentals. In: Chen X.D., Mujumdar, S. (eds) Drying technologies in food processing, 1st edn. Wiley, New York, pp. 1-52.
  • Cox, S.D., Jayasinghe, K.C., Markham, J.L., 2005. Antioxidant activity in Australian native sarsaparilla (Smilax glyciphylla). J. Ethnopharmacol., 101 (1-3): 162-168.
  • De Bruijn, J., Rivas, F., Rodriguez, Y., Loyola, C., Flores, A., Melin, P., Borquez, R., 2016. Effect of vacuum microwave drying on the quality and storage stability of strawberries. J. Food Process. Preserv., 40 (5): 1104-1115.
  • Dehghan, H., Sarrafi, Y., Salehi, P., 2016. Antioxidant and antidiabetic activities of 11 herbal plants from Hyrcania region, Iran. J. Food Drug Anal., 24 (1): 179-188.
  • Frank, A.P., Heather, Y.P., 2012. A Handbook of Food Packaging. 2nd Edition, Springer Science & Business Media, Germany, 511 p.
  • Giusti, M.M., Wrolstad, R.E., 2001. Characterization and measurement of anthocyanins by UV‐visible spectroscopy. Curr. Protocols Food Anal. Chem., (1):1-2.
  • Haberlandt, G.F.J, 1914. Physiological Plant Anatomy, 2nd Edition, MacMillan Co., London, 777 p.
  • Ivanova, A., Marinova, E., Toneva, A., Kostova, I., Yanishlieva, N., 2006. Antioxidant properties of Smilax excelsa. Riv. Ital. Sostanze Grasse, 83 (3): 124-128.
  • Ivanova, A., Mikhova, B., Kostova, I., Evstatieva, L., 2010. Bioactive chemical constituents from Smilax excelsa. Chem. Nat. Compd., 46 (2): 295-297.
  • Ivanova, A., Serly, J., Dinchev, D., Ocsovszkı, I., Kostova, I., Molnar, J., 2009. Screening of some saponins and phenolic components of Tribulus terrestris and Smilax excelsa as MDR modulators. In vivo, 23 (4): 545-550.
  • López, J., Vega-Gálvez, A., Torres, M.J., Lemus-Mondaca, R., Quispe-Fuentes, I., Di Scala, K., 2013. Effect of dehydration temperature on physico-chemical properties and antioxidant capacity of goldenberry (Physalis peruviana L.). Chil. J. Agric. Res., 73 (3): 293-300.
  • Joshi, P., Mehta, D., 2010. Effect of dehydration on the nutritive value of drumstick leaves. J. Metabolomics Syst. Biol., 1 (1): 5-9.
  • Kalin, P., Gülçin, İ., Gören, A.C., 2015. Antioxidant activity and polyphenol content of cranberries (Vaccinium macrocarpon). Rec. Nat. Prod., 9 (4): 496.
  • Kuo, Y.H., Hsu, Y.W., Liaw, C.C., Lee, J.K., Huang, H.C., Kuo, L.M.Y., 2005. Cytotoxic phenylpropanoid glycosides from the stems of Smilax china. J. Nat. Prod., 68 (10): 1475-1478.
  • Lee, S.E., Ju, E.M., Kim, J.H., 2001. Free radical scavenging and antioxidant enzyme fortifying activities of extracts from Smilax china root. Exp. Mol. Med., 33 (4): 263-268.
  • Li, Y. L., Gan, G. P., Zhang, H.Z., Wu, H.Z., Li, C.L., Huang, Y.P., Liu, Y.W., Liu, J.W., 2007. A flavonoid glycoside isolated from Smilax china L. rhizome in vitro anticancer effects on human cancer cell lines. J. Ethnopharmacol., 113 (1): 115-124.
  • Li, Z.R., Wang, B., Zhang, Q.H., Huang, F.F., Ma, J.H., 2011. Microwave-assisted extraction and the antioxidant activity of water-soluble polysaccharide from Palmaria palmata: Extraction process and antioxidant activity of polysaccharide from Palmaria palmate. 5th International Conference on Bioinformatics and Biomedical Engineering, 10-12 May 2011, Wuhan, China, pp: 1-5.
  • Longo, L., Vasapollo, G., 2006. Extraction and identification of anthocyanins from Smilax aspera L. berries. Food Chem., 94 (2): 226-231.
  • Manetas, Y., 2006. Why some leaves are anthocyanic and why most anthocyanic leaves are red?. Flora-Morphology, Distribution, Func. Ecol. Plants, 201 (3): 163-177.
  • Meng, Q., Fan, H., Li, Y., Zhang, L., 2018. Effect of drying methods on physico-chemical properties and antioxidant activity of Dendrobium officinale. J. Food Meas. Charact., 12 (1): 1-10.
  • Mphahlele, R.R., Fawole, O.A., Makunga, N.P., Opara, U.L., 2016. Effect of drying on the bioactive compounds, antioxidant, antibacterial and antityrosinase activities of pomegranate peel. BMC Complement. Altern. Med., 16 (1): 143.
  • Navale, S.R., Supriya, U., Harpale, V.M., Mohite, K.C., 2014. Effect of solar drying on the nutritive value of fenugreek leaves. Int. J. Eng. Adv. Technol., 4 (2): 133-136.
  • Orphanides, A., Goulas, V., Gekas, V., 2013. Effect of drying method on the phenolic content and antioxidant capacity of spearmint. Czech J. Food Sci., 31 (5): 509-513.
  • Ozsoy, N., Can, A., Yanardag, R., Akev, N., 2008. Antioxidant activity of Smilax excelsa L. leaf extracts. Food Chem., 110 (3): 571-583.
  • Prosapio, V., Norton, I., 2017. Influence of osmotic dehydration pre-treatment on oven drying and freeze drying performance. LWT, 80: 401-408.
  • Raúl, S.C., Beatriz, H.C., Joseoziel, L.G., Francenia, S.S.N., 2017. Phenolic compounds in genus Smilax (Sarsaparilla). In: Soto-Hernández M (ed) Phenolic Compounds: Natural Sources, Importance and Applications, 1st edn. Intech Open Book, pp. 233.
  • Roshanak, S., Rahimmalek, M., Goli, S.A.H., 2016. Evaluation of seven different drying treatments in respect to total flavonoid, phenolic, vitamin C content, chlorophyll, antioxidant activity and color of green tea (Camellia sinensis or C. assamica) leaves. J. Food Sci. Tech., 53 (1): 721-729.
  • Sejali, S.N.F., Anuar, M.S., 2011. Effect of drying methods on phenolic contents of neem (Azadirachta indica) leaf powder. J.Herbs Spices Med. Plants, 17 (2):119-131.
  • Shu, X.S., Gao, Z.H., Yang, X.L., 2006. Anti-inflammatory and anti-nociceptive activities of Smilax china L. aqueous extract. J. Ethnopharmacol., 103 (3): 327-332.
  • Slinkard, K., Singleton, V.L., 1977. Total phenol analysis: automation and comparison with manual methods. Am. J. Enol. Vitic., 28 (1): 49-55.
  • Wojdyło, A., Figiel, A., Oszmianski, J., 2009. Effect of drying methods with the application of vacuum microwaves on the bioactive compounds, color, and antioxidant activity of strawberry fruits. J. Agric. Food Chem., 57(4): 1337-1343.
  • Yıldız, Ö.Ş., Ayanoğlu, F., Bahadırlı, N.P., Türkmen, M., 2019. Determination of some morphologıcal and chemıcal characterıstıcs of Sarsaparılla (Smilax aspera L. and Smilax excelsa L.). J. Agric. Food Environ. Sci., 73 (1): 26-35.
  • Yilmaz, K.U., Ercisli, S., Zengin, Y., Sengul, M., Kafkas, E. Y., 2009. Preliminary characterisation of cornelian cherry (Cornus mas L.) genotypes for their physico-chemical properties. Food Chem., 114 (2): 408-412.
  • Youssef, K.M., Mokhtar, S.M., 2014. Effect of drying methods on the antioxidant capacity, color and phytochemicals of Portulaca oleracea L. leaves. J. Nutr. Food Sci., 4 (6).
  • Zhou, L., Wang, Y., Hu, X., Wu, J., Liao, X., 2009. Effect of high pressure carbon dioxide on the quality of carrot juice. Innov. Food Sci. Emerg. Technol., 10 (3): 321-327.

The Effect of Different Drying Techniques on the Antioxidant Activity and Some Physicochemical Properties of Smilax excelsa Young Shoots

Year 2021, Volume: 52 Issue: 3, 314 - 324, 26.09.2021
https://doi.org/10.17097/ataunizfd.816887

Abstract

Smilax genus, which grows in tropical and temperate regions in the world, is a perennial plant with climbing branches and spiny stems from the Smilacaceae family. Smilax excelsa L. is widely used in the Black Sea region of Turkey for diet and folk medicine due to its medicinal properties. In this study, green and reddish young shoots of S. excelsa L. were used. These two groups were dried by four different drying methods including lyophilization (5 mm-Hg, -50°C, 20 h), microwave drying (500 W, 5 min), shade drying (25±2°C, 7 d), and drying in a drying oven (50°C, 4 h). Total phenolic contents, total monomeric anthocyanin contents, antioxidant activities, moisture contents, and color values of fresh and dried green and reddish shoots were determined. Antioxidant activity was determined by DPPH free radical scavenging activity and Fe3+ reducing capacity (FRAP) methods. The moisture content of the dried shoots varied between 10.11% and 19.09%. All applied drying methods increased L* values of the shoots significantly (p<0.05). a* values of the dried plants varied between -3.24 and -7.75 in the green group and between 7.17 and 11.65 in the reddish group. b* values were higher in all groups than fresh samples (p<0.05). While the lowest ΔE values were determined in lyophilized dried groups, the highest values were in oven-dried groups. Among the dried samples, the highest amounts of total phenolic substance and total monomeric anthocyanin were determined in the lyophilized dried red group as 33.58 mg gallic acid equivalent/ g dry weight and 0.46 mg cyanidin-3-glucoside/ g dry weight, respectively. The DPPH radical scavenging activity (as IC50) and Fe3+ reduction capacity values of the dried samples were determined in the range of 1.88-3.65 mg/ g dry weight and 2.51-5.76 gallic acid equivalent/ g dry weight, respectively. In general, all drying methods were found to decrease antioxidant activity significantly (p<0.05). Among the applied drying methods, lyophilized drying was determined as the best antioxidant activity protective method.

References

  • Abdullah, S., Shaari, A.R., Azimi, A., 2012. Effect of drying methods on metabolites composition of misai kucing (Orthosiphon stamineus) leaves. APCBEE Procedia, 2: 178-182.
  • AOAC, 2000. Official method of analysis. 16th ed. Association of Official Analytical Chemists. Washington, DC.
  • Ardağ, A., 2008. Antioksidan Kapasite Tayin Yöntemlerinin Analitik Açıdan Karşılaştırılması. Adnan Menderes Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Aydın, 53 s.
  • Babac, M.T., Uslu, E., Yasin B., 2002. Turkish Plants Data Service. Taxon page of Smilax excelsa, http://194.27.225.161/yasin/tubives/index.php?sayfa=1&tax_id=8812 (Erişim Tarihi: 21 Ağustos 2020).
  • Babu, A.K., Kumaresan, G., Raj, V.A.A., Velraj, R., 2018. Review of leaf drying: Mechanism and influencing parameters, drying methods, nutrient preservation, and mathematical models. Renew. Sust. Energ. Rev., 90: 536-556.
  • Balaydın, H.T., Gülçin, İ., Menzek, A., Göksu, S., Şahin, E., 2010. Synthesis and antioxidant properties of diphenylmethane derivative bromophenols including a natural product. J. Enzym İnhib. Med. Chem., 25 (5): 685-695.
  • Bayan, Y., Genç, N., 2016. Salvia verticillata subsp. amasiaca’nın toplam fenolik madde ve antioksidan kapasitesinin belirlenmesi. Nevşehir Bil. Tekn. Derg., 5 (2): 158-166.
  • Baytop, T., 1999. Therapy with Medicinal Plants in Turkey Past and Present. 2nd Edition, Nobel Tıp Kitabevi, Istanbul, 342 p.
  • Bhatta, S., Stevanovic Janezic, T., Ratti, C., 2020. Freeze-drying of plant-based foods. Foods, 9 (1): 87.
  • Braga, M.C., Vieira, E.C.S., de Oliveira, T.F., 2018. Curcuma longa L. leaves: Characterization (bioactive and antinutritional compounds) for use in human food in Brazil. Food Chem., 265: 308-315.
  • Buchaillot, A., Caffin, N., Bhandari, B., 2009. Drying of lemon myrtle (Backhousia citriodora) leaves: retention of volatiles and color. Dry Technol., 27 (3): 445-450.
  • Changrue, V., Raghavan, V.G., Orsat, V., Vijaya Raghavan, G., 2006. Microwave drying of fruits and vegetables. Stewart Postharvest Rev., 2 (6): 1-7.
  • Chen, L., Yin, Y., Yi, H., Xu, Q., Chen, T., 2007. Simultaneous quantification of five major bioactive flavonoids in Rhizoma smilacis glabrae by high-performance liquid chromatography. J. Pharm. Biomed., 43 (5): 1715-1720.
  • Chen, T., Li, J. X., Xu, Q., 2000. Phenylpropanoid glycosides from Smilax glabra. Phytochemistry, 53 (8): 1051-1055.
  • Chen, T., Li, J., Cao, J., Xu, Q., Komatsu, K., Namba, T., 1999. A new flavanone isolated from rhizoma Smilacis glabrae and the structural requirements of its derivatives for preventing immunological hepatocyte damage. Planta Med., 65 (1): 56-59.
  • Chen, X., 2008. Food drying fundamentals. In: Chen X.D., Mujumdar, S. (eds) Drying technologies in food processing, 1st edn. Wiley, New York, pp. 1-52.
  • Cox, S.D., Jayasinghe, K.C., Markham, J.L., 2005. Antioxidant activity in Australian native sarsaparilla (Smilax glyciphylla). J. Ethnopharmacol., 101 (1-3): 162-168.
  • De Bruijn, J., Rivas, F., Rodriguez, Y., Loyola, C., Flores, A., Melin, P., Borquez, R., 2016. Effect of vacuum microwave drying on the quality and storage stability of strawberries. J. Food Process. Preserv., 40 (5): 1104-1115.
  • Dehghan, H., Sarrafi, Y., Salehi, P., 2016. Antioxidant and antidiabetic activities of 11 herbal plants from Hyrcania region, Iran. J. Food Drug Anal., 24 (1): 179-188.
  • Frank, A.P., Heather, Y.P., 2012. A Handbook of Food Packaging. 2nd Edition, Springer Science & Business Media, Germany, 511 p.
  • Giusti, M.M., Wrolstad, R.E., 2001. Characterization and measurement of anthocyanins by UV‐visible spectroscopy. Curr. Protocols Food Anal. Chem., (1):1-2.
  • Haberlandt, G.F.J, 1914. Physiological Plant Anatomy, 2nd Edition, MacMillan Co., London, 777 p.
  • Ivanova, A., Marinova, E., Toneva, A., Kostova, I., Yanishlieva, N., 2006. Antioxidant properties of Smilax excelsa. Riv. Ital. Sostanze Grasse, 83 (3): 124-128.
  • Ivanova, A., Mikhova, B., Kostova, I., Evstatieva, L., 2010. Bioactive chemical constituents from Smilax excelsa. Chem. Nat. Compd., 46 (2): 295-297.
  • Ivanova, A., Serly, J., Dinchev, D., Ocsovszkı, I., Kostova, I., Molnar, J., 2009. Screening of some saponins and phenolic components of Tribulus terrestris and Smilax excelsa as MDR modulators. In vivo, 23 (4): 545-550.
  • López, J., Vega-Gálvez, A., Torres, M.J., Lemus-Mondaca, R., Quispe-Fuentes, I., Di Scala, K., 2013. Effect of dehydration temperature on physico-chemical properties and antioxidant capacity of goldenberry (Physalis peruviana L.). Chil. J. Agric. Res., 73 (3): 293-300.
  • Joshi, P., Mehta, D., 2010. Effect of dehydration on the nutritive value of drumstick leaves. J. Metabolomics Syst. Biol., 1 (1): 5-9.
  • Kalin, P., Gülçin, İ., Gören, A.C., 2015. Antioxidant activity and polyphenol content of cranberries (Vaccinium macrocarpon). Rec. Nat. Prod., 9 (4): 496.
  • Kuo, Y.H., Hsu, Y.W., Liaw, C.C., Lee, J.K., Huang, H.C., Kuo, L.M.Y., 2005. Cytotoxic phenylpropanoid glycosides from the stems of Smilax china. J. Nat. Prod., 68 (10): 1475-1478.
  • Lee, S.E., Ju, E.M., Kim, J.H., 2001. Free radical scavenging and antioxidant enzyme fortifying activities of extracts from Smilax china root. Exp. Mol. Med., 33 (4): 263-268.
  • Li, Y. L., Gan, G. P., Zhang, H.Z., Wu, H.Z., Li, C.L., Huang, Y.P., Liu, Y.W., Liu, J.W., 2007. A flavonoid glycoside isolated from Smilax china L. rhizome in vitro anticancer effects on human cancer cell lines. J. Ethnopharmacol., 113 (1): 115-124.
  • Li, Z.R., Wang, B., Zhang, Q.H., Huang, F.F., Ma, J.H., 2011. Microwave-assisted extraction and the antioxidant activity of water-soluble polysaccharide from Palmaria palmata: Extraction process and antioxidant activity of polysaccharide from Palmaria palmate. 5th International Conference on Bioinformatics and Biomedical Engineering, 10-12 May 2011, Wuhan, China, pp: 1-5.
  • Longo, L., Vasapollo, G., 2006. Extraction and identification of anthocyanins from Smilax aspera L. berries. Food Chem., 94 (2): 226-231.
  • Manetas, Y., 2006. Why some leaves are anthocyanic and why most anthocyanic leaves are red?. Flora-Morphology, Distribution, Func. Ecol. Plants, 201 (3): 163-177.
  • Meng, Q., Fan, H., Li, Y., Zhang, L., 2018. Effect of drying methods on physico-chemical properties and antioxidant activity of Dendrobium officinale. J. Food Meas. Charact., 12 (1): 1-10.
  • Mphahlele, R.R., Fawole, O.A., Makunga, N.P., Opara, U.L., 2016. Effect of drying on the bioactive compounds, antioxidant, antibacterial and antityrosinase activities of pomegranate peel. BMC Complement. Altern. Med., 16 (1): 143.
  • Navale, S.R., Supriya, U., Harpale, V.M., Mohite, K.C., 2014. Effect of solar drying on the nutritive value of fenugreek leaves. Int. J. Eng. Adv. Technol., 4 (2): 133-136.
  • Orphanides, A., Goulas, V., Gekas, V., 2013. Effect of drying method on the phenolic content and antioxidant capacity of spearmint. Czech J. Food Sci., 31 (5): 509-513.
  • Ozsoy, N., Can, A., Yanardag, R., Akev, N., 2008. Antioxidant activity of Smilax excelsa L. leaf extracts. Food Chem., 110 (3): 571-583.
  • Prosapio, V., Norton, I., 2017. Influence of osmotic dehydration pre-treatment on oven drying and freeze drying performance. LWT, 80: 401-408.
  • Raúl, S.C., Beatriz, H.C., Joseoziel, L.G., Francenia, S.S.N., 2017. Phenolic compounds in genus Smilax (Sarsaparilla). In: Soto-Hernández M (ed) Phenolic Compounds: Natural Sources, Importance and Applications, 1st edn. Intech Open Book, pp. 233.
  • Roshanak, S., Rahimmalek, M., Goli, S.A.H., 2016. Evaluation of seven different drying treatments in respect to total flavonoid, phenolic, vitamin C content, chlorophyll, antioxidant activity and color of green tea (Camellia sinensis or C. assamica) leaves. J. Food Sci. Tech., 53 (1): 721-729.
  • Sejali, S.N.F., Anuar, M.S., 2011. Effect of drying methods on phenolic contents of neem (Azadirachta indica) leaf powder. J.Herbs Spices Med. Plants, 17 (2):119-131.
  • Shu, X.S., Gao, Z.H., Yang, X.L., 2006. Anti-inflammatory and anti-nociceptive activities of Smilax china L. aqueous extract. J. Ethnopharmacol., 103 (3): 327-332.
  • Slinkard, K., Singleton, V.L., 1977. Total phenol analysis: automation and comparison with manual methods. Am. J. Enol. Vitic., 28 (1): 49-55.
  • Wojdyło, A., Figiel, A., Oszmianski, J., 2009. Effect of drying methods with the application of vacuum microwaves on the bioactive compounds, color, and antioxidant activity of strawberry fruits. J. Agric. Food Chem., 57(4): 1337-1343.
  • Yıldız, Ö.Ş., Ayanoğlu, F., Bahadırlı, N.P., Türkmen, M., 2019. Determination of some morphologıcal and chemıcal characterıstıcs of Sarsaparılla (Smilax aspera L. and Smilax excelsa L.). J. Agric. Food Environ. Sci., 73 (1): 26-35.
  • Yilmaz, K.U., Ercisli, S., Zengin, Y., Sengul, M., Kafkas, E. Y., 2009. Preliminary characterisation of cornelian cherry (Cornus mas L.) genotypes for their physico-chemical properties. Food Chem., 114 (2): 408-412.
  • Youssef, K.M., Mokhtar, S.M., 2014. Effect of drying methods on the antioxidant capacity, color and phytochemicals of Portulaca oleracea L. leaves. J. Nutr. Food Sci., 4 (6).
  • Zhou, L., Wang, Y., Hu, X., Wu, J., Liao, X., 2009. Effect of high pressure carbon dioxide on the quality of carrot juice. Innov. Food Sci. Emerg. Technol., 10 (3): 321-327.
There are 50 citations in total.

Details

Primary Language Turkish
Journal Section ARAŞTIRMALAR
Authors

Elif Feyza Topdas 0000-0003-3778-3654

Muhammet Demirbaş 0000-0003-3962-6804

Memnune Şengül 0000-0003-3909-2523

İhsan Güngör Şat 0000-0001-9868-0208

Publication Date September 26, 2021
Published in Issue Year 2021 Volume: 52 Issue: 3

Cite

APA Topdas, E. F., Demirbaş, M., Şengül, M., Şat, İ. G. (2021). Farklı Kurutma Tekniklerinin Smilax excelsa Genç Sürgünlerinin Antioksidan Aktivitesi ve Bazı Fizikokimyasal Özellikleri Üzerine Etkisi. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 52(3), 314-324. https://doi.org/10.17097/ataunizfd.816887
AMA Topdas EF, Demirbaş M, Şengül M, Şat İG. Farklı Kurutma Tekniklerinin Smilax excelsa Genç Sürgünlerinin Antioksidan Aktivitesi ve Bazı Fizikokimyasal Özellikleri Üzerine Etkisi. Atatürk Üniversitesi Ziraat Fakültesi Dergisi. September 2021;52(3):314-324. doi:10.17097/ataunizfd.816887
Chicago Topdas, Elif Feyza, Muhammet Demirbaş, Memnune Şengül, and İhsan Güngör Şat. “Farklı Kurutma Tekniklerinin Smilax Excelsa Genç Sürgünlerinin Antioksidan Aktivitesi Ve Bazı Fizikokimyasal Özellikleri Üzerine Etkisi”. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 52, no. 3 (September 2021): 314-24. https://doi.org/10.17097/ataunizfd.816887.
EndNote Topdas EF, Demirbaş M, Şengül M, Şat İG (September 1, 2021) Farklı Kurutma Tekniklerinin Smilax excelsa Genç Sürgünlerinin Antioksidan Aktivitesi ve Bazı Fizikokimyasal Özellikleri Üzerine Etkisi. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 52 3 314–324.
IEEE E. F. Topdas, M. Demirbaş, M. Şengül, and İ. G. Şat, “Farklı Kurutma Tekniklerinin Smilax excelsa Genç Sürgünlerinin Antioksidan Aktivitesi ve Bazı Fizikokimyasal Özellikleri Üzerine Etkisi”, Atatürk Üniversitesi Ziraat Fakültesi Dergisi, vol. 52, no. 3, pp. 314–324, 2021, doi: 10.17097/ataunizfd.816887.
ISNAD Topdas, Elif Feyza et al. “Farklı Kurutma Tekniklerinin Smilax Excelsa Genç Sürgünlerinin Antioksidan Aktivitesi Ve Bazı Fizikokimyasal Özellikleri Üzerine Etkisi”. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 52/3 (September 2021), 314-324. https://doi.org/10.17097/ataunizfd.816887.
JAMA Topdas EF, Demirbaş M, Şengül M, Şat İG. Farklı Kurutma Tekniklerinin Smilax excelsa Genç Sürgünlerinin Antioksidan Aktivitesi ve Bazı Fizikokimyasal Özellikleri Üzerine Etkisi. Atatürk Üniversitesi Ziraat Fakültesi Dergisi. 2021;52:314–324.
MLA Topdas, Elif Feyza et al. “Farklı Kurutma Tekniklerinin Smilax Excelsa Genç Sürgünlerinin Antioksidan Aktivitesi Ve Bazı Fizikokimyasal Özellikleri Üzerine Etkisi”. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, vol. 52, no. 3, 2021, pp. 314-2, doi:10.17097/ataunizfd.816887.
Vancouver Topdas EF, Demirbaş M, Şengül M, Şat İG. Farklı Kurutma Tekniklerinin Smilax excelsa Genç Sürgünlerinin Antioksidan Aktivitesi ve Bazı Fizikokimyasal Özellikleri Üzerine Etkisi. Atatürk Üniversitesi Ziraat Fakültesi Dergisi. 2021;52(3):314-2.

Articles published in this journal are published under the Creative Commons International License (https://creativecommons.org/licenses/by-nc/4.0/). This allows the work to be copied and distributed in any medium or format provided that the original article is appropriately cited. However, the articles work cannot be used for commercial purposes.

https://creativecommons.org/licenses/by-nc/4.0/