Review
BibTex RIS Cite

New Applications for the Formation, Control and Removal of Bacterial Biofilm in the Food Industry

Year 2024, , 63 - 69, 17.12.2024
https://doi.org/10.47027/duvetfd.1494192

Abstract

In the food chain, there is a contamination risk from various sources due to reasons such as inadequate equipment cleaning and neglect of appropriate hygiene standards throughout production, from the entry of raw materials into the factory to the final product acquisition. Contamination risks within food enterprises have the potential to affect not only product quality, but also food safety and consumer health. Among the foremost challenges in preventing contamination through cleaning and disinfection procedures is the formation of bacterial biofilms on equipment surfaces. Biofilms are defined as a gel-like layer formed by microorganisms living in the polymeric structure they produce by adhering to a surface. It develops especially in food enterprises, on inner equipment surfaces, pipes, filters, conveyor belts, and other hard-to-clean areas, leading to food spoilage and substantial economic losses. Therefore, biofilm formation in food enterprises should be prevented or eliminated in cases where it cannot be prevented. Recently, current studies have focused on improving existing methods and strategies to remove or prevent the formation of biofilms from industrial environments, as well as the development of more effective inhibitory agents or removal techniques. Recent applications in biofilm control include green technologies such cold atmospheric plasma, high pressure, pulsed UV, electrolyzed water, ozone, ultrasound and bacteriophage and bacteriocin applications. Ongoing studies explore novel techniques like bactericidal surface technologies and nanotechnology within the field of biofilm hurdle technologies. In this study, bacterial biofilm formation and development, influencing factors, prevention strategies, and applications for the most effective removal of biofilms, which cannot be prevented despite everything and advanced techniques that safeguard food safety, consumer health, equipment and surfaces were reviewed.

References

  • Kanematsu H, Barry DM. (2020). Formation and Control of Biofilm in Various Environments. 1st edition, Springer, Singapore.
  • Alvarez-Ordóñez A, Coughlan LM, Briandet R, Cotter PD. (2019). Annual Review of Food Science and Technology Biofilms in Food Processing Environments: Challenges and Opportunities. Annu Rev Food Sci Technol. 10: 173-195.
  • Moser C, Jensen PØ, Thomsen K, et al. (2021). Immune Responses to Pseudomonas aeruginosa Biofilm Infections, Front Immunol. 12: 625597.
  • Høiby N. (2017). A Short History of Microbial Biofilms and Biofilm İnfections. Apmis. 125(4): 272-275.
  • Guzmá NI, Mctiernan C, Gonzalez-Gomez M, et al. (2021). Mimicking Biofilm Formation and Development: Recent Progress in Invitro and Invivo Biofilm Models. Iscience. 24(5): 102443.
  • Galié S, García-Gutiérrez C, Miguélez EM, Villar CJ, Lombó F. (2018). Biofilms in the Food Industry: Health Aspects and Control Methods. Front Microbiol. 9: 898.
  • Shineh G, Mobaraki M, Bappy MJP, Mills DK. (2023). Biofilm Formation, and Related Impacts on Healthcare, Food Processing and Packaging, Industrial Manufacturing, Marine Industries, and Sanitation–A Review. Appl Microbiol. 3(3): 629-665.
  • Byun KH, Han SH, Choi MW, Kim BH, Ha SD. (2024). Efficacy of disinfectant and bacteriophage mixture against planktonic and biofilm state of Listeria monocytogenes to control in the food industry. Int J Food Microbiol. 413: 110587.
  • Turhan UE, Polat S, Erginkaya Z, Konuray G. (2022). Investigation of Synergistic Antibacterial Effect of Organic Acids and Ultrasound Against Pathogen Biofilms on Lettuce. Food Biosci. 47: 101643.
  • World Health Organisation, 2022. Food safety. Erişim: https://www.who.int/news-room/fact-sheets/detail/food-safety. Erişim tarihi: 01.10.2024.
  • Khanashyam AC, Shanker MA, Thomas PE, Babu KS, Nirmal NP. (2023). Phytochemicals in Biofilm Inhibition. In: Recent Frontiers of Phytochemicals: Applications in Food, Pharmacy, Cosmetics, and Biotechnology. S Pati, T Sarkar, D Lahiri (eds). 1st ed. pp. 397-412, Elsevier, USA.
  • Alotaibi GF. (2021). Factors Influencing Bacterial Biofilm Formation and Development. Am J Biomed Res. 12(6): 617-626.
  • Kartal MO, Ekinci MB, Poyraz B. (2021). Biyofilm Yapısı ve Önlenmesi. Akademik Gıda. 19(3): 353-363.
  • Ashikur RM, Akter S, Ashrafudoulla M, et al. (2024). Insights Into the Mechanisms and Key Factors Influencing Biofilm Formation by Aeromonas hydrophila in the Food Industry: A Comprehensive Review and Bibliometric Analysis. Food Res Int. 175: 113671.
  • Gürlük N, Koluman A, Kahraman T. (2017). Gıda İşletmelerinde Biyofilm Sorunu ve Gümüş Nanopartikül Uygulamaları. Aydın Gastronomy, 6(1): 51-63.
  • Türetgen İ. (2005). Su Sistemlerinde Mikrobiyal Biyofilm Oluşumunun İncelenmesi, Doktora Tezi, İstanbul Üniversitesi Fen Bilimleri Enstitüsü, 79 s., İstanbul.
  • Joseph B, Otta SK, Karunasagar I, Karunasagar I. (2001). Biofilm Formation by Salmonella spp. on Food Contact Surfaces and Their Sensitivity to Sanitizers. Int J Food Microbiol. 64: 367–372.
  • Ghosh S, Sarkar T, Chakraborty R. (2021). Formation and Development of Biofilm- an Alarming Concern in Food Safety Perspectives. Biocatal Agric Biotechnol. 38: 102210.
  • Çevikbaş H, Ulusoy S. (2023). Gül (Rosa damascena Mill.) Uçucu Yağının Pseudomanas aeruginosa’da Biyofilm Oluşumu ve Kayma Hareketi Üzerine Etkisi. Akademik Gıda. 21(4): 367-374.
  • Li X, Gu N, Huang TY, Zhong F, Peng G. (2023). Pseudomonas aeruginosa: A Typical Biofilm Forming Pathogen and an Emerging but Underestimated Pathogen in Food Processing. Front Microbiol. 13: 1114199.
  • Sırıken B, Öz V. (2017). Pseudomonas aeruginosa: Özellikleri ve Quorum Sensing Mekanizması. Gıda ve Yem Bilimi- Teknolojisi Dergisi.18: 42-52.
  • Fagerlund A, Langsrud S, Møretrø T. (2021). Microbial Diversity and Ecology of Biofilms in Food Industry Environments Associated with Listeria monocytogenes persistence. Curr Opin Food Sci. 37: 171-178.
  • Gemmell, C. T., Parreira, V. R., & Farber, J. M. (2022). Controlling Listeria monocytogenes growth and biofilm formation using flavonoids. J Food Prot. 85(4), 639-646.
  • Gouda M, Khalaf MM, Taleb MFA, El-Lateef HMA. (2024). Fabrication of Silver Nanoparticles Loaded Acacia Gum/Chitosan Nanogel to Coat The Pipe Surface for Sustainable Inhibiting Microbial Adhesion and Biofilm Growth In Water Distribution Systems. Int J Biol Macromol. 262: 130085.
  • Gungor C, Onmaz NE, Gundog DA, Yavas, GT, Koskeroglu, K, Gungor, G. (2024). Four Novel Bacteriophages From Slaughterhouse: Their Potency on Control of Biofilm-Forming MDR S. aureus In Beef Model. Food Control. 156: 110146.
  • Liu Y, Yan Y, Yang K, et al. (2023). Inhibitory Mechanism of Salmonella Derby Biofilm Formation by Sub-İnhibitory Concentrations of Clove And Oregano Essential Oil: A Global Transcriptomic Study. Food Control. 150: 109734.
  • Zhang Q, Hu X, Zhang R, et al. (2024). Characterization of Brevibacillus Biofilm Isolated from Pasteurized Milk and Evaluation of the Efficacy of Sodium hypochlorite, CIP, and Enzymatic Treatment Against the Biofilm. Food Control. 161: 110405.
  • Zhu T, Yang C, Bao X, Chen F, Guo X. (2022). Strategies for Controlling Biofilm Formation in Food Industry. Grain Oil Sci Technol. 5(4): 179-186.
  • Vázquez-Sánchez D, Galvão JA, Ambrosio CMS, Gloria EM, Oetterer M. (2018). Single and Binary Applications of Essential Oils Effectively Control Listeria monocytogenes Biofilm. Ind Crops Prod. 121: 452-460.
  • Park HW, Xu J, Balasubramaniam VM, Snyder AB. (2021). The Effect of Water Activity and Temperature on the Inactivation of Enterococcus faecium In Peanut Butter During Superheated Steam Sanitation Treatment. Food Control. 125: 107942.
  • Kim SH, Park SH, Kang DH. (2024). Simultaneous Combination Treatment with Superheated Steam and Nebulized Organic Acid to İnactivate Bacillus cereus Endospores on Stainless Steel Surfaces. Food Control. 155: 110028.
  • Hua Z, Younce F, Tang J, et al. (2021). Efficacy of Saturated Steam Against Listeria innocua Biofilm on Common Food-Contact Surfaces. Food Control. 125: 107988.
  • Nahar S, Ha AJ, Byun KH, Hossai MI, Mizan MFR, Ha SD. (2021). Efficacy of Flavourzyme Against Salmonella typhimurium, Escherichia coli, and Pseudomonas aeruginosa Biofilms on Food-Contact Surfaces. Int J Food Microbiol. 336: 108897.
  • Mazaheri T, Ripolles-Avila C, Hascoët AS, Rodríguez-Jerez JJ. (2020). Effect of an Enzymatic Treatment on the Removal of Mature Listeria monocytogenes Biofilms: A Quantitative and Qualitative Study. Food Control. 114: 107266.
  • Kartal MO, Ekinci MB, Poyraz B. (2021). Biyofilm Yapısı ve Önlenmesi. Akademik Gıda. 19(3): 353-363.
  • Tantratian S, Srimangkornkaew N, Prakitchaiwattana C, Sanguandeekul R. (2022). Effect of Different Stainless Steel Surfaces on the Formation and Control of Vibrio parahaemolyticus Biofilm. LWT. 166: 113788.
  • Moraes JO, Cruz EA, Pinheiro Í, et al. (2019). An Ordinal Logistic Regression Approach to Predict the Variability on Biofilm Formation Stages by Five Salmonella enterica Strains on Polypropylene and Glass Surfaces as Affected by pH, Temperature and NaCl. Food Microbiol. 83: 95-103.
  • Ergin Ç, Öner SZ, Özkan B, et al. (2023). Evaluation of Malassezia furfur Biofilm Formation on Polypropylene Membrane. Mikrobiyoloji Bülteni. 57(3): 432-443.
  • Hoca S. (2010). Model Şebeke Boru Sisteminde Oluşan Biyofilmdeki Bakteriler Üzerine Kısa Süreli Kurumanın Etkisi. Yüksek Lisans Tezi, İstanbul Üniversitesi Fen Bilimleri Enstitüsü, 72 s., İstanbul.
  • Pedrós-Garrido S, Condón-Abanto S, Clemente I, et al. (2018). Efficacy of Ultraviolet Light (UV-C) and Pulsed Light (PL) For The Microbiological Decontamination of Raw Salmon (Salmo salar) and Food Contact Surface Materials. Innov Food Sci Emerg Technol. 50: 124-131.
  • Ban GH, Park SH, Kim SO, Ryu S, Kang DH. (2012). Synergistic Effect of Steam and Lactic Acid Against Escherichia coli O157: H7, Salmonella typhimurium, and Listeria monocytogenes Biofilms on Polyvinyl chloride and Stainless Steel. Int J Food Microbiol. 157(2): 218-223.
  • Traba C, Liang JF. (2011). Susceptibility of Staphylococcus aureus Biofilms to Reactive Discharge Gases. Biofouling. 27(7): 763-772.
  • Liu L, Chen X, Li Y, Yuan L, Rao Y. (2023). Biofilm Formation, Hyphae Growth, and Transcriptome Characteristics of C. albicans Surviving High-Pressure Processing. LWT- Food Sci Technol. 187: 115332.
  • Cava R, Higuero N, Ladero L. (2021). High-Pressure Processing and Storage Temperature on Listeria monocytogenes, Microbial Counts and Oxidative Changes of Two Traditional Dry-Cured Meat Products. Meat Sci. 171: 108273.
  • Liu S, Chen S, Shao L, Ding Z, Xu X, Wang H. (2024). Spoilage Bacteria Growth Reduction and Microbial Community Variation of Chilled Chicken Packaged in PA/PE Treated With Pulsed Light. Food Control. 157: 110196.
  • Gao F, Lyu C, Ning Z, et al. (2023). Inactivation of Salmonella Biofilms Formed on Stainless Steel Surfaces by Pulsed Light. Food Control. 153: 109955.
  • Shao L, Dong Y, Chen X, Xu X, Wang H. (2020). Modeling the Elimination of Mature Biofilms Formed by Staphylococcus aureus and Salmonella spp. Using Combined Ultrasound and Disinfectants. Ultrason Sonochem. 69: 105269.
  • Bigi F, Maurizzi E, Quartieri A, Leo RD, Gullo M, Pulvirenti A. (2023). Non-Thermal Techniques and the “Hurdle” Approach: How is Food Technology Evolving? Trends Food Sci Technol. 132: 11-39.
  • Panebianco, F., Rubiola, S., Chiesa, F., Civera, T., & Di Ciccio, P. A. (2021). Effect of gaseous ozone on Listeria monocytogenes planktonic cells and biofilm: An in vitro study. Foods. 10(7), 1484
  • Erriu M, Blus C, Szmukler-Moncler S, et al. (2014). Microbial Biofilm Modulation by Ultrasound: Current Concepts and Controversies. Ultrason Sonochem. 21(1): 15-22.
  • Wang M, Jiang L, Liu M, et al. (2024). Effects of Ultrasound on Disrupting Metabolite Profiles of Pseudomonas fluorescens Biofilms Cultured on the Surface of Lettuce. Food Control. 155: 110103.
  • Yu H, Liu Y, Yang F, et al. (2021). Combined an Acoustic Pressure Simulation of Ultrasonic Radiation and Experimental Studies to Evaluate Control Efficacy of High-Intensity Ultrasound Against Staphylococcus aureus Biofilm. Ultrason Sonochem. 79: 105764.
  • Ashrafudoulla M, Kim HJ, Her E, Shaila S, Park SH, Ha SD. (2023). Characterization of Salmonella Thompson-Specific Bacteriophages and Their Preventive Application Against Salmonella Thompson Biofilm on Eggshell as a Promising Antimicrobial Agent in the Food Industry. Food Control. 154: 110008.
  • Wang D, Zhao X, Wang H. (2023). Recent Advances of Bacteriophage-Derived Strategies for Biofilm Control in the Food Industry. Food Biosci. 54: 102819.
  • Azari R, Yousefi MH, Fallah AA, et al. (2024). Controlling of Foodborne Pathogen Biofilms on Stainless Steel by Bacteriophages: A Systematic Review and Meta-Analysis. Biofilm. 100170.
  • Lei W, Hao L, You S, Yao H, Liu C, Zhou H. (2022). Partial Purification and Application of a Bacteriocin Produced by Probiotic Lactococcus lactis C15 Isolated from Raw Milk. LWT- Food Sci Technol. 169: 113917.
  • Melian C, Ploper D, Cheín R, Vignolo G, Castellano P. (2024). Impairment of Listeria monocytogenes Biofilm Developed on Industrial Surfaces by Latilactobacillus curvatus CRL1579 Bacteriocin. Food Microbiol. 121: 104491.
  • Villarreal LA, Ladero V, Sarquis A, Martinez B, del Rio B, Alvarez MA. (2024). Bacteriocins Against Biogenic Amine-Accumulating Lactic Acid Bacteria in Cheese: Nisin A Shows the Broadest Antimicrobial Spectrum and Prevents The Formation of Biofilms. J Dairy Sci. 107(7): 4277-4287.
  • Manoharadas, Salim, Mohammad Altaf, Abdulwahed Fahad Alrefaei, Rajesh Mamkulatil Devasia, Ahmed Yacine M. Badjah Hadj, ve Mohammed Saeed Ali Abuhasil. 2021. “Concerted dispersion of Staphylococcus aureus biofilm by bacteriophage and ‘green synthesized’ silver nanoparticles”. RSC Advances. 11(3): 1420-29.

Gıda Endüstrisinde Bakteriyel Biyofilm Oluşumu, Kontrolü ve Giderilmesine Yönelik Yeni Uygulamalar

Year 2024, , 63 - 69, 17.12.2024
https://doi.org/10.47027/duvetfd.1494192

Abstract

Gıda zincirinde hammaddenin işletmeye girmesinden son ürün elde edilinceye kadar üretimin tüm aşamalarında ekipmanların yeterince temizlenmemesi ve uygun hijyen standartlarının ihmal edilmesi gibi nedenlerle çeşitli kaynaklardan kontaminasyon riski söz konusudur. Gıda işletmelerinde yaşanan kontaminasyon riskleri sadece ürün kalitesini değil aynı zamanda gıda güvenliğini ve tüketici sağlığını etkileme potansiyeline sahiptir. Kontaminasyonu önlemeye yönelik yapılan temizlik ve dezenfeksiyon uygulamalarında yaşanan en büyük zorluklardan biri ekipman yüzeylerinde bakteriyel kaynaklı biyofilm oluşumudur. Biyofilmler bir yüzeye yapışarak kendi ürettikleri polimerik yapı içinde yaşayan mikroorganizmaların oluşturduğu jelsi bir tabaka olarak tanımlanmaktadır. Özellikle gıda işletmelerinde ekipman ve boruların iç yüzeyleri, filtreler, konveyör bantlar, yardımcı alet ve ekipmanlarda, temizlenmesi ve dezenfekte edilmesi zor olan alanlarda gelişerek gıdalarda bozulmalara neden olmakla birlikte ciddi ekonomik kayıplara yol açmaktadır. Bu yüzden gıda işletmelerinde biyofilm oluşumunun engellenmesi ya da engellenemediği durumlarda da ortadan kaldırılması gerekmektedir. Son zamanlarda güncel çalışmalar biyofilmlerin endüstriyel ortamlardan giderilmesi veya oluşumunun engellenmesi için mevcut yöntem ve stratejilerin iyileştirilmesiyle birlikte daha etkili inhibitör ajanlar veya uzaklaştırma tekniklerinin geliştirilmesine odaklanmıştır. Biyofilmlerin kontrolünde son uygulamalar arasında soğuk atmosferik plazma, yüksek basınç, vurgulu ışık, elektrolize su, ozon, ultrason gibi yeşil teknolojiler ile bakteriyofaj ve bakteriyosin uygulamaları yer almaktadır. Biyofilm engel teknolojilerine bakıldığında bakterisidal yüzey teknolojileri ve nanoteknoloji gibi yeni teknikler üzerine güncel çalışmalar devam etmektedir. Bu çalışmada bakteriyel biyofilm oluşumu ve gelişimi, etkileyen faktörler, önlemeye yönelik stratejiler ile her şeye rağmen oluşumu engellenemeyen biyofilmlerin gıda güvenliği, tüketici sağlığı, ekipman ve yüzeylere zarar vermeyecek ileri tekniklerle en etkili şekilde giderilmesine yönelik uygulamalar derlenmiştir.

Ethical Statement

Yazarlar herhangi bir çıkar çatışması beyan etmemektedir.

References

  • Kanematsu H, Barry DM. (2020). Formation and Control of Biofilm in Various Environments. 1st edition, Springer, Singapore.
  • Alvarez-Ordóñez A, Coughlan LM, Briandet R, Cotter PD. (2019). Annual Review of Food Science and Technology Biofilms in Food Processing Environments: Challenges and Opportunities. Annu Rev Food Sci Technol. 10: 173-195.
  • Moser C, Jensen PØ, Thomsen K, et al. (2021). Immune Responses to Pseudomonas aeruginosa Biofilm Infections, Front Immunol. 12: 625597.
  • Høiby N. (2017). A Short History of Microbial Biofilms and Biofilm İnfections. Apmis. 125(4): 272-275.
  • Guzmá NI, Mctiernan C, Gonzalez-Gomez M, et al. (2021). Mimicking Biofilm Formation and Development: Recent Progress in Invitro and Invivo Biofilm Models. Iscience. 24(5): 102443.
  • Galié S, García-Gutiérrez C, Miguélez EM, Villar CJ, Lombó F. (2018). Biofilms in the Food Industry: Health Aspects and Control Methods. Front Microbiol. 9: 898.
  • Shineh G, Mobaraki M, Bappy MJP, Mills DK. (2023). Biofilm Formation, and Related Impacts on Healthcare, Food Processing and Packaging, Industrial Manufacturing, Marine Industries, and Sanitation–A Review. Appl Microbiol. 3(3): 629-665.
  • Byun KH, Han SH, Choi MW, Kim BH, Ha SD. (2024). Efficacy of disinfectant and bacteriophage mixture against planktonic and biofilm state of Listeria monocytogenes to control in the food industry. Int J Food Microbiol. 413: 110587.
  • Turhan UE, Polat S, Erginkaya Z, Konuray G. (2022). Investigation of Synergistic Antibacterial Effect of Organic Acids and Ultrasound Against Pathogen Biofilms on Lettuce. Food Biosci. 47: 101643.
  • World Health Organisation, 2022. Food safety. Erişim: https://www.who.int/news-room/fact-sheets/detail/food-safety. Erişim tarihi: 01.10.2024.
  • Khanashyam AC, Shanker MA, Thomas PE, Babu KS, Nirmal NP. (2023). Phytochemicals in Biofilm Inhibition. In: Recent Frontiers of Phytochemicals: Applications in Food, Pharmacy, Cosmetics, and Biotechnology. S Pati, T Sarkar, D Lahiri (eds). 1st ed. pp. 397-412, Elsevier, USA.
  • Alotaibi GF. (2021). Factors Influencing Bacterial Biofilm Formation and Development. Am J Biomed Res. 12(6): 617-626.
  • Kartal MO, Ekinci MB, Poyraz B. (2021). Biyofilm Yapısı ve Önlenmesi. Akademik Gıda. 19(3): 353-363.
  • Ashikur RM, Akter S, Ashrafudoulla M, et al. (2024). Insights Into the Mechanisms and Key Factors Influencing Biofilm Formation by Aeromonas hydrophila in the Food Industry: A Comprehensive Review and Bibliometric Analysis. Food Res Int. 175: 113671.
  • Gürlük N, Koluman A, Kahraman T. (2017). Gıda İşletmelerinde Biyofilm Sorunu ve Gümüş Nanopartikül Uygulamaları. Aydın Gastronomy, 6(1): 51-63.
  • Türetgen İ. (2005). Su Sistemlerinde Mikrobiyal Biyofilm Oluşumunun İncelenmesi, Doktora Tezi, İstanbul Üniversitesi Fen Bilimleri Enstitüsü, 79 s., İstanbul.
  • Joseph B, Otta SK, Karunasagar I, Karunasagar I. (2001). Biofilm Formation by Salmonella spp. on Food Contact Surfaces and Their Sensitivity to Sanitizers. Int J Food Microbiol. 64: 367–372.
  • Ghosh S, Sarkar T, Chakraborty R. (2021). Formation and Development of Biofilm- an Alarming Concern in Food Safety Perspectives. Biocatal Agric Biotechnol. 38: 102210.
  • Çevikbaş H, Ulusoy S. (2023). Gül (Rosa damascena Mill.) Uçucu Yağının Pseudomanas aeruginosa’da Biyofilm Oluşumu ve Kayma Hareketi Üzerine Etkisi. Akademik Gıda. 21(4): 367-374.
  • Li X, Gu N, Huang TY, Zhong F, Peng G. (2023). Pseudomonas aeruginosa: A Typical Biofilm Forming Pathogen and an Emerging but Underestimated Pathogen in Food Processing. Front Microbiol. 13: 1114199.
  • Sırıken B, Öz V. (2017). Pseudomonas aeruginosa: Özellikleri ve Quorum Sensing Mekanizması. Gıda ve Yem Bilimi- Teknolojisi Dergisi.18: 42-52.
  • Fagerlund A, Langsrud S, Møretrø T. (2021). Microbial Diversity and Ecology of Biofilms in Food Industry Environments Associated with Listeria monocytogenes persistence. Curr Opin Food Sci. 37: 171-178.
  • Gemmell, C. T., Parreira, V. R., & Farber, J. M. (2022). Controlling Listeria monocytogenes growth and biofilm formation using flavonoids. J Food Prot. 85(4), 639-646.
  • Gouda M, Khalaf MM, Taleb MFA, El-Lateef HMA. (2024). Fabrication of Silver Nanoparticles Loaded Acacia Gum/Chitosan Nanogel to Coat The Pipe Surface for Sustainable Inhibiting Microbial Adhesion and Biofilm Growth In Water Distribution Systems. Int J Biol Macromol. 262: 130085.
  • Gungor C, Onmaz NE, Gundog DA, Yavas, GT, Koskeroglu, K, Gungor, G. (2024). Four Novel Bacteriophages From Slaughterhouse: Their Potency on Control of Biofilm-Forming MDR S. aureus In Beef Model. Food Control. 156: 110146.
  • Liu Y, Yan Y, Yang K, et al. (2023). Inhibitory Mechanism of Salmonella Derby Biofilm Formation by Sub-İnhibitory Concentrations of Clove And Oregano Essential Oil: A Global Transcriptomic Study. Food Control. 150: 109734.
  • Zhang Q, Hu X, Zhang R, et al. (2024). Characterization of Brevibacillus Biofilm Isolated from Pasteurized Milk and Evaluation of the Efficacy of Sodium hypochlorite, CIP, and Enzymatic Treatment Against the Biofilm. Food Control. 161: 110405.
  • Zhu T, Yang C, Bao X, Chen F, Guo X. (2022). Strategies for Controlling Biofilm Formation in Food Industry. Grain Oil Sci Technol. 5(4): 179-186.
  • Vázquez-Sánchez D, Galvão JA, Ambrosio CMS, Gloria EM, Oetterer M. (2018). Single and Binary Applications of Essential Oils Effectively Control Listeria monocytogenes Biofilm. Ind Crops Prod. 121: 452-460.
  • Park HW, Xu J, Balasubramaniam VM, Snyder AB. (2021). The Effect of Water Activity and Temperature on the Inactivation of Enterococcus faecium In Peanut Butter During Superheated Steam Sanitation Treatment. Food Control. 125: 107942.
  • Kim SH, Park SH, Kang DH. (2024). Simultaneous Combination Treatment with Superheated Steam and Nebulized Organic Acid to İnactivate Bacillus cereus Endospores on Stainless Steel Surfaces. Food Control. 155: 110028.
  • Hua Z, Younce F, Tang J, et al. (2021). Efficacy of Saturated Steam Against Listeria innocua Biofilm on Common Food-Contact Surfaces. Food Control. 125: 107988.
  • Nahar S, Ha AJ, Byun KH, Hossai MI, Mizan MFR, Ha SD. (2021). Efficacy of Flavourzyme Against Salmonella typhimurium, Escherichia coli, and Pseudomonas aeruginosa Biofilms on Food-Contact Surfaces. Int J Food Microbiol. 336: 108897.
  • Mazaheri T, Ripolles-Avila C, Hascoët AS, Rodríguez-Jerez JJ. (2020). Effect of an Enzymatic Treatment on the Removal of Mature Listeria monocytogenes Biofilms: A Quantitative and Qualitative Study. Food Control. 114: 107266.
  • Kartal MO, Ekinci MB, Poyraz B. (2021). Biyofilm Yapısı ve Önlenmesi. Akademik Gıda. 19(3): 353-363.
  • Tantratian S, Srimangkornkaew N, Prakitchaiwattana C, Sanguandeekul R. (2022). Effect of Different Stainless Steel Surfaces on the Formation and Control of Vibrio parahaemolyticus Biofilm. LWT. 166: 113788.
  • Moraes JO, Cruz EA, Pinheiro Í, et al. (2019). An Ordinal Logistic Regression Approach to Predict the Variability on Biofilm Formation Stages by Five Salmonella enterica Strains on Polypropylene and Glass Surfaces as Affected by pH, Temperature and NaCl. Food Microbiol. 83: 95-103.
  • Ergin Ç, Öner SZ, Özkan B, et al. (2023). Evaluation of Malassezia furfur Biofilm Formation on Polypropylene Membrane. Mikrobiyoloji Bülteni. 57(3): 432-443.
  • Hoca S. (2010). Model Şebeke Boru Sisteminde Oluşan Biyofilmdeki Bakteriler Üzerine Kısa Süreli Kurumanın Etkisi. Yüksek Lisans Tezi, İstanbul Üniversitesi Fen Bilimleri Enstitüsü, 72 s., İstanbul.
  • Pedrós-Garrido S, Condón-Abanto S, Clemente I, et al. (2018). Efficacy of Ultraviolet Light (UV-C) and Pulsed Light (PL) For The Microbiological Decontamination of Raw Salmon (Salmo salar) and Food Contact Surface Materials. Innov Food Sci Emerg Technol. 50: 124-131.
  • Ban GH, Park SH, Kim SO, Ryu S, Kang DH. (2012). Synergistic Effect of Steam and Lactic Acid Against Escherichia coli O157: H7, Salmonella typhimurium, and Listeria monocytogenes Biofilms on Polyvinyl chloride and Stainless Steel. Int J Food Microbiol. 157(2): 218-223.
  • Traba C, Liang JF. (2011). Susceptibility of Staphylococcus aureus Biofilms to Reactive Discharge Gases. Biofouling. 27(7): 763-772.
  • Liu L, Chen X, Li Y, Yuan L, Rao Y. (2023). Biofilm Formation, Hyphae Growth, and Transcriptome Characteristics of C. albicans Surviving High-Pressure Processing. LWT- Food Sci Technol. 187: 115332.
  • Cava R, Higuero N, Ladero L. (2021). High-Pressure Processing and Storage Temperature on Listeria monocytogenes, Microbial Counts and Oxidative Changes of Two Traditional Dry-Cured Meat Products. Meat Sci. 171: 108273.
  • Liu S, Chen S, Shao L, Ding Z, Xu X, Wang H. (2024). Spoilage Bacteria Growth Reduction and Microbial Community Variation of Chilled Chicken Packaged in PA/PE Treated With Pulsed Light. Food Control. 157: 110196.
  • Gao F, Lyu C, Ning Z, et al. (2023). Inactivation of Salmonella Biofilms Formed on Stainless Steel Surfaces by Pulsed Light. Food Control. 153: 109955.
  • Shao L, Dong Y, Chen X, Xu X, Wang H. (2020). Modeling the Elimination of Mature Biofilms Formed by Staphylococcus aureus and Salmonella spp. Using Combined Ultrasound and Disinfectants. Ultrason Sonochem. 69: 105269.
  • Bigi F, Maurizzi E, Quartieri A, Leo RD, Gullo M, Pulvirenti A. (2023). Non-Thermal Techniques and the “Hurdle” Approach: How is Food Technology Evolving? Trends Food Sci Technol. 132: 11-39.
  • Panebianco, F., Rubiola, S., Chiesa, F., Civera, T., & Di Ciccio, P. A. (2021). Effect of gaseous ozone on Listeria monocytogenes planktonic cells and biofilm: An in vitro study. Foods. 10(7), 1484
  • Erriu M, Blus C, Szmukler-Moncler S, et al. (2014). Microbial Biofilm Modulation by Ultrasound: Current Concepts and Controversies. Ultrason Sonochem. 21(1): 15-22.
  • Wang M, Jiang L, Liu M, et al. (2024). Effects of Ultrasound on Disrupting Metabolite Profiles of Pseudomonas fluorescens Biofilms Cultured on the Surface of Lettuce. Food Control. 155: 110103.
  • Yu H, Liu Y, Yang F, et al. (2021). Combined an Acoustic Pressure Simulation of Ultrasonic Radiation and Experimental Studies to Evaluate Control Efficacy of High-Intensity Ultrasound Against Staphylococcus aureus Biofilm. Ultrason Sonochem. 79: 105764.
  • Ashrafudoulla M, Kim HJ, Her E, Shaila S, Park SH, Ha SD. (2023). Characterization of Salmonella Thompson-Specific Bacteriophages and Their Preventive Application Against Salmonella Thompson Biofilm on Eggshell as a Promising Antimicrobial Agent in the Food Industry. Food Control. 154: 110008.
  • Wang D, Zhao X, Wang H. (2023). Recent Advances of Bacteriophage-Derived Strategies for Biofilm Control in the Food Industry. Food Biosci. 54: 102819.
  • Azari R, Yousefi MH, Fallah AA, et al. (2024). Controlling of Foodborne Pathogen Biofilms on Stainless Steel by Bacteriophages: A Systematic Review and Meta-Analysis. Biofilm. 100170.
  • Lei W, Hao L, You S, Yao H, Liu C, Zhou H. (2022). Partial Purification and Application of a Bacteriocin Produced by Probiotic Lactococcus lactis C15 Isolated from Raw Milk. LWT- Food Sci Technol. 169: 113917.
  • Melian C, Ploper D, Cheín R, Vignolo G, Castellano P. (2024). Impairment of Listeria monocytogenes Biofilm Developed on Industrial Surfaces by Latilactobacillus curvatus CRL1579 Bacteriocin. Food Microbiol. 121: 104491.
  • Villarreal LA, Ladero V, Sarquis A, Martinez B, del Rio B, Alvarez MA. (2024). Bacteriocins Against Biogenic Amine-Accumulating Lactic Acid Bacteria in Cheese: Nisin A Shows the Broadest Antimicrobial Spectrum and Prevents The Formation of Biofilms. J Dairy Sci. 107(7): 4277-4287.
  • Manoharadas, Salim, Mohammad Altaf, Abdulwahed Fahad Alrefaei, Rajesh Mamkulatil Devasia, Ahmed Yacine M. Badjah Hadj, ve Mohammed Saeed Ali Abuhasil. 2021. “Concerted dispersion of Staphylococcus aureus biofilm by bacteriophage and ‘green synthesized’ silver nanoparticles”. RSC Advances. 11(3): 1420-29.
There are 59 citations in total.

Details

Primary Language Turkish
Subjects Veterinary Food Hygiene and Technology
Journal Section Review
Authors

Semra Kayaardı 0000-0003-1747-0976

Müge Uyarcan 0000-0003-1474-672X

Havva Turan 0009-0007-4604-3427

Publication Date December 17, 2024
Submission Date June 1, 2024
Acceptance Date October 17, 2024
Published in Issue Year 2024

Cite

APA Kayaardı, S., Uyarcan, M., & Turan, H. (2024). Gıda Endüstrisinde Bakteriyel Biyofilm Oluşumu, Kontrolü ve Giderilmesine Yönelik Yeni Uygulamalar. Dicle Üniversitesi Veteriner Fakültesi Dergisi, 17(Özel Sayı (1), 63-69. https://doi.org/10.47027/duvetfd.1494192
AMA Kayaardı S, Uyarcan M, Turan H. Gıda Endüstrisinde Bakteriyel Biyofilm Oluşumu, Kontrolü ve Giderilmesine Yönelik Yeni Uygulamalar. Dicle Üniv Vet Fak Derg. December 2024;17(Özel Sayı (1):63-69. doi:10.47027/duvetfd.1494192
Chicago Kayaardı, Semra, Müge Uyarcan, and Havva Turan. “Gıda Endüstrisinde Bakteriyel Biyofilm Oluşumu, Kontrolü Ve Giderilmesine Yönelik Yeni Uygulamalar”. Dicle Üniversitesi Veteriner Fakültesi Dergisi 17, no. Özel Sayı (1) (December 2024): 63-69. https://doi.org/10.47027/duvetfd.1494192.
EndNote Kayaardı S, Uyarcan M, Turan H (December 1, 2024) Gıda Endüstrisinde Bakteriyel Biyofilm Oluşumu, Kontrolü ve Giderilmesine Yönelik Yeni Uygulamalar. Dicle Üniversitesi Veteriner Fakültesi Dergisi 17 Özel Sayı (1) 63–69.
IEEE S. Kayaardı, M. Uyarcan, and H. Turan, “Gıda Endüstrisinde Bakteriyel Biyofilm Oluşumu, Kontrolü ve Giderilmesine Yönelik Yeni Uygulamalar”, Dicle Üniv Vet Fak Derg, vol. 17, no. Özel Sayı (1), pp. 63–69, 2024, doi: 10.47027/duvetfd.1494192.
ISNAD Kayaardı, Semra et al. “Gıda Endüstrisinde Bakteriyel Biyofilm Oluşumu, Kontrolü Ve Giderilmesine Yönelik Yeni Uygulamalar”. Dicle Üniversitesi Veteriner Fakültesi Dergisi 17/Özel Sayı (1) (December 2024), 63-69. https://doi.org/10.47027/duvetfd.1494192.
JAMA Kayaardı S, Uyarcan M, Turan H. Gıda Endüstrisinde Bakteriyel Biyofilm Oluşumu, Kontrolü ve Giderilmesine Yönelik Yeni Uygulamalar. Dicle Üniv Vet Fak Derg. 2024;17:63–69.
MLA Kayaardı, Semra et al. “Gıda Endüstrisinde Bakteriyel Biyofilm Oluşumu, Kontrolü Ve Giderilmesine Yönelik Yeni Uygulamalar”. Dicle Üniversitesi Veteriner Fakültesi Dergisi, vol. 17, no. Özel Sayı (1), 2024, pp. 63-69, doi:10.47027/duvetfd.1494192.
Vancouver Kayaardı S, Uyarcan M, Turan H. Gıda Endüstrisinde Bakteriyel Biyofilm Oluşumu, Kontrolü ve Giderilmesine Yönelik Yeni Uygulamalar. Dicle Üniv Vet Fak Derg. 2024;17(Özel Sayı (1):63-9.