Research Article
BibTex RIS Cite

Farklı Sürelerde Uygulanan Ultrases İşleminin S. boulardii’nin Probiyotik ve Antioksidan Özelliklerine Etkisi

Year 2023, , 245 - 253, 31.08.2023
https://doi.org/10.31590/ejosat.1321968

Abstract

Bu çalışmada farklı sürelerde (5, 15, 30 ve 60 dk.) ultrases uygulamasının S. boulardii’nin probiyotik ve antioksidan özellikleri üzerindeki etkisi araştırılmıştır. Ultrases uygulaması sonucunda S. boulardii’nin agregasyon yüzdesinde artış tespit edilmiştir ve 24 saatlik inkübasyon sonunda minimum agregasyon yüzdesi %96 olarak belirlenmiştir. Suşların hidrofobisite yüzdeleri %7,94 ile %11,55 arasında değişmiş olup 60 dk.’lık ultrases uygulaması sonucunda S. boulardii’nin hidrofobisite yüzdesinde düşüş olmuştur. Ultrases uygulaması sonucunda S. boulardii’nin düşük pH ve safra tuzu direncinde önemli derecede azalma tespit edilmiştir (P≤0,05). 30 ve 60 dk.’lık ultrases uygulması S. boulardii’nin mide koşullarına direncini arttırmıştır. Ultrases uygulanan ve uygulanmayan S. boulardii’nin genel canlılık düzeyi %85’in üzerinde tespit edilmiştir. Test edilen antibiyotik ajanlara karşı farklı direnç düzeyler belirlenmiştir. Ultrases uygulaması sonucu S. boulardii’nin antioksidan aktivitesi artmıştır ve antioksidan aktivite sonuçları %13,25 ile %39,37 arasında değişmiştir. Sonuç olarak elde edilen sonuçlar ultrases uygulamasının S. boulardii’nin probiyotik ve antioksidan özelliklerinin geliştirilmesi için kullanılabileceğini göstermiştir.

Supporting Institution

TÜBİTAK

Project Number

1919B012113124

Thanks

Beyza Kaya'ya teknik desteğinden ötürü teşekkür ederiz.

References

  • Argyri, A. A., Zoumpopoulou, G., Karatzas, K.-A. G., Tsakalidou, E., Nychas, G.-J. E., Panagou, E. Z., & Tassou, C. C. (2013). Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food microbiology, 33(2), 282-291.
  • Bevilacqua, A., Racioppo, A., Sinigaglia, M., Speranza, B., Campaniello, D., & Corbo, M. R. (2019). A low-power ultrasound attenuation improves the stability of biofilm and hydrophobicity of Propionibacterium freudenreichii subsp. freudenreichii DSM 20271 and Acidipropionibacterium jensenii DSM 20535. Food microbiology, 78, 104-109.
  • Chisti, Y. (2003). Sonobioreactors: using ultrasound for enhanced microbial productivity. TRENDS in Biotechnology, 21(2), 89-93.
  • Ewe, J.-A., Wan-Abdullah, W.-N., Alias, A. K., & Liong, M.-T. (2012). Effects of ultrasound on growth, bioconversion of isoflavones and probiotic properties of parent and subsequent passages of Lactobacillus fermentum BT 8633 in biotin-supplemented soymilk. Ultrasonics sonochemistry, 19(4), 890-900.
  • García-Hernández, Y., Pérez-Sánchez, T., Boucourt, R., Balcázar, J. L., Nicoli, J. R., Moreira-Silva, J., . . . Albelo, N. (2016). Isolation, characterization and evaluation of probiotic lactic acid bacteria for potential use in animal production. Research in veterinary science, 108, 125-132.
  • Gholamhosseinpour, A., & Hashemi, S. M. B. (2019). Ultrasound pretreatment of fermented milk containing probiotic Lactobacillus plantarum AF1: Carbohydrate metabolism and antioxidant activity. Journal of food process engineering, 42(1), e12930.
  • Gil-Rodríguez, A. M., Carrascosa, A. V., & Requena, T. (2015). Yeasts in foods and beverages: In vitro characterisation of probiotic traits. LWT-Food Science and Technology, 64(2), 1156-1162.
  • Giordano, I., & Mauriello, G. (2023). Ultrasound Attenuation Improves Some Surface Properties of the Probiotic Strain Lacticaseibacillus casei ATCC 393. Microorganisms, 11(1), 142.
  • Gogate, P. R., & Kabadi, A. M. (2009). A review of applications of cavitation in biochemical engineering/biotechnology. Biochemical Engineering Journal, 44(1), 60-72.
  • Goktas, H., Dertli, E., & Sagdic, O. (2021). Comparison of functional characteristics of distinct Saccharomyces boulardii strains isolated from commercial food supplements. LWT, 136, 110340.
  • Goktas, H., Dikmen, H., Demirbas, F., Sagdic, O., & Dertli, E. (2021). Characterisation of probiotic properties of yeast strains isolated from kefir samples. International Journal of Dairy Technology, 74(4), 715-722.
  • Gut, A. M., Vasiljevic, T., Yeager, T., & Donkor, O. N. (2019). Characterization of yeasts isolated from traditional kefir grains for potential probiotic properties. Journal of Functional Foods, 58, 56-66.
  • Hashemi, S. M. B., & Gholamhosseinpour, A. (2020). Effect of ultrasonication treatment and fermentation by probiotic Lactobacillus plantarum strains on goat milk bioactivities. International Journal of Food Science & Technology, 55(6), 2642-2649.
  • Holzapfel, W. H., Haberer, P., Geisen, R., Björkroth, J., & Schillinger, U. (2001). Taxonomy and important features of probiotic microorganisms in food and nutrition. The American journal of clinical nutrition, 73(2), 365s-373s.
  • Lanchun, S., Bochu, W., Zhiming, L., Chuanren, D., Chuanyun, D., & Sakanishi, A. (2003). The research into the influence of low-intensity ultrasonic on the growth of S. cerevisiaes. Colloids and Surfaces B: Biointerfaces, 30(1-2), 43-49.
  • Liu, J., Li, L., Zhou, L., Li, B., & Xu, Z. (2017). Effect of ultrasound treatment conditions on Saccharomyces cerevisiae by response surface methodology. Microbial pathogenesis, 111, 497-502.
  • Łukaszewicz, M. (2012). Saccharomyces cerevisiae var. boulardii–Probiotic Yeast. In Probiotics: IntechOpen.
  • Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., . . . Dupont, D. (2014). A standardised static in vitro digestion method suitable for food–an international consensus. Food & function, 5(6), 1113-1124.
  • Ojha, K. S., Mason, T. J., O’Donnell, C. P., Kerry, J. P., & Tiwari, B. K. (2017). Ultrasound technology for food fermentation applications. Ultrasonics sonochemistry, 34, 410-417.
  • Pagnossa, J. P., Rocchetti, G., Ribeiro, A. C., Piccoli, R. H., & Lucini, L. (2020). Ultrasound: Beneficial biotechnological aspects on microorganisms-mediated processes. Current Opinion in Food Science, 31, 24-30.
  • Racioppo, A., Corbo, M. R., Piccoli, C., Sinigaglia, M., Speranza, B., & Bevilacqua, A. (2017). Ultrasound attenuation of lactobacilli and bifidobacteria: Effect on some technological and probiotic properties. International Journal of Food Microbiology, 243, 78-83.
  • Speranza, B., Campaniello, D., Altieri, C., Sinigaglia, M., Bevilacqua, A., & Corbo, M. R. (2020). Ultrasonic Modulation of the Technological and Functional Properties of Yeast Strains. Microorganisms, 8(9), 1399.
  • Tomičić, Z. M., Čolović, R. R., Čabarkapa, I. S., Vukmirović, Đ. M., Đuragić, O. M., & Tomičić, R. M. (2016). Beneficial properties of probiotic yeast Saccharomyces boulardii. Food and Feed Research, 43(2), 103-110.
  • Unban, K., Chaichana, W., Baipong, S., Abdullahi, A. D., Kanpiengjai, A., Shetty, K., & Khanongnuch, C. (2021). Probiotic and antioxidant properties of lactic acid bacteria isolated from indigenous fermented tea leaves (Miang) of north Thailand and promising application in synbiotic formulation. Fermentation, 7(3), 195.
  • Vinderola, C. G., & Reinheimer, J. A. (2003). Lactic acid starter and probiotic bacteria: a comparative “in vitro” study of probiotic characteristics and biological barrier resistance. Food Research International, 36(9-10), 895-904.
  • Yeo, S.-K., & Liong, M.-T. (2013). Effect of ultrasound on bioconversion of isoflavones and probiotic properties of parent organisms and subsequent passages of Lactobacillus. LWT-Food Science and Technology, 51(1), 289-295.

Effect of Ultrasound Application at Different Duration on Probiotic and Antioxidant Properties of S. boulardii

Year 2023, , 245 - 253, 31.08.2023
https://doi.org/10.31590/ejosat.1321968

Abstract

In this study, the effect of ultrasound application at different durations (5, 15, 30 and 60 min.) on the probiotic and antioxidant properties of S. boulardii was investigated. As a result of the ultrasound application, auto-aggregation profile of the S. boulardii increased and after the 24 h incubation minimum aggreation profile was determined as 96%. Hydrophobicity percentages of the S. boulardii strains ranged from 7.94% to 11.55%, and there was a decrease in the percentage of hydrophobicity of S. boulardii as a result of 60 min ultrasound application. Ultrasound application resulted a significant decrease in the low pH and bile salt resistance of S. boulardii (P≤0.05). 30 and 60 minutes of ultrasound application increased the resistance of S. boulardii to gastric conditions and overall survival rate of ultrasound applied and non-applied S. boulardii strains were higher than 85%. Different resistance levels were determined against tested antibiotic agents. Ultrasound application resulted higher antioxidant activity for S. boulardii and results ranged between 13.25% and 39.37%. Finally, these results showed that ultrasound application could be used to improve the probiotic and antioxidant properties of S. boulardii.

Project Number

1919B012113124

References

  • Argyri, A. A., Zoumpopoulou, G., Karatzas, K.-A. G., Tsakalidou, E., Nychas, G.-J. E., Panagou, E. Z., & Tassou, C. C. (2013). Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food microbiology, 33(2), 282-291.
  • Bevilacqua, A., Racioppo, A., Sinigaglia, M., Speranza, B., Campaniello, D., & Corbo, M. R. (2019). A low-power ultrasound attenuation improves the stability of biofilm and hydrophobicity of Propionibacterium freudenreichii subsp. freudenreichii DSM 20271 and Acidipropionibacterium jensenii DSM 20535. Food microbiology, 78, 104-109.
  • Chisti, Y. (2003). Sonobioreactors: using ultrasound for enhanced microbial productivity. TRENDS in Biotechnology, 21(2), 89-93.
  • Ewe, J.-A., Wan-Abdullah, W.-N., Alias, A. K., & Liong, M.-T. (2012). Effects of ultrasound on growth, bioconversion of isoflavones and probiotic properties of parent and subsequent passages of Lactobacillus fermentum BT 8633 in biotin-supplemented soymilk. Ultrasonics sonochemistry, 19(4), 890-900.
  • García-Hernández, Y., Pérez-Sánchez, T., Boucourt, R., Balcázar, J. L., Nicoli, J. R., Moreira-Silva, J., . . . Albelo, N. (2016). Isolation, characterization and evaluation of probiotic lactic acid bacteria for potential use in animal production. Research in veterinary science, 108, 125-132.
  • Gholamhosseinpour, A., & Hashemi, S. M. B. (2019). Ultrasound pretreatment of fermented milk containing probiotic Lactobacillus plantarum AF1: Carbohydrate metabolism and antioxidant activity. Journal of food process engineering, 42(1), e12930.
  • Gil-Rodríguez, A. M., Carrascosa, A. V., & Requena, T. (2015). Yeasts in foods and beverages: In vitro characterisation of probiotic traits. LWT-Food Science and Technology, 64(2), 1156-1162.
  • Giordano, I., & Mauriello, G. (2023). Ultrasound Attenuation Improves Some Surface Properties of the Probiotic Strain Lacticaseibacillus casei ATCC 393. Microorganisms, 11(1), 142.
  • Gogate, P. R., & Kabadi, A. M. (2009). A review of applications of cavitation in biochemical engineering/biotechnology. Biochemical Engineering Journal, 44(1), 60-72.
  • Goktas, H., Dertli, E., & Sagdic, O. (2021). Comparison of functional characteristics of distinct Saccharomyces boulardii strains isolated from commercial food supplements. LWT, 136, 110340.
  • Goktas, H., Dikmen, H., Demirbas, F., Sagdic, O., & Dertli, E. (2021). Characterisation of probiotic properties of yeast strains isolated from kefir samples. International Journal of Dairy Technology, 74(4), 715-722.
  • Gut, A. M., Vasiljevic, T., Yeager, T., & Donkor, O. N. (2019). Characterization of yeasts isolated from traditional kefir grains for potential probiotic properties. Journal of Functional Foods, 58, 56-66.
  • Hashemi, S. M. B., & Gholamhosseinpour, A. (2020). Effect of ultrasonication treatment and fermentation by probiotic Lactobacillus plantarum strains on goat milk bioactivities. International Journal of Food Science & Technology, 55(6), 2642-2649.
  • Holzapfel, W. H., Haberer, P., Geisen, R., Björkroth, J., & Schillinger, U. (2001). Taxonomy and important features of probiotic microorganisms in food and nutrition. The American journal of clinical nutrition, 73(2), 365s-373s.
  • Lanchun, S., Bochu, W., Zhiming, L., Chuanren, D., Chuanyun, D., & Sakanishi, A. (2003). The research into the influence of low-intensity ultrasonic on the growth of S. cerevisiaes. Colloids and Surfaces B: Biointerfaces, 30(1-2), 43-49.
  • Liu, J., Li, L., Zhou, L., Li, B., & Xu, Z. (2017). Effect of ultrasound treatment conditions on Saccharomyces cerevisiae by response surface methodology. Microbial pathogenesis, 111, 497-502.
  • Łukaszewicz, M. (2012). Saccharomyces cerevisiae var. boulardii–Probiotic Yeast. In Probiotics: IntechOpen.
  • Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., . . . Dupont, D. (2014). A standardised static in vitro digestion method suitable for food–an international consensus. Food & function, 5(6), 1113-1124.
  • Ojha, K. S., Mason, T. J., O’Donnell, C. P., Kerry, J. P., & Tiwari, B. K. (2017). Ultrasound technology for food fermentation applications. Ultrasonics sonochemistry, 34, 410-417.
  • Pagnossa, J. P., Rocchetti, G., Ribeiro, A. C., Piccoli, R. H., & Lucini, L. (2020). Ultrasound: Beneficial biotechnological aspects on microorganisms-mediated processes. Current Opinion in Food Science, 31, 24-30.
  • Racioppo, A., Corbo, M. R., Piccoli, C., Sinigaglia, M., Speranza, B., & Bevilacqua, A. (2017). Ultrasound attenuation of lactobacilli and bifidobacteria: Effect on some technological and probiotic properties. International Journal of Food Microbiology, 243, 78-83.
  • Speranza, B., Campaniello, D., Altieri, C., Sinigaglia, M., Bevilacqua, A., & Corbo, M. R. (2020). Ultrasonic Modulation of the Technological and Functional Properties of Yeast Strains. Microorganisms, 8(9), 1399.
  • Tomičić, Z. M., Čolović, R. R., Čabarkapa, I. S., Vukmirović, Đ. M., Đuragić, O. M., & Tomičić, R. M. (2016). Beneficial properties of probiotic yeast Saccharomyces boulardii. Food and Feed Research, 43(2), 103-110.
  • Unban, K., Chaichana, W., Baipong, S., Abdullahi, A. D., Kanpiengjai, A., Shetty, K., & Khanongnuch, C. (2021). Probiotic and antioxidant properties of lactic acid bacteria isolated from indigenous fermented tea leaves (Miang) of north Thailand and promising application in synbiotic formulation. Fermentation, 7(3), 195.
  • Vinderola, C. G., & Reinheimer, J. A. (2003). Lactic acid starter and probiotic bacteria: a comparative “in vitro” study of probiotic characteristics and biological barrier resistance. Food Research International, 36(9-10), 895-904.
  • Yeo, S.-K., & Liong, M.-T. (2013). Effect of ultrasound on bioconversion of isoflavones and probiotic properties of parent organisms and subsequent passages of Lactobacillus. LWT-Food Science and Technology, 51(1), 289-295.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Food Microbiology
Journal Section Articles
Authors

Hamza Goktas 0000-0001-9802-9378

Demet Turali 0009-0008-1973-3315

Cansu Ağan 0000-0001-9043-8767

Osman Sağdıç 0000-0002-2063-1462

Project Number 1919B012113124
Early Pub Date September 10, 2023
Publication Date August 31, 2023
Published in Issue Year 2023

Cite

APA Goktas, H., Turali, D., Ağan, C., Sağdıç, O. (2023). Farklı Sürelerde Uygulanan Ultrases İşleminin S. boulardii’nin Probiyotik ve Antioksidan Özelliklerine Etkisi. Avrupa Bilim Ve Teknoloji Dergisi(51), 245-253. https://doi.org/10.31590/ejosat.1321968