Research Article
BibTex RIS Cite

DETECTION OF PORK, HORSE OR DONKEY MEAT ADULTERATION IN BEEF-BASED FORMULATIONS BY FOURIER TRANSFORM INFRARED SPECTROSCOPY

Year 2020, , 369 - 379, 15.01.2020
https://doi.org/10.15237/gida.GD19146

Abstract

Fourier Transform Infrared (FTIR) Spectroscopy with chemometrics was employed to discriminate pork, horse or donkey meat substitution in beef. Wavenumber range of 1480-1360 cm−1 (94.97% of variance is explained by the first two principal components) and fingerprint region (FR) (90.08%) clearly differentiated beef, pork and beef-pork mixtures in principal component analysis (PCA). For beef-donkey mixtures, 1760-1710 cm−1 (99.31%) and FR (96.03%) provided discrimination. For beef-horse meat mixtures; a grouping was obtained for 1290-1210 cm−1 (90.41%), FR (84.83%) and whole spectrum (88.61%). In hierarchical cluster analysis (HCA), the region between 1480-1425 cm-1 was able to separate all donkey adulterated mixtures, 100% beef and 100% donkey meat from each other with 100% sensitivity and specificity while 2980-2880 cm-1, whole spectrum and FR provided differentiation for beef-horse mixtures. 1760-1710 and 1210-1190 cm−1 regions provided classification between 100% beef, 100% pork and pork-beef mixtures (except for 5% of substituted) with 100% sensitivity and specificity. 

Supporting Institution

TÜBİTAK (Scientific and Technological Research Council of Turkey), Ankara University Scientific Research Projects Office

Project Number

TÜBİTAK: 214O182, ANKARA UNIVERSITY: 17L0443007

Thanks

This work was supported by TÜBİTAK (Scientific and Technological Research Council of Turkey) with Project # 214O182, and Ankara University Scientific Research Projects Office with Project # 17L0443007.

References

  • Al-Jowder O, Kemsley E and Wilson RH (2002) Detection of adulteration in cooked meat products by mid-infrared spectroscopy. Journal of Agricultural and Food Chemistry 50(6): 1325-1329.
  • Alamprese C, Casale M, Sinelli N, Lanteri S and Casiraghi E (2013) Detection of minced beef adulteration with turkey meat by UV–vis, NIR and MIR spectroscopy. LWT-Food Science and Technology 53(1): 225-232.
  • Ayhan, B (2013) Multiple Myeloma (Plazma Hücre Kanseri)’nın Spektrometrik ve Spektroskopik Yöntemler ile Araştırılması. Unpublished PhD Thesis, Ankara University Biotechnology Institute, Ankara.
  • BBC (2013a) Q&A: Horsemeat scandal. Retrieved from http://www.bbc.com/news/uk-21335872
  • BBC (2013b) South Africa study finds donkey meat sold as beef. Retrieved from http://www.bbc.com/news/world-africa-2158857
  • Blakeway S (2014) The multi-dimensional donkey in landscapes of donkey human interaction. In Relations: Beyond Anthropocentrism, 'Minding Animals: Part 1', Edited by Rod Bennison, Alma Massaro, Jessica Ulrich 2 (1) pp: 59-78.
  • Cuadros-Rodríguez L, Ruiz-Samblás C, Valverde-Som L, Pérez-Castaño E and González-Casado A (2016) Chromatographic fingerprinting: An innovative approach for food 'identitation' and food authentication–A tutorial. Analytica Chimica Acta 909: 9-23.
  • Deniz E, Güneş Altuntaş E, Ayhan B, İğci N, Özel Demiralp D and Candoğan K (2018) Differentiation of beef mixtures adulterated with chicken or turkey meat using FTIR spectroscopy. J Food Process Preserv 42:e13767.
  • Farouk MM (2013). Advances in the industrial production of halal and kosher red meat. Meat Science 95(4): 805-820.
  • Federal Register. 2009. Volume 74, Issue 64: 15497-15499, April 6.
  • Helfer GA, Bock F, Marder L, Furtado JC, Costa ABD, and Ferrão MF (2015) Chemostat: Exploratory Multivariate Data Analysis Software. Química Nova 38(4): 575-579.
  • Kurniawati E, Rohman A and Triyana K (2014) Analysis of lard in meatball broth using Fourier transform infrared spectroscopy and chemometrics. Meat Science, 96(1): 94-98.
  • McElhinney J, Downey G and O'Donnell C (1999) Quantitation of Lamb Content in Mixtures with Raw Minced Beef Using Visible, Near and Mid‐Infrared Spectroscopy. Journal of Food Science 64(4): 587-591.
  • Meza-Márquez OG, Gallardo-Velázquez T and Osorio-Revilla G (2010) Application of mid-infrared spectroscopy with multivariate analysis and soft independent modeling of class analogies (SIMCA) for the detection of adulterants in minced beef. Meat Science 86(2): 511-519.
  • Movasaghi Z, Rehman S and ur Rehman DI (2008) Fourier transform infrared (FTIR) spectroscopy of biological tissues. Applied Spectroscopy Reviews 43(2): 134-179.
  • Nunes KM, Andrade MVO, Santos Filho AM, Lasmar MC and Sena M (2016). Detection and characterisation of frauds in bovine meat in natura by non-meat ingredient additions using data fusion of chemical parameters and ATR-FTIR spectroscopy. Food Chemistry 205, 14-22.
  • Rahmania H and Rohman A (2015) The employment of FTIR spectroscopy in combination with chemometrics for analysis of rat meat in meatball formulation. Meat Science 100: 301-305.
  • Regenstein J, Chaudry M and Regenstein C. (2003) The kosher and halal food laws. Comprehensive Reviews in Food Science and Food Safety 2(3): 111-127. Reuters (2014). Retrieved from https://www.reuters.com/article/us-walmart-china/wal-mart-recalls-donkey-product-in-china-after-fox-meat-scandal-idUSBREA0103O20140102
  • Rohman A, Erwanto Y, and Che Man YB (2011) Analysis of pork adulteration in beef meatball using Fourier transform infrared (FTIR) spectroscopy. Meat Science 88(1): 91-95.
  • Safdar M, Junejo Y, Arman K and Abasıyanık, M (2014) A highly sensitive and specific tetraplex PCR assay for soybean, poultry, horse and pork species identification in sausages: Development and validation. Meat Science 98(2): 296-300.
  • Sentandreu MA and Sentandreu E (2014) Authenticity of meat products: Tools against fraud. Food Research International 60: 19-29.
  • Shetty G, Kendall C, Shepherd N, Stone N and Barr H (2006) Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus. British Journal of Cancer 94(10): 1460-1464.
  • Spink J (2016) Food Fraud Prevention. The International Union of Food Science and Technology (IUFoST) Scientific Information Bulletin (SIB).
  • Stuart B (2004) Infrared Spectroscopy: Fundamental and Applications. In: John Wiley and Sons, Ltd.Xu L, Cai CB, Cui HF, Ye ZH and Yu XP (2012) Rapid discrimination of pork in Halal and non-Halal Chinese ham sausages by Fourier transform infrared (FTIR) spectroscopy and chemometrics. Meat science 92(4): 506-510.
  • Zhao M, Downey G and O’Donnell CP (2014) Detection of adulteration in fresh and frozen beefburger products by beef offal using mid-infrared ATR spectroscopy and multivariate data analysis. Meat Science 96(2): 1003-1011.

SIĞIR ETİ KARIŞIMLARINDA DOMUZ, AT VE EŞEK ETİ TAĞŞİŞİNİN FOURIER DÖNÜŞÜMLÜ KIZILÖTESİ SPEKTROSKOPİSİ İLE BELİRLENMESİ

Year 2020, , 369 - 379, 15.01.2020
https://doi.org/10.15237/gida.GD19146

Abstract

Sığır eti karışımlarında domuz, at ve eşek etleri tağşişinin belirlenmesinde Fourier Dönüşümlü Kızılötesi (FTIR) spektroskopisi, kemometri ile birlikte kullanılmıştır. Temel bileşenler analizinde (PCA) sığır, domuz ve sığır-domuz eti karışımları 1480-1360 cm−1 (varyansın %94.97’si ilk iki temel bileşen tarafından açıklanmıştır) dalga sayısı aralığında ve parmak izi bölgesinde (PB) (%90.80) ayırt edilmiştir. Sığır-eşek eti karışımlarının ayrımında, 1760-1710 cm−1 dalga sayısı aralığı (%99.31) ve PB (%96.03) başarılı olurken; sığır-at eti karışımlarında 1290-1210 cm−1 (%90.41) aralığı, PB (%84.83) ve tüm spektrumda (%88.61) gruplama sağlanmıştır. Hiyerarşik kümeleme analizinde (HCA), 1480-1425 cm-1 dalga sayısı aralığı tüm eşek eti karışımlarının, %100 eşek eti ve %100 sığır etinin; 2980-2880 cm-1 dalga sayısı aralığı, tüm spektrum ve PB ise sığır-at karışımlarının, %100 at ve %100 sığır örneklerinin ayrımında %100 duyarlılık ve özgüllükte kullanılabilecek bölgeler olarak belirlenmiştir. 1760-1710 ve 1210-1190 cm−1 arasındaki bölgeler %100 sığır, %100 domuz ve domuz-sığır karışımlarının (%5ʼlik karışım hariç) %100 duyarlılık ve özgüllük ile kümelenmesini sağlamıştır. 

Project Number

TÜBİTAK: 214O182, ANKARA UNIVERSITY: 17L0443007

References

  • Al-Jowder O, Kemsley E and Wilson RH (2002) Detection of adulteration in cooked meat products by mid-infrared spectroscopy. Journal of Agricultural and Food Chemistry 50(6): 1325-1329.
  • Alamprese C, Casale M, Sinelli N, Lanteri S and Casiraghi E (2013) Detection of minced beef adulteration with turkey meat by UV–vis, NIR and MIR spectroscopy. LWT-Food Science and Technology 53(1): 225-232.
  • Ayhan, B (2013) Multiple Myeloma (Plazma Hücre Kanseri)’nın Spektrometrik ve Spektroskopik Yöntemler ile Araştırılması. Unpublished PhD Thesis, Ankara University Biotechnology Institute, Ankara.
  • BBC (2013a) Q&A: Horsemeat scandal. Retrieved from http://www.bbc.com/news/uk-21335872
  • BBC (2013b) South Africa study finds donkey meat sold as beef. Retrieved from http://www.bbc.com/news/world-africa-2158857
  • Blakeway S (2014) The multi-dimensional donkey in landscapes of donkey human interaction. In Relations: Beyond Anthropocentrism, 'Minding Animals: Part 1', Edited by Rod Bennison, Alma Massaro, Jessica Ulrich 2 (1) pp: 59-78.
  • Cuadros-Rodríguez L, Ruiz-Samblás C, Valverde-Som L, Pérez-Castaño E and González-Casado A (2016) Chromatographic fingerprinting: An innovative approach for food 'identitation' and food authentication–A tutorial. Analytica Chimica Acta 909: 9-23.
  • Deniz E, Güneş Altuntaş E, Ayhan B, İğci N, Özel Demiralp D and Candoğan K (2018) Differentiation of beef mixtures adulterated with chicken or turkey meat using FTIR spectroscopy. J Food Process Preserv 42:e13767.
  • Farouk MM (2013). Advances in the industrial production of halal and kosher red meat. Meat Science 95(4): 805-820.
  • Federal Register. 2009. Volume 74, Issue 64: 15497-15499, April 6.
  • Helfer GA, Bock F, Marder L, Furtado JC, Costa ABD, and Ferrão MF (2015) Chemostat: Exploratory Multivariate Data Analysis Software. Química Nova 38(4): 575-579.
  • Kurniawati E, Rohman A and Triyana K (2014) Analysis of lard in meatball broth using Fourier transform infrared spectroscopy and chemometrics. Meat Science, 96(1): 94-98.
  • McElhinney J, Downey G and O'Donnell C (1999) Quantitation of Lamb Content in Mixtures with Raw Minced Beef Using Visible, Near and Mid‐Infrared Spectroscopy. Journal of Food Science 64(4): 587-591.
  • Meza-Márquez OG, Gallardo-Velázquez T and Osorio-Revilla G (2010) Application of mid-infrared spectroscopy with multivariate analysis and soft independent modeling of class analogies (SIMCA) for the detection of adulterants in minced beef. Meat Science 86(2): 511-519.
  • Movasaghi Z, Rehman S and ur Rehman DI (2008) Fourier transform infrared (FTIR) spectroscopy of biological tissues. Applied Spectroscopy Reviews 43(2): 134-179.
  • Nunes KM, Andrade MVO, Santos Filho AM, Lasmar MC and Sena M (2016). Detection and characterisation of frauds in bovine meat in natura by non-meat ingredient additions using data fusion of chemical parameters and ATR-FTIR spectroscopy. Food Chemistry 205, 14-22.
  • Rahmania H and Rohman A (2015) The employment of FTIR spectroscopy in combination with chemometrics for analysis of rat meat in meatball formulation. Meat Science 100: 301-305.
  • Regenstein J, Chaudry M and Regenstein C. (2003) The kosher and halal food laws. Comprehensive Reviews in Food Science and Food Safety 2(3): 111-127. Reuters (2014). Retrieved from https://www.reuters.com/article/us-walmart-china/wal-mart-recalls-donkey-product-in-china-after-fox-meat-scandal-idUSBREA0103O20140102
  • Rohman A, Erwanto Y, and Che Man YB (2011) Analysis of pork adulteration in beef meatball using Fourier transform infrared (FTIR) spectroscopy. Meat Science 88(1): 91-95.
  • Safdar M, Junejo Y, Arman K and Abasıyanık, M (2014) A highly sensitive and specific tetraplex PCR assay for soybean, poultry, horse and pork species identification in sausages: Development and validation. Meat Science 98(2): 296-300.
  • Sentandreu MA and Sentandreu E (2014) Authenticity of meat products: Tools against fraud. Food Research International 60: 19-29.
  • Shetty G, Kendall C, Shepherd N, Stone N and Barr H (2006) Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus. British Journal of Cancer 94(10): 1460-1464.
  • Spink J (2016) Food Fraud Prevention. The International Union of Food Science and Technology (IUFoST) Scientific Information Bulletin (SIB).
  • Stuart B (2004) Infrared Spectroscopy: Fundamental and Applications. In: John Wiley and Sons, Ltd.Xu L, Cai CB, Cui HF, Ye ZH and Yu XP (2012) Rapid discrimination of pork in Halal and non-Halal Chinese ham sausages by Fourier transform infrared (FTIR) spectroscopy and chemometrics. Meat science 92(4): 506-510.
  • Zhao M, Downey G and O’Donnell CP (2014) Detection of adulteration in fresh and frozen beefburger products by beef offal using mid-infrared ATR spectroscopy and multivariate data analysis. Meat Science 96(2): 1003-1011.
There are 25 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Prof. Dr. Kezban Candoğan

Ebru Deniz This is me

Evrim Güneş Altuntaş

Naşit İğci This is me

Duygu Özel Demiralp This is me

Project Number TÜBİTAK: 214O182, ANKARA UNIVERSITY: 17L0443007
Publication Date January 15, 2020
Published in Issue Year 2020

Cite

APA Candoğan, P. D. K., Deniz, E., Güneş Altuntaş, E., İğci, N., et al. (2020). DETECTION OF PORK, HORSE OR DONKEY MEAT ADULTERATION IN BEEF-BASED FORMULATIONS BY FOURIER TRANSFORM INFRARED SPECTROSCOPY. Gıda, 45(2), 369-379. https://doi.org/10.15237/gida.GD19146
AMA Candoğan PDK, Deniz E, Güneş Altuntaş E, İğci N, Özel Demiralp D. DETECTION OF PORK, HORSE OR DONKEY MEAT ADULTERATION IN BEEF-BASED FORMULATIONS BY FOURIER TRANSFORM INFRARED SPECTROSCOPY. GIDA. January 2020;45(2):369-379. doi:10.15237/gida.GD19146
Chicago Candoğan, Prof. Dr. Kezban, Ebru Deniz, Evrim Güneş Altuntaş, Naşit İğci, and Duygu Özel Demiralp. “DETECTION OF PORK, HORSE OR DONKEY MEAT ADULTERATION IN BEEF-BASED FORMULATIONS BY FOURIER TRANSFORM INFRARED SPECTROSCOPY”. Gıda 45, no. 2 (January 2020): 369-79. https://doi.org/10.15237/gida.GD19146.
EndNote Candoğan PDK, Deniz E, Güneş Altuntaş E, İğci N, Özel Demiralp D (January 1, 2020) DETECTION OF PORK, HORSE OR DONKEY MEAT ADULTERATION IN BEEF-BASED FORMULATIONS BY FOURIER TRANSFORM INFRARED SPECTROSCOPY. Gıda 45 2 369–379.
IEEE P. D. K. Candoğan, E. Deniz, E. Güneş Altuntaş, N. İğci, and D. Özel Demiralp, “DETECTION OF PORK, HORSE OR DONKEY MEAT ADULTERATION IN BEEF-BASED FORMULATIONS BY FOURIER TRANSFORM INFRARED SPECTROSCOPY”, GIDA, vol. 45, no. 2, pp. 369–379, 2020, doi: 10.15237/gida.GD19146.
ISNAD Candoğan, Prof. Dr. Kezban et al. “DETECTION OF PORK, HORSE OR DONKEY MEAT ADULTERATION IN BEEF-BASED FORMULATIONS BY FOURIER TRANSFORM INFRARED SPECTROSCOPY”. Gıda 45/2 (January 2020), 369-379. https://doi.org/10.15237/gida.GD19146.
JAMA Candoğan PDK, Deniz E, Güneş Altuntaş E, İğci N, Özel Demiralp D. DETECTION OF PORK, HORSE OR DONKEY MEAT ADULTERATION IN BEEF-BASED FORMULATIONS BY FOURIER TRANSFORM INFRARED SPECTROSCOPY. GIDA. 2020;45:369–379.
MLA Candoğan, Prof. Dr. Kezban et al. “DETECTION OF PORK, HORSE OR DONKEY MEAT ADULTERATION IN BEEF-BASED FORMULATIONS BY FOURIER TRANSFORM INFRARED SPECTROSCOPY”. Gıda, vol. 45, no. 2, 2020, pp. 369-7, doi:10.15237/gida.GD19146.
Vancouver Candoğan PDK, Deniz E, Güneş Altuntaş E, İğci N, Özel Demiralp D. DETECTION OF PORK, HORSE OR DONKEY MEAT ADULTERATION IN BEEF-BASED FORMULATIONS BY FOURIER TRANSFORM INFRARED SPECTROSCOPY. GIDA. 2020;45(2):369-7.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/