Research Article
BibTex RIS Cite

GELENEKSEL YÖNTEM VE MİKRODALGA İLE KUŞKONMAZIN (ASPARAGUS OFFICINALIS L.) KURUTULMASININ MODEL TABANLI KARŞILAŞTIRILMASI

Year 2020, , 572 - 580, 15.06.2020
https://doi.org/10.15237/gida.GD20040

Abstract

Bu çalışmada kuşkonmaz dilimleri farklı sıcaklıklarda geleneksel fırın veya farklı güç seviyelerindeki mikrodalga fırın ile kurutulmuştur. İki kurutma yöntemi arasındaki fark ve benzerliklerin araştırılmasında model tabanlı yaklaşım kullanılmıştır. Birincil ve ikincil modeller olarak sırasıyla Weibullian model ve doğrusal denklem kullanılmıştır. Birincil modele bütünleştirilen ikincil model, tek aşamalı yöntemle kuşkonmazın nem oranını tanımlamak için başarıyla kullanılabilmiştir. Her iki kurutma tekniği için uygun modeller elde edilmiştir, ancak mikrodalgada geleneksel kurutmadan daha yüksek uygunluk görülmüştür. Geleneksel kurutma eğrileri için kuyruklu, mikrodalga kurutma için s-biçimli eğriler gözlenmiştir. Mikrodalga kurutmanın en düşük gücünün (100 W) zaman parametresi (δ) değeri, geleneksel kurutmanın en yüksek sıcaklığının (90 °C) δ değerinin sadece üçte biridir, bu da mikrodalga kurutmanın geleneksel kurutmaya kıyasla zaman açısından etkili bir yöntem olduğunu göstermiştir.

References

  • Akpinar, E. K., Bicer, Y., & Midilli, A. (2003). Modelind and Experimental Study on Drying of Apple Slices in a Convective Cyclone Dryer. J Food Process Eng, 26(6): 515–541.
  • Al-Harahsheh, M., Al-Muhtaseb, A. H., & Magee, T. R. A. (2009). Microwave drying kinetics of tomato pomace: Effect of osmotic dehydration. Chem Eng Process: Process Intensification, 48(1): 524–531.
  • Bala, B. K., Hoque, M. A., Hossain, M. A., & Uddin, M. B. (2010). Drying characteristics of asparagus roots (Asparagus racemosus wild.). Drying Technol, 28(4): 533–541.
  • Bi, J., Yang, A., Liu, X., Wu, X., Chen, Q., Wang, Q., Wang, X. (2015). Effects of pretreatments on explosion puffing drying kinetics of apple chips. LWT - Food Sci and Technol, 60(2): 1136–1142.
  • Blasco, M., García-Pérez, J. V., Bon, J., Carreres, J. E., & Mulet, A. (2006). Effect of blanching and air flow rate on turmeric drying. Food Sci and Technol Int, 12(4), 315–323.
  • Chandra, P. K., Singh, R. P. (1995). Applied Numerical Methods for Food and Agricultural Engineers. CRC Press, Boca Raton, Florida, USA512 p, , ISBN 9780849324543.
  • Corzo, O., Bracho, N., Pereira, A., & Vásquez, A. (2008). Weibull distribution for modeling air drying of coroba slices. LWT - Food Sci and Technol, 41(10): 2023–2028.
  • Doymaz, I., Kipcak, A. S., Piskin, S. (2015). Microwave drying of green bean slices: Drying kinetics and physical quality. Czech J Food Sci, 33(4): 367–376.
  • Jokic, S., Mujic, I., Martinov, M., Velic, D., Bilic, M., Lukinac, J. (2009). Influence of Drying Procedure on Colour and Rehydration Characteristic of Wild Asparagus. Czech J Food Sci, 27(3): 171–177.
  • Karacabey, E. (2016). Evaluation of Two Fitting Methods Applied for Thin-Layer Drying of Cape Gooseberry Fruits. Brazilian Arc Biol and Technol, 59(0): 1–10.
  • Karacabey, E., Buzrul, S. (2017). Modeling and predicting the drying kinetics of apple and pear: Application of the weibull model. Chem Eng Commun, 204(5): 573–579.
  • Kipcak, A. S., Ismail, O. (2018). Comparison of the microwave drying kinetics of culture and natural asparagus. Acta Scientiarum Technol, 40(1): 39922.
  • Kucuk, H., Midilli, A., Kilic, A., & Dincer, I. (2014). A Review on Thin-Layer Drying-Curve Equations. Drying Technol, 32(7): 757–773.
  • Lewis, W. K. (1921). The Rate of Drying of Solid Materials. Ind and Eng Chem, 13(5): 427–432.
  • Liu, Z., Zhang, M., & Wang, Y. (2016). Drying of restructured chips made from the old stalks of Asparagus officinalis: Impact of different drying methods. J Sci Food and Agric, 96(8): 2815–2824.
  • McLoughlin, C. M., McMinn, W. A. M., Magee, T. R. A. (2003). Microwave drying of multi-component powder systems. Drying TechnoL, 21(2): 293–309.
  • Menges, H. O., & Ertekin, C. (2006). Mathematical modeling of thin layer drying of Golden apples. J Food Eng, 77(1): 119–125.
  • Midilli, A., Kucuk, H., Yapar, Z. (2002). A new model for single-layer drying. Drying Technol, 20(7): 1503–1513.
  • Overhults, D. G., White, G. M., Hamilton, H. E., Ross, I. J. (1973). Drying Soybeans W i t h Heated Air. Biosystem and Agricultural Engineering Faculty Publications, University of Kentucky. p 112–113.
  • Ozkan, I. A., Akbudak, B., & Akbudak, N. (2007). Microwave drying characteristics of spinach. J Food Eng, 78(2): 577–583.
  • Page. (1949). Factors Influencing the Maximum Rates of Air Drying Shelled Corn in Thin Layers. Purdue University.
  • S. M. Henderson. (1974). Progress in Developing the Thin Layer Drying Equation. Transactions of the ASAE, 17(6): 1167–1168.
  • Sacilik, K., Elicin, A. K. (2006). The thin layer drying characteristics of organic apple slices. J Food Eng, 73(3): 281–289.
  • Sergio, L., Cantore, V., Spremulli, L., Pinto, L., Baruzzi, F., Di Venere, D., Boari, F. (2018). Effect of cooking and packaging conditions on quality of semi-dried green asparagus during cold storage. LWT, 89: 712–718.
  • Toğrul, H. (2005). Simple modeling of infrared drying of fresh apple slices. J Food Eng, 71(3): 311–323. Wang, J., Liu, Y., Zhao, J., Zhang, W., Pang, X. (2013). Saponins extracted from by-product of Asparagus officinalis L. suppress tumour cell migration and invasion through targeting Rho GTPase signalling pathway. J Sci Food and Agric, 93(6): 1492–1498.
  • Zielinska, M., Zapotoczny, P., Alves-Filho, O., Eikevik, T. M., Blaszczak, W. (2013). A multi-stage combined heat pump and microwave vacuum drying of green peas. J Food Eng, 115(3): 347–356.

MODEL BASED COMPARISON OF DRYING OF ASPARAGUS (ASPARAGUS OFFICINALIS L.) WITH TRADITIONAL METHOD AND MICROWAVE

Year 2020, , 572 - 580, 15.06.2020
https://doi.org/10.15237/gida.GD20040

Abstract

In this study, asparagus slices were dried with traditional oven and microwave oven methods. Model based approach was used to investigate the differences and similarities between two drying methods. Weibullian and linear equations were used as the primary and secondary models, respectively. Secondary model integrated into the primary model could successfully be used to describe the moisture ratio of asparagus in one-step procedure. Appropriate fits were obtained for both drying techniques, but microwave drying had slightly better fit than the conventional drying. Tailing was observed for the curves of traditional drying whereas sigmoidal curves were observed for microwave drying. The time parameter (δ) value of the lowest power of the microwave drying (100 W) was just one third of the δ value of the highest temperature of the traditional drying (90 °C) indicating that microwave drying was effective method in terms of time comparing to traditional drying.

References

  • Akpinar, E. K., Bicer, Y., & Midilli, A. (2003). Modelind and Experimental Study on Drying of Apple Slices in a Convective Cyclone Dryer. J Food Process Eng, 26(6): 515–541.
  • Al-Harahsheh, M., Al-Muhtaseb, A. H., & Magee, T. R. A. (2009). Microwave drying kinetics of tomato pomace: Effect of osmotic dehydration. Chem Eng Process: Process Intensification, 48(1): 524–531.
  • Bala, B. K., Hoque, M. A., Hossain, M. A., & Uddin, M. B. (2010). Drying characteristics of asparagus roots (Asparagus racemosus wild.). Drying Technol, 28(4): 533–541.
  • Bi, J., Yang, A., Liu, X., Wu, X., Chen, Q., Wang, Q., Wang, X. (2015). Effects of pretreatments on explosion puffing drying kinetics of apple chips. LWT - Food Sci and Technol, 60(2): 1136–1142.
  • Blasco, M., García-Pérez, J. V., Bon, J., Carreres, J. E., & Mulet, A. (2006). Effect of blanching and air flow rate on turmeric drying. Food Sci and Technol Int, 12(4), 315–323.
  • Chandra, P. K., Singh, R. P. (1995). Applied Numerical Methods for Food and Agricultural Engineers. CRC Press, Boca Raton, Florida, USA512 p, , ISBN 9780849324543.
  • Corzo, O., Bracho, N., Pereira, A., & Vásquez, A. (2008). Weibull distribution for modeling air drying of coroba slices. LWT - Food Sci and Technol, 41(10): 2023–2028.
  • Doymaz, I., Kipcak, A. S., Piskin, S. (2015). Microwave drying of green bean slices: Drying kinetics and physical quality. Czech J Food Sci, 33(4): 367–376.
  • Jokic, S., Mujic, I., Martinov, M., Velic, D., Bilic, M., Lukinac, J. (2009). Influence of Drying Procedure on Colour and Rehydration Characteristic of Wild Asparagus. Czech J Food Sci, 27(3): 171–177.
  • Karacabey, E. (2016). Evaluation of Two Fitting Methods Applied for Thin-Layer Drying of Cape Gooseberry Fruits. Brazilian Arc Biol and Technol, 59(0): 1–10.
  • Karacabey, E., Buzrul, S. (2017). Modeling and predicting the drying kinetics of apple and pear: Application of the weibull model. Chem Eng Commun, 204(5): 573–579.
  • Kipcak, A. S., Ismail, O. (2018). Comparison of the microwave drying kinetics of culture and natural asparagus. Acta Scientiarum Technol, 40(1): 39922.
  • Kucuk, H., Midilli, A., Kilic, A., & Dincer, I. (2014). A Review on Thin-Layer Drying-Curve Equations. Drying Technol, 32(7): 757–773.
  • Lewis, W. K. (1921). The Rate of Drying of Solid Materials. Ind and Eng Chem, 13(5): 427–432.
  • Liu, Z., Zhang, M., & Wang, Y. (2016). Drying of restructured chips made from the old stalks of Asparagus officinalis: Impact of different drying methods. J Sci Food and Agric, 96(8): 2815–2824.
  • McLoughlin, C. M., McMinn, W. A. M., Magee, T. R. A. (2003). Microwave drying of multi-component powder systems. Drying TechnoL, 21(2): 293–309.
  • Menges, H. O., & Ertekin, C. (2006). Mathematical modeling of thin layer drying of Golden apples. J Food Eng, 77(1): 119–125.
  • Midilli, A., Kucuk, H., Yapar, Z. (2002). A new model for single-layer drying. Drying Technol, 20(7): 1503–1513.
  • Overhults, D. G., White, G. M., Hamilton, H. E., Ross, I. J. (1973). Drying Soybeans W i t h Heated Air. Biosystem and Agricultural Engineering Faculty Publications, University of Kentucky. p 112–113.
  • Ozkan, I. A., Akbudak, B., & Akbudak, N. (2007). Microwave drying characteristics of spinach. J Food Eng, 78(2): 577–583.
  • Page. (1949). Factors Influencing the Maximum Rates of Air Drying Shelled Corn in Thin Layers. Purdue University.
  • S. M. Henderson. (1974). Progress in Developing the Thin Layer Drying Equation. Transactions of the ASAE, 17(6): 1167–1168.
  • Sacilik, K., Elicin, A. K. (2006). The thin layer drying characteristics of organic apple slices. J Food Eng, 73(3): 281–289.
  • Sergio, L., Cantore, V., Spremulli, L., Pinto, L., Baruzzi, F., Di Venere, D., Boari, F. (2018). Effect of cooking and packaging conditions on quality of semi-dried green asparagus during cold storage. LWT, 89: 712–718.
  • Toğrul, H. (2005). Simple modeling of infrared drying of fresh apple slices. J Food Eng, 71(3): 311–323. Wang, J., Liu, Y., Zhao, J., Zhang, W., Pang, X. (2013). Saponins extracted from by-product of Asparagus officinalis L. suppress tumour cell migration and invasion through targeting Rho GTPase signalling pathway. J Sci Food and Agric, 93(6): 1492–1498.
  • Zielinska, M., Zapotoczny, P., Alves-Filho, O., Eikevik, T. M., Blaszczak, W. (2013). A multi-stage combined heat pump and microwave vacuum drying of green peas. J Food Eng, 115(3): 347–356.
There are 26 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Articles
Authors

Cem Baltacıoğlu 0000-0001-8308-5991

İlhami Okur 0000-0002-2541-7123

Sencer Buzrul 0000-0003-2272-3827

Publication Date June 15, 2020
Published in Issue Year 2020

Cite

APA Baltacıoğlu, C., Okur, İ., & Buzrul, S. (2020). MODEL BASED COMPARISON OF DRYING OF ASPARAGUS (ASPARAGUS OFFICINALIS L.) WITH TRADITIONAL METHOD AND MICROWAVE. Gıda, 45(3), 572-580. https://doi.org/10.15237/gida.GD20040
AMA Baltacıoğlu C, Okur İ, Buzrul S. MODEL BASED COMPARISON OF DRYING OF ASPARAGUS (ASPARAGUS OFFICINALIS L.) WITH TRADITIONAL METHOD AND MICROWAVE. GIDA. June 2020;45(3):572-580. doi:10.15237/gida.GD20040
Chicago Baltacıoğlu, Cem, İlhami Okur, and Sencer Buzrul. “MODEL BASED COMPARISON OF DRYING OF ASPARAGUS (ASPARAGUS OFFICINALIS L.) WITH TRADITIONAL METHOD AND MICROWAVE”. Gıda 45, no. 3 (June 2020): 572-80. https://doi.org/10.15237/gida.GD20040.
EndNote Baltacıoğlu C, Okur İ, Buzrul S (June 1, 2020) MODEL BASED COMPARISON OF DRYING OF ASPARAGUS (ASPARAGUS OFFICINALIS L.) WITH TRADITIONAL METHOD AND MICROWAVE. Gıda 45 3 572–580.
IEEE C. Baltacıoğlu, İ. Okur, and S. Buzrul, “MODEL BASED COMPARISON OF DRYING OF ASPARAGUS (ASPARAGUS OFFICINALIS L.) WITH TRADITIONAL METHOD AND MICROWAVE”, GIDA, vol. 45, no. 3, pp. 572–580, 2020, doi: 10.15237/gida.GD20040.
ISNAD Baltacıoğlu, Cem et al. “MODEL BASED COMPARISON OF DRYING OF ASPARAGUS (ASPARAGUS OFFICINALIS L.) WITH TRADITIONAL METHOD AND MICROWAVE”. Gıda 45/3 (June 2020), 572-580. https://doi.org/10.15237/gida.GD20040.
JAMA Baltacıoğlu C, Okur İ, Buzrul S. MODEL BASED COMPARISON OF DRYING OF ASPARAGUS (ASPARAGUS OFFICINALIS L.) WITH TRADITIONAL METHOD AND MICROWAVE. GIDA. 2020;45:572–580.
MLA Baltacıoğlu, Cem et al. “MODEL BASED COMPARISON OF DRYING OF ASPARAGUS (ASPARAGUS OFFICINALIS L.) WITH TRADITIONAL METHOD AND MICROWAVE”. Gıda, vol. 45, no. 3, 2020, pp. 572-80, doi:10.15237/gida.GD20040.
Vancouver Baltacıoğlu C, Okur İ, Buzrul S. MODEL BASED COMPARISON OF DRYING OF ASPARAGUS (ASPARAGUS OFFICINALIS L.) WITH TRADITIONAL METHOD AND MICROWAVE. GIDA. 2020;45(3):572-80.

Cited By

On the use of improved Midilli-Kucuk model for thin-layer drying
Energy Sources, Part A: Recovery, Utilization, and Environmental Effects
https://doi.org/10.1080/15567036.2023.2273401

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/