Research Article
BibTex RIS Cite

KOMAGATAEİBACTER HANSENİİ GA2016 İLE BAKTERİYEL SELÜLOZ ÜRETİMİ VE KARAKTERİZASYONU

Year 2017, Volume: 42 Issue: 5, 620 - 633, 15.10.2017

Abstract

Selüloz,
glikopiranoz birimlerinin β-1,4 bağları ile bağlanması ile oluşan ve dünyada
yaygın olarak bulunan polimerdir. Bu çalışmada, evsel sirkeden selüloz
üreticisi bakteri izole edilerek
Komagataeibacter
hansenii
GA2016 olarak tanımlanmıştır. Tanımlanan bakteriyel selüloz (BS) üreticisi mikroorganizma ile BS üretilmiş
ve üretilen BS’nin fiziksel, kimyasal, yapısal ve termal özellikleri belirlenmiştir.
Çalışma sonucunda Komagataeibacter hansenii GA2016’nın yüksek
kristaliteye sahip
BS ürettiği saptanmıştır. BS’nin FTIR spektrumunun
bitkisel selüloz spektrumuna benzer, lif çaplarının bitkisel selüloza kıyasla
yaklaşık 120 kat daha ince, BS’nin termal kararlılığının bitkisel selüloza
kıyasla daha yüksek olduğu belirlenmiştir.

References

  • AOAC (1989). Officials methods of analysis. 15th Edition, Washington DC, the USA. Aydın, Y.A., Aksoy, N.D. (2013). Çeşitli gıda atıklarından selüloz üreten asetik asit bakterilerinin izolasyonu ve tanımlanması. Türk Mikrobiyol Cem Dergisi 43(1):26-35.
  • Aydın, Y.A., Aksoy, N.D. (2014). Isolation and characterization of an efficient bacterial cellulose producer strain in agitated culture: Gluconacetobacter hansenii P2A. Appl Microbiol Biotechnol 98:1065-1075.
  • Aydıncak, K. (2012). Hidrotermal karbonizasyon yöntemiyle gerçek ve model biyokütlelerden karbon nanoküre sentezi ve karakterizasyonu. Ankara Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi., Ankara, Türkiye.
  • Barud, H. S., Ribeiro, C. A., Crespi, M. S., Martines, M. A. U., Dexpert-Ghys, J., Marques,R. F. C., (2007). Thermal characterization of bacterial cellulose–phosphatecomposite membranes. Journal of Thermal Analysis and Calorimetry, 87(3),815–818.
  • Bielecki, S., Krystynowicz, A.,Turkiewicz, M. and Kalinowska, H. (2000). Bacterial Cellulose. In: Steinbuchel A (Ed), Biopolymers: Polysaccharides I., Vol.7, pp. 37-90. Wiley-VCH Verlag GmbH, Munster, Germany.
  • Blast (2017). Basic Local Alignment Search Tool. http://www.ncbi.nlm.nih.gov/blast/ (Accessed 10 January 2017).
  • Brown, R.M. (2004). Cellulose Structure and biosynthesis: What is in store for the 21th century. J Poly Sci: Part A: Polymer Chem., 42:487-495.
  • Castro, C., Zuluaga, R., Putaux, J.L., Caroa, G., Mondragon, I., Ganán, P., (2011). Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes, Carbohydrate Polymers, 84(1): 96-102.
  • Chen, P., Cho, S.Y., Jin, H.J., (2010). Modification and Applications of Bacterial Celluloses in Polymer Science. Macromolecular Research 18: 309-320.
  • Cheng, K.C., Catchmark , J.M., Demirci, A. (2009). Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of material property. Cellulose 16:1033-1045.
  • Czaja, W., Romanovicz, D., Brown Jr., R. M. (2004). Structural investigation of microbial cellulose produced in stationary and agitated culture. Cellulose 11: 403–411.
  • Dahman, Y. (2009). Nanostructured Biomaterials and Biocomposites from Bacterial Cellulose Nanofibers. Journal of Nanoscience and Nanotechnology 9: 5105-5122.
  • De Souza, C.F., Lucyszyn, N., Woehl, M.A., Riegel-Vidotti, I.C., Borsali, R., Sierakowski, M.R. (2013). Property evaluations of dry-cast reconstituted bacterial cellulose/tamarind xyloglucan biocomposites. Carbohydrate Polymers 93: 144-153.
  • Drysdale, G. S. and Fleet, G. H. (1988). Acetic acid bacteria in winemaking: a review. American Journal Enoogy and Viticulture 39(2):143-154.
  • Fabio, P.G., Nuno, H.C.S., Trovatti, E., Serafim, L.S., Duarte, M.F., Silvestre, A.J.D., Neto, C.P., Carmen S.R.F. (2013). Production of bacterial cellulose by Gluconacetobacter sacchari using dry olive mill residue. Biomass and Bioenergy 55: 205-211.
  • Erdoğan, K. (2007). Tütün saplarından ksilooligosakkarit üretimi. (Yüksek Lisans Tezi), Gaziosmanpaşa Üniversitesi. Gıda Mühendisliği Anabilim Dalı, Tokat.
  • Fang, L., Catchmark, J.M. (2014). Characterization of water-soluble exopolysaccharide from Gluconacetobacter xylinus and their impacts on bacterial cellulose crystallization and ribbon assembly. Cellulose, 21:3965-3978.
  • Gao, C., Yan, T., Du, J., He, F., Luo, H., Wan, Y. (2014). Introduction of broad spectrum antibacterial properties to bacterial cellulose nanofibers via ımmobilising ε-polylysine nanocoatings. Food Hydrocolloids 36: 204-211.
  • Gayathry, G., Gopalaswamy, G. (2014). Production and characterization of microbial cellulosic fibre from Acetobacter xylinum. Indian Journal of Fibre and Textile Research 39: 93-96.
  • Goh, W.N., Rosma, A., Kaur, B., Fazilah, A., Karim, A.A., Bhat, R. (2012). Microstructure and physical properties of microbial cellulose produced during fermentation of black tea broth (Kombucha). II. International Food Research Journal 19(1): 153-158.
  • Gomes, F.P., Silva, N.H.C.S., Trovatti, E., Serafim, L.S., Duarte, M.F., Silvestre, A.J.D., Neto, C.P., Freire, C.S.R. (2013). Production of bacterial cellulose by gluconacetobacter sacchari using dry olive mill residue. Biomass and Bioenergy 55: 205-211.
  • Ha, J. H., Park, J. K. (2012). Improvement of bacterial cellulose production in Acetobacter xylinum using byproduct produced by Gluconacetobacter hansenii. Korean Journal of Chemical Engineering 29(5): 563-566.
  • Halib, N., Iqbal, M. C., Amin. M., Ahmad, I. (2012). Physicochemical properties and characterization of nata de coco from local food ındustries as a source of cellulose. Sains Malaysiana 41(2): 205–211.
  • Hermans, P. H., Weidinger, A. (1948). Quantitative x‐ray investigations on the crystallinity of cellulose fibers. A background analysis. Journal of Applied Physics, 19(5): 491.
  • Hungund, B.S., Gupta, S.G. (2010). Production of bacterial cellulose from Enterobacter amnigenus GH-1 isolated from rotten apple. World J. Microbiol. Biotechnol. 26: 1823-1828.
  • Iguchi, M., Yamanaka, S., Budhiono, A. (2000). Bacterial cellulose—a masterpiece of nature’s arts. Journal of Materials Science 35(2):261-270.
  • Johnson, D.C. ve Neogi, A.N. (1989). Sheeted products formed from reticulated microbial cellulose. US Patent, 4863565.
  • Jonas, R., Farah, L.F. (1998). Production and application of microbial cellulose. Polymer Degradation and Stability 59:101-106.
  • Jung, J.Y., Park, J.K., Chang, H.N. (2005). Bacterial cellulose production by Gluconoacetobacter hansenii in an agitated culture without living non-cellulose producing cells. Enzyme Microb. Technol 37:347-354.
  • Kato, N., Sato, T., Kato, C., Yajima, M., Sugiyama, J., Kanda, T., Mizuno, M., Nozaki, K., Yamanaka, S., Amano, Y. (2007). Viability and cellulose synthesizing ability of Gluconacetobacter xylinus cells under high-hydrostatic pressure. Extremophiles 11(5): 693-698.
  • Keshk, S.M.A.S. (2014). Vitamin C enhances bacterial cellulose production in Gluconacetobacter xylinus, Carbohydrate Polymers, 99: 98-100.
  • Klemm, D., Heublein, B., Fink, H.P. (2005). Cellulose: fascinating biopolymer and sustainable raw material A. Bohn, Polymer Science 44: 3358-3393.
  • Ko, Y. H., Oh, H.J., Lee, H.J. (2015). Use of bacterial cellulose from Gluconacetobacter hansenii NOK21 as a proton permeable membrane in microbial fuel cells. J Microb Biochem Technol 7(3): 145-151.
  • Kong, F.L., Zhang, M.W., Kuang, R.B., Yu, S.J., Chi, J.W., Wei, Z.C. (2010). Antioxidant activities of different fractions of polysaccharide purified from pulp tissue of litchi (Litchi chinensis Sonn.). Carbohyd. Polym.81:612-616.
  • Leppänen, K., Anderson, S., Torkkeli, M., Knaapila, M., Kotelnikova, N., Serimaa, R., 2009. Structure of cellulose and microcrystalline cellulose from various species, cotton and flax studied by x-ray scattering. Cellulose, 16: 999-1015.
  • Lin, D., Sanchez, P.L., Li, R., Li, Z. (2014). Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source. Bioresource Technology 151:113-119.
  • Lin, S. P., Liu, C. T., Hsu, K. D., Hung, Y. T., Shih, T. Y., Cheng, K. C. (2016). Production of bacterial cellulose with various additives in a PCS rotating diskbioreactor and its material property analysis. Cellulose 23(1): 367-377.
  • Lisdiyanti, P., Kawasaki, H., Seki, T., Yamada, Y., Uchimura, T., Komagata, K. (2001). Identification of Acetobacter strains isolated from Indonesian sources, and proposals of Acetobacter syzygii sp. nov., Acetobacter cibinongensis sp. nov., and Acetobacter orientalis sp. nov. J Gen Appl Microbiol 47: 119-131.
  • Luddee, M., Pivsa-Art, S., Sirisansaneeyakul, S., Pechyen, C. (2014). Particle size of ground bacterial cellulose affecting mechanical, thermal, and moisture barrier properties of PLA/BC biocomposites. Energy Procedia 56: 211-218.
  • Lynd, L.R., Weimer, P.J. ve Van Zyl, W.H. (2002). Pretorius IS: Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev., 66(3):506-77. Mantanis, G. I., Young, R. A., Rowell, R. M. (1995). Swelling of compressed cellulose fiber webs in organic liquids. Cellulose 2:1-22.
  • Marchessault, R.H., Sundararajan, P.R. (1983). Cellulose. In Aspinall G.O. (editor) The Polysaccharides, Volume 2, page 12-95. New York: Academic Press, Inc.
  • Martins, I.M.G., Magina, S.P., Oliveira, L., Freire, C.S.R., Silvestre, A.J.D. (2009). New biocomposites based on thermoplastic starch and bacterial cellulose. Composites Science and Technology 69: 2163-2168.
  • Mazumdar, S. (1999). A standardless method of quantitative ceramic analysis using X-ray powder diffraction. Journal of Applied Crystallography 32:381-386.
  • Mohammadkazemi, F., Azin, M., Ashori, A. (2015). Production of bacterial cellulose using different carbon sources andculture media. Carbohydrate Polymers 117: 518–523.
  • Nada, A.M.A., El-Kady, M.Y., El-Sayed, E.S., Amine, F.M., 2009. Preparation and characterization of microcrystalline cellulose (MCC). BioResources, 4:1359-1371.
  • Neto, C.P., Mikkelsen, A.G., Flanagan, B.M., Dykes, G.A., Gidley, M.J. (2009). Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. J. Appl. Microbiol. 107: 576-583.
  • Nesic, A.R., Trifunovic, S.S., Grujic, A.S., Velickovic, S.J., Antonovic, D.G. (2011). Complexation of amidated pectin with poly(itaconic acid) as a polycarboxylic polymer model compound. Carbohydr Res 346(15): 2463-2468.
  • Ng, C., Sheu, F., Wang, C., Shyu, Y. (2004). Fermentation of Monascus purpureus on agri-by-products to make colorful and functional bacterial cellulose (NATA). Microbiol Indones 4(1): 6-10.
  • Park, J.K., Jung, J.Y., Park, Y.H. (2003a). Cellulose production by Gluconacetobacter hansenii in a medium containing ethanol. Biotechnol Lett. 25:2055–2059.
  • Park, J.K., Park, Y.H., Jung, J.Y. (2003b). Production of bacterial cellulose by Gluconacetobacter hansenii PJK isolated from rotten apple. Biotechnology and Bioprocess Engineering 8(2):83-88.
  • Perez, S., Samain, D. (2010). Structure and engineering of celluloses. Advances in Carbohydrate Chemistry and Biochemistry 64: 25-116.
  • Rani, M.U., Appaiah, K.A. (2013). Production of bacterial cellulose by Gluconacetobacter hansenii UAC09 using coffee cherry husk. J Food Sci Technol 50(4):755-762.
  • Robertson, A.A. (1964). Cellulose-liquid interactions. Pulp Paper Magazine of Canada 65:171-178.
  • Rodriguez, R., Jiménez, R., Fernández-Bolaños, J., Guillén, R., Heredia, A. (2006). Dietary fibre from plant products as source of functional ingredients, Trends in Food Science and Technology 17(1): 3-15.
  • Ross, P., Mayer, R., Benziman, M. (1991). Cellulose biosynthesis and function in bacteria. Microbiological Reviews, 55 (1): 35-58.
  • Röder, T., Moosbauer, J., Fasching, M., Bohn, A., Fink, H.P., Baldinger, T., Sixta, H., 2006. Crystallinity determination of native cellulose comparison of analytical methods. Lenzinger Berichte 86:85-89.
  • Saibuatong, O.A., Phisalaphong, M. (2010). Novo Aloe Vera-Bacterial Cellulose Composite Film From Biosynthesis. Carbohydrate Polymers 79(2): 455-460.
  • Saxena, I.M., Lin, F.C., Brown, R.M. (1990). Cloning and sequencing of the cellulose synthase catalytic subunit gene of Acetobacter xylinum. Plant Mol. Biol., 15: 673-683.
  • Saxena, I.M., Kudlicka, K., Okuda, K., Brown, R.M. (1994). Characterization of genes in the cellulose-synthesizing operon (acs operon) of Acetobacter xylinum: implications for cellulose crystallization. J. Bacteriol. 176:5735-5752.
  • Schramm, M., Hestrin, S. (1954). Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. J Gen Appl Microbiol. 11: 123-129.
  • Schröpfer, S. B., Bottene, M. K., Bianchin, L., Robinson, L. C., Lima, V., Jahno, V. D., Barud, H. S., Ribeiro, S. J. L. (2015). Biodegradation evaluation of bacterial cellulose, plant cellulose and poly (3-hydroxybutyrate) in soil. Polímeros 25(2), 154-160.
  • Schurz, J., Klapp. H., 1976. Untersuchungen a mikrokristallinen und mikrofeinen cellulosen. Das Papier 30:510-513.
  • Segal, L., Creely, J. J., Martin, A. E. J., Conrad, C. M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal 29:786-794.
  • Seifert, M., Hesse, S., Kabrelian, V., Klemm, D. ( 2003). Controlling the water content of never dried and reswollen bacterial cellulose by the addition of water-soluble polymers to the culture medium. J Poly Sci: Part A: Polymer Chemistry 42:463-470.
  • Shi, Z., Zhang, Y., Phillips, G. O., Yang, G. (2014). Utilization of bacterial cellulose in food. Food Hydrocolloids 35: 539-545.
  • Sivam, A.S., Sun-Waterhouse, D., Perera, C.O., Waterhouse, G.I.N. (2012). Exploring the interactions between blackcurrant polyphenols, pectin and wheat biopolymers in model breads; a FTIR and HPLC investigation. Food Chem 131(3):802-810.
  • Soares, S., Camino, G., Levchik, S. (1995). Comparative study of the thermal decomposition of pure cellulose and pulp paper. Polymer Degradation and Stability 49: 275-283.
  • Son, C., Chung, S., Lee, J., Kim, S. (2002). Isolation and cultivation characteristics of Acetobacter xylinum KJ-1 producing bacterial cellulose in shaking cultures. Journal of Microbiology and Biotechnology 12(5):722-728.
  • Son, H.J., Kim, H.G., Kim, K.K., Kim, H.S., Kim, Y.G., Lee, S.J. (2003). Increased production of bacterial cellulose by Acetobacter sp. V6 in synthetic media under shaking culture conditions. Bioresour. Technol. 86: 215-219.
  • Stephens, S.R., Westland, J.A., Neogi, A.N. (1990). Method of using bacterial cellulose as a dietary fiber component. US patent 4960763.
  • Sun, J.X., Xu, F., Sun, X.F., Xiao, B., Sun, R.C. (2005). Physico-chemical and thermal characterization of cellulose from barley straw. Polymer Degradation and Stability 88: 521-531.
  • Sun, J., Jiang, Y., Shi, J., Wei, X., Xue, S.J., Shi, J., Yi, C. (2010). Antioxidant activities and contents of polyphenol oxidase substrates from pericarp tissues of litchi fruit. Food Chem 119:753-757.
  • Tappi (1991). Tappi useful method UM256. Water retention value (WRV), Tappi Useful Methods, Tappi Press, Atlanta, USA.
  • Teeäär, R., Serimaa, R., Paakkari, T., 1987. Crystallinity of cellulose, as determined by cp/mas nmr and xrd methods. Polym. Bull., 17: 231-237.
  • Uzyol, H. K., Saçan, M.T. (2016). Bacterial cellulose production by Komagataeibacter hansenii using algae-based glucose.
  • Vandamme, E.J., De Baets, S., Vanbaelen, A., Joris, K., De Wulf P. (1998). Improved production of bacterial cellulose and its application potential. Polymer Degradation and Stability 59(1-3) 93-99.
  • Vazquez, A., Foresti, M. L., Cerrutti, P., Galvagno, M. (2013). Bacterial Cellulose fromsimple and low cost production media by Gluconacetobacter xylinus. Journal ofPolymers and Environment, 21(2), 545-554.
  • Watanabe, K., Tabuchi, M., Morinaga, Y., Yoshinaga, F. (1998). Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose 5(3):187-200.
  • Yamada, Y. (2000). Transfer of Acetobacter oboediens and Acetobacter intermedius to the genus Gluconacetobacter as Gluconacetobacter oboediens comb. nov. and Gluconacetobacter intermedius comb. nov. International Journal of Systematic and Evolutionary Microbiology 50:2225–2227.
  • Yamanaka, S. ve Sugiyama, J. (2000). Structural modification of bacterial cellulose. Cellulose 7(3):213-225.
  • Yang, C.M., Chen C.Y. (2005). Synthesis, characterization and properties of polyanilines containing transition metal ions. Synth Met, 153:133-136.
  • Yang, G., Xie, J., Hong, F., Cao, Z., Yang, X. (2012). Antimicrobial activity of silver nanoparticle impregnated bacterial cellulose membrane: Effect of fermentation carbon sources of bacterial cellulose. Carbohydrate Polymers 87: 839– 845.
Year 2017, Volume: 42 Issue: 5, 620 - 633, 15.10.2017

Abstract

References

  • AOAC (1989). Officials methods of analysis. 15th Edition, Washington DC, the USA. Aydın, Y.A., Aksoy, N.D. (2013). Çeşitli gıda atıklarından selüloz üreten asetik asit bakterilerinin izolasyonu ve tanımlanması. Türk Mikrobiyol Cem Dergisi 43(1):26-35.
  • Aydın, Y.A., Aksoy, N.D. (2014). Isolation and characterization of an efficient bacterial cellulose producer strain in agitated culture: Gluconacetobacter hansenii P2A. Appl Microbiol Biotechnol 98:1065-1075.
  • Aydıncak, K. (2012). Hidrotermal karbonizasyon yöntemiyle gerçek ve model biyokütlelerden karbon nanoküre sentezi ve karakterizasyonu. Ankara Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi., Ankara, Türkiye.
  • Barud, H. S., Ribeiro, C. A., Crespi, M. S., Martines, M. A. U., Dexpert-Ghys, J., Marques,R. F. C., (2007). Thermal characterization of bacterial cellulose–phosphatecomposite membranes. Journal of Thermal Analysis and Calorimetry, 87(3),815–818.
  • Bielecki, S., Krystynowicz, A.,Turkiewicz, M. and Kalinowska, H. (2000). Bacterial Cellulose. In: Steinbuchel A (Ed), Biopolymers: Polysaccharides I., Vol.7, pp. 37-90. Wiley-VCH Verlag GmbH, Munster, Germany.
  • Blast (2017). Basic Local Alignment Search Tool. http://www.ncbi.nlm.nih.gov/blast/ (Accessed 10 January 2017).
  • Brown, R.M. (2004). Cellulose Structure and biosynthesis: What is in store for the 21th century. J Poly Sci: Part A: Polymer Chem., 42:487-495.
  • Castro, C., Zuluaga, R., Putaux, J.L., Caroa, G., Mondragon, I., Ganán, P., (2011). Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes, Carbohydrate Polymers, 84(1): 96-102.
  • Chen, P., Cho, S.Y., Jin, H.J., (2010). Modification and Applications of Bacterial Celluloses in Polymer Science. Macromolecular Research 18: 309-320.
  • Cheng, K.C., Catchmark , J.M., Demirci, A. (2009). Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of material property. Cellulose 16:1033-1045.
  • Czaja, W., Romanovicz, D., Brown Jr., R. M. (2004). Structural investigation of microbial cellulose produced in stationary and agitated culture. Cellulose 11: 403–411.
  • Dahman, Y. (2009). Nanostructured Biomaterials and Biocomposites from Bacterial Cellulose Nanofibers. Journal of Nanoscience and Nanotechnology 9: 5105-5122.
  • De Souza, C.F., Lucyszyn, N., Woehl, M.A., Riegel-Vidotti, I.C., Borsali, R., Sierakowski, M.R. (2013). Property evaluations of dry-cast reconstituted bacterial cellulose/tamarind xyloglucan biocomposites. Carbohydrate Polymers 93: 144-153.
  • Drysdale, G. S. and Fleet, G. H. (1988). Acetic acid bacteria in winemaking: a review. American Journal Enoogy and Viticulture 39(2):143-154.
  • Fabio, P.G., Nuno, H.C.S., Trovatti, E., Serafim, L.S., Duarte, M.F., Silvestre, A.J.D., Neto, C.P., Carmen S.R.F. (2013). Production of bacterial cellulose by Gluconacetobacter sacchari using dry olive mill residue. Biomass and Bioenergy 55: 205-211.
  • Erdoğan, K. (2007). Tütün saplarından ksilooligosakkarit üretimi. (Yüksek Lisans Tezi), Gaziosmanpaşa Üniversitesi. Gıda Mühendisliği Anabilim Dalı, Tokat.
  • Fang, L., Catchmark, J.M. (2014). Characterization of water-soluble exopolysaccharide from Gluconacetobacter xylinus and their impacts on bacterial cellulose crystallization and ribbon assembly. Cellulose, 21:3965-3978.
  • Gao, C., Yan, T., Du, J., He, F., Luo, H., Wan, Y. (2014). Introduction of broad spectrum antibacterial properties to bacterial cellulose nanofibers via ımmobilising ε-polylysine nanocoatings. Food Hydrocolloids 36: 204-211.
  • Gayathry, G., Gopalaswamy, G. (2014). Production and characterization of microbial cellulosic fibre from Acetobacter xylinum. Indian Journal of Fibre and Textile Research 39: 93-96.
  • Goh, W.N., Rosma, A., Kaur, B., Fazilah, A., Karim, A.A., Bhat, R. (2012). Microstructure and physical properties of microbial cellulose produced during fermentation of black tea broth (Kombucha). II. International Food Research Journal 19(1): 153-158.
  • Gomes, F.P., Silva, N.H.C.S., Trovatti, E., Serafim, L.S., Duarte, M.F., Silvestre, A.J.D., Neto, C.P., Freire, C.S.R. (2013). Production of bacterial cellulose by gluconacetobacter sacchari using dry olive mill residue. Biomass and Bioenergy 55: 205-211.
  • Ha, J. H., Park, J. K. (2012). Improvement of bacterial cellulose production in Acetobacter xylinum using byproduct produced by Gluconacetobacter hansenii. Korean Journal of Chemical Engineering 29(5): 563-566.
  • Halib, N., Iqbal, M. C., Amin. M., Ahmad, I. (2012). Physicochemical properties and characterization of nata de coco from local food ındustries as a source of cellulose. Sains Malaysiana 41(2): 205–211.
  • Hermans, P. H., Weidinger, A. (1948). Quantitative x‐ray investigations on the crystallinity of cellulose fibers. A background analysis. Journal of Applied Physics, 19(5): 491.
  • Hungund, B.S., Gupta, S.G. (2010). Production of bacterial cellulose from Enterobacter amnigenus GH-1 isolated from rotten apple. World J. Microbiol. Biotechnol. 26: 1823-1828.
  • Iguchi, M., Yamanaka, S., Budhiono, A. (2000). Bacterial cellulose—a masterpiece of nature’s arts. Journal of Materials Science 35(2):261-270.
  • Johnson, D.C. ve Neogi, A.N. (1989). Sheeted products formed from reticulated microbial cellulose. US Patent, 4863565.
  • Jonas, R., Farah, L.F. (1998). Production and application of microbial cellulose. Polymer Degradation and Stability 59:101-106.
  • Jung, J.Y., Park, J.K., Chang, H.N. (2005). Bacterial cellulose production by Gluconoacetobacter hansenii in an agitated culture without living non-cellulose producing cells. Enzyme Microb. Technol 37:347-354.
  • Kato, N., Sato, T., Kato, C., Yajima, M., Sugiyama, J., Kanda, T., Mizuno, M., Nozaki, K., Yamanaka, S., Amano, Y. (2007). Viability and cellulose synthesizing ability of Gluconacetobacter xylinus cells under high-hydrostatic pressure. Extremophiles 11(5): 693-698.
  • Keshk, S.M.A.S. (2014). Vitamin C enhances bacterial cellulose production in Gluconacetobacter xylinus, Carbohydrate Polymers, 99: 98-100.
  • Klemm, D., Heublein, B., Fink, H.P. (2005). Cellulose: fascinating biopolymer and sustainable raw material A. Bohn, Polymer Science 44: 3358-3393.
  • Ko, Y. H., Oh, H.J., Lee, H.J. (2015). Use of bacterial cellulose from Gluconacetobacter hansenii NOK21 as a proton permeable membrane in microbial fuel cells. J Microb Biochem Technol 7(3): 145-151.
  • Kong, F.L., Zhang, M.W., Kuang, R.B., Yu, S.J., Chi, J.W., Wei, Z.C. (2010). Antioxidant activities of different fractions of polysaccharide purified from pulp tissue of litchi (Litchi chinensis Sonn.). Carbohyd. Polym.81:612-616.
  • Leppänen, K., Anderson, S., Torkkeli, M., Knaapila, M., Kotelnikova, N., Serimaa, R., 2009. Structure of cellulose and microcrystalline cellulose from various species, cotton and flax studied by x-ray scattering. Cellulose, 16: 999-1015.
  • Lin, D., Sanchez, P.L., Li, R., Li, Z. (2014). Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source. Bioresource Technology 151:113-119.
  • Lin, S. P., Liu, C. T., Hsu, K. D., Hung, Y. T., Shih, T. Y., Cheng, K. C. (2016). Production of bacterial cellulose with various additives in a PCS rotating diskbioreactor and its material property analysis. Cellulose 23(1): 367-377.
  • Lisdiyanti, P., Kawasaki, H., Seki, T., Yamada, Y., Uchimura, T., Komagata, K. (2001). Identification of Acetobacter strains isolated from Indonesian sources, and proposals of Acetobacter syzygii sp. nov., Acetobacter cibinongensis sp. nov., and Acetobacter orientalis sp. nov. J Gen Appl Microbiol 47: 119-131.
  • Luddee, M., Pivsa-Art, S., Sirisansaneeyakul, S., Pechyen, C. (2014). Particle size of ground bacterial cellulose affecting mechanical, thermal, and moisture barrier properties of PLA/BC biocomposites. Energy Procedia 56: 211-218.
  • Lynd, L.R., Weimer, P.J. ve Van Zyl, W.H. (2002). Pretorius IS: Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev., 66(3):506-77. Mantanis, G. I., Young, R. A., Rowell, R. M. (1995). Swelling of compressed cellulose fiber webs in organic liquids. Cellulose 2:1-22.
  • Marchessault, R.H., Sundararajan, P.R. (1983). Cellulose. In Aspinall G.O. (editor) The Polysaccharides, Volume 2, page 12-95. New York: Academic Press, Inc.
  • Martins, I.M.G., Magina, S.P., Oliveira, L., Freire, C.S.R., Silvestre, A.J.D. (2009). New biocomposites based on thermoplastic starch and bacterial cellulose. Composites Science and Technology 69: 2163-2168.
  • Mazumdar, S. (1999). A standardless method of quantitative ceramic analysis using X-ray powder diffraction. Journal of Applied Crystallography 32:381-386.
  • Mohammadkazemi, F., Azin, M., Ashori, A. (2015). Production of bacterial cellulose using different carbon sources andculture media. Carbohydrate Polymers 117: 518–523.
  • Nada, A.M.A., El-Kady, M.Y., El-Sayed, E.S., Amine, F.M., 2009. Preparation and characterization of microcrystalline cellulose (MCC). BioResources, 4:1359-1371.
  • Neto, C.P., Mikkelsen, A.G., Flanagan, B.M., Dykes, G.A., Gidley, M.J. (2009). Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. J. Appl. Microbiol. 107: 576-583.
  • Nesic, A.R., Trifunovic, S.S., Grujic, A.S., Velickovic, S.J., Antonovic, D.G. (2011). Complexation of amidated pectin with poly(itaconic acid) as a polycarboxylic polymer model compound. Carbohydr Res 346(15): 2463-2468.
  • Ng, C., Sheu, F., Wang, C., Shyu, Y. (2004). Fermentation of Monascus purpureus on agri-by-products to make colorful and functional bacterial cellulose (NATA). Microbiol Indones 4(1): 6-10.
  • Park, J.K., Jung, J.Y., Park, Y.H. (2003a). Cellulose production by Gluconacetobacter hansenii in a medium containing ethanol. Biotechnol Lett. 25:2055–2059.
  • Park, J.K., Park, Y.H., Jung, J.Y. (2003b). Production of bacterial cellulose by Gluconacetobacter hansenii PJK isolated from rotten apple. Biotechnology and Bioprocess Engineering 8(2):83-88.
  • Perez, S., Samain, D. (2010). Structure and engineering of celluloses. Advances in Carbohydrate Chemistry and Biochemistry 64: 25-116.
  • Rani, M.U., Appaiah, K.A. (2013). Production of bacterial cellulose by Gluconacetobacter hansenii UAC09 using coffee cherry husk. J Food Sci Technol 50(4):755-762.
  • Robertson, A.A. (1964). Cellulose-liquid interactions. Pulp Paper Magazine of Canada 65:171-178.
  • Rodriguez, R., Jiménez, R., Fernández-Bolaños, J., Guillén, R., Heredia, A. (2006). Dietary fibre from plant products as source of functional ingredients, Trends in Food Science and Technology 17(1): 3-15.
  • Ross, P., Mayer, R., Benziman, M. (1991). Cellulose biosynthesis and function in bacteria. Microbiological Reviews, 55 (1): 35-58.
  • Röder, T., Moosbauer, J., Fasching, M., Bohn, A., Fink, H.P., Baldinger, T., Sixta, H., 2006. Crystallinity determination of native cellulose comparison of analytical methods. Lenzinger Berichte 86:85-89.
  • Saibuatong, O.A., Phisalaphong, M. (2010). Novo Aloe Vera-Bacterial Cellulose Composite Film From Biosynthesis. Carbohydrate Polymers 79(2): 455-460.
  • Saxena, I.M., Lin, F.C., Brown, R.M. (1990). Cloning and sequencing of the cellulose synthase catalytic subunit gene of Acetobacter xylinum. Plant Mol. Biol., 15: 673-683.
  • Saxena, I.M., Kudlicka, K., Okuda, K., Brown, R.M. (1994). Characterization of genes in the cellulose-synthesizing operon (acs operon) of Acetobacter xylinum: implications for cellulose crystallization. J. Bacteriol. 176:5735-5752.
  • Schramm, M., Hestrin, S. (1954). Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. J Gen Appl Microbiol. 11: 123-129.
  • Schröpfer, S. B., Bottene, M. K., Bianchin, L., Robinson, L. C., Lima, V., Jahno, V. D., Barud, H. S., Ribeiro, S. J. L. (2015). Biodegradation evaluation of bacterial cellulose, plant cellulose and poly (3-hydroxybutyrate) in soil. Polímeros 25(2), 154-160.
  • Schurz, J., Klapp. H., 1976. Untersuchungen a mikrokristallinen und mikrofeinen cellulosen. Das Papier 30:510-513.
  • Segal, L., Creely, J. J., Martin, A. E. J., Conrad, C. M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal 29:786-794.
  • Seifert, M., Hesse, S., Kabrelian, V., Klemm, D. ( 2003). Controlling the water content of never dried and reswollen bacterial cellulose by the addition of water-soluble polymers to the culture medium. J Poly Sci: Part A: Polymer Chemistry 42:463-470.
  • Shi, Z., Zhang, Y., Phillips, G. O., Yang, G. (2014). Utilization of bacterial cellulose in food. Food Hydrocolloids 35: 539-545.
  • Sivam, A.S., Sun-Waterhouse, D., Perera, C.O., Waterhouse, G.I.N. (2012). Exploring the interactions between blackcurrant polyphenols, pectin and wheat biopolymers in model breads; a FTIR and HPLC investigation. Food Chem 131(3):802-810.
  • Soares, S., Camino, G., Levchik, S. (1995). Comparative study of the thermal decomposition of pure cellulose and pulp paper. Polymer Degradation and Stability 49: 275-283.
  • Son, C., Chung, S., Lee, J., Kim, S. (2002). Isolation and cultivation characteristics of Acetobacter xylinum KJ-1 producing bacterial cellulose in shaking cultures. Journal of Microbiology and Biotechnology 12(5):722-728.
  • Son, H.J., Kim, H.G., Kim, K.K., Kim, H.S., Kim, Y.G., Lee, S.J. (2003). Increased production of bacterial cellulose by Acetobacter sp. V6 in synthetic media under shaking culture conditions. Bioresour. Technol. 86: 215-219.
  • Stephens, S.R., Westland, J.A., Neogi, A.N. (1990). Method of using bacterial cellulose as a dietary fiber component. US patent 4960763.
  • Sun, J.X., Xu, F., Sun, X.F., Xiao, B., Sun, R.C. (2005). Physico-chemical and thermal characterization of cellulose from barley straw. Polymer Degradation and Stability 88: 521-531.
  • Sun, J., Jiang, Y., Shi, J., Wei, X., Xue, S.J., Shi, J., Yi, C. (2010). Antioxidant activities and contents of polyphenol oxidase substrates from pericarp tissues of litchi fruit. Food Chem 119:753-757.
  • Tappi (1991). Tappi useful method UM256. Water retention value (WRV), Tappi Useful Methods, Tappi Press, Atlanta, USA.
  • Teeäär, R., Serimaa, R., Paakkari, T., 1987. Crystallinity of cellulose, as determined by cp/mas nmr and xrd methods. Polym. Bull., 17: 231-237.
  • Uzyol, H. K., Saçan, M.T. (2016). Bacterial cellulose production by Komagataeibacter hansenii using algae-based glucose.
  • Vandamme, E.J., De Baets, S., Vanbaelen, A., Joris, K., De Wulf P. (1998). Improved production of bacterial cellulose and its application potential. Polymer Degradation and Stability 59(1-3) 93-99.
  • Vazquez, A., Foresti, M. L., Cerrutti, P., Galvagno, M. (2013). Bacterial Cellulose fromsimple and low cost production media by Gluconacetobacter xylinus. Journal ofPolymers and Environment, 21(2), 545-554.
  • Watanabe, K., Tabuchi, M., Morinaga, Y., Yoshinaga, F. (1998). Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose 5(3):187-200.
  • Yamada, Y. (2000). Transfer of Acetobacter oboediens and Acetobacter intermedius to the genus Gluconacetobacter as Gluconacetobacter oboediens comb. nov. and Gluconacetobacter intermedius comb. nov. International Journal of Systematic and Evolutionary Microbiology 50:2225–2227.
  • Yamanaka, S. ve Sugiyama, J. (2000). Structural modification of bacterial cellulose. Cellulose 7(3):213-225.
  • Yang, C.M., Chen C.Y. (2005). Synthesis, characterization and properties of polyanilines containing transition metal ions. Synth Met, 153:133-136.
  • Yang, G., Xie, J., Hong, F., Cao, Z., Yang, X. (2012). Antimicrobial activity of silver nanoparticle impregnated bacterial cellulose membrane: Effect of fermentation carbon sources of bacterial cellulose. Carbohydrate Polymers 87: 839– 845.
There are 82 citations in total.

Details

Other ID GD17040
Journal Section Articles
Authors

Melih Güzel

Özlem Akpınar

Publication Date October 15, 2017
Published in Issue Year 2017 Volume: 42 Issue: 5

Cite

APA Güzel, M., & Akpınar, Ö. (2017). KOMAGATAEİBACTER HANSENİİ GA2016 İLE BAKTERİYEL SELÜLOZ ÜRETİMİ VE KARAKTERİZASYONU. Gıda, 42(5), 620-633.
AMA Güzel M, Akpınar Ö. KOMAGATAEİBACTER HANSENİİ GA2016 İLE BAKTERİYEL SELÜLOZ ÜRETİMİ VE KARAKTERİZASYONU. The Journal of Food. October 2017;42(5):620-633.
Chicago Güzel, Melih, and Özlem Akpınar. “KOMAGATAEİBACTER HANSENİİ GA2016 İLE BAKTERİYEL SELÜLOZ ÜRETİMİ VE KARAKTERİZASYONU”. Gıda 42, no. 5 (October 2017): 620-33.
EndNote Güzel M, Akpınar Ö (October 1, 2017) KOMAGATAEİBACTER HANSENİİ GA2016 İLE BAKTERİYEL SELÜLOZ ÜRETİMİ VE KARAKTERİZASYONU. Gıda 42 5 620–633.
IEEE M. Güzel and Ö. Akpınar, “KOMAGATAEİBACTER HANSENİİ GA2016 İLE BAKTERİYEL SELÜLOZ ÜRETİMİ VE KARAKTERİZASYONU”, The Journal of Food, vol. 42, no. 5, pp. 620–633, 2017.
ISNAD Güzel, Melih - Akpınar, Özlem. “KOMAGATAEİBACTER HANSENİİ GA2016 İLE BAKTERİYEL SELÜLOZ ÜRETİMİ VE KARAKTERİZASYONU”. Gıda 42/5 (October 2017), 620-633.
JAMA Güzel M, Akpınar Ö. KOMAGATAEİBACTER HANSENİİ GA2016 İLE BAKTERİYEL SELÜLOZ ÜRETİMİ VE KARAKTERİZASYONU. The Journal of Food. 2017;42:620–633.
MLA Güzel, Melih and Özlem Akpınar. “KOMAGATAEİBACTER HANSENİİ GA2016 İLE BAKTERİYEL SELÜLOZ ÜRETİMİ VE KARAKTERİZASYONU”. Gıda, vol. 42, no. 5, 2017, pp. 620-33.
Vancouver Güzel M, Akpınar Ö. KOMAGATAEİBACTER HANSENİİ GA2016 İLE BAKTERİYEL SELÜLOZ ÜRETİMİ VE KARAKTERİZASYONU. The Journal of Food. 2017;42(5):620-33.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/