BibTex RIS Cite

GIDA ENDÜSTRİSİNDE KULLANILAN POLİMERİK YAPIDA ULTRAFİLTRASYON MEMBRANLARININ SERBEST YÜZEY ENERJİSİ ANALİZİNDE FARKLI YAKLAŞIMLARIN KARŞILAŞTIRILMASI

Year 2016, Volume: 41 Issue: 2, 77 - 84, 01.04.2016

Abstract

Bu çalışmanın amacı, polisülfon (PS) yapıda ultrafiltrasyon membranının serbest yüzey enerjisinin (SYE)hesaplanmasında kullanılan farklı yaklaşımların karşılaştırılmasıdır. PS membranın serbest yüzey enerjisi,Zisman Plot (ZP), Equation of State (ES), Fowkes/OWRK (GO), Wu (HO) ve vanOss-Chaudhury-Good(AB) yaklaşımları ile hesaplanmıştır. ZP ve HO yaklaşımları ile hesaplanan SYE sonuçları, diğeryaklaşımların sonuçlarından istatistiksel olarak farklı bulunmuştur (P<0.01). GO yaklaşımında toplamSYE 38.0±2.3 mN/m, AB yaklaşımında ise 36.1±1.8 mN/m hesaplanmıştır. İki yaklaşımın dağılım ve polarbileşen sonuçları arasında da istatistiksel olarak fark gözlenmemiştir (P>0.01). Ancak AB yaklaşımıyüzey enerjisinin elektron alıcı (1.0±0.7 mN/m) ve verici bileşenleri (12.8±1.4 mN/m) ile ilgili dahadetaylı bilgi sağlamıştır. Sonuç olarak ayırım prosesleri süresince besleme çözeltilerinin karakteristiközelliklerinde değişimler meydana geldiği için, polimerik yapıda membran yüzey özelliklerinin üç farklıtest sıvısıyla analiz edilmesinin daha doğru bir yaklaşım olduğu ortaya konulmuştur

References

  • Baldasso C, Barros TC, Tessaro IC. 2011. Concentration and purification of whey proteins by ultrafiltration. Desalination, 278 (1): 381-386.
  • Onsekizoglu P. 2013. Production of high quality clarified pomegranate juice concentrate by membrane processes. J Membr Sci, 442 (1): 264-271.
  • Schmidt A, Schomacker R. 2007. Partial hydrogenation of sunflower oil in a membrane reactor. J Mol Catal A: Chem, 271 (1-2): 192-199. 4. Lawrence ND, Kentish SE, O’Connor AJ, Bar- ber AR, Stevens GW. 2008. Microfiltration of skim milk using polymeric membranes for casein concentrate manufacture. Sep Purif Technol, 60 (3): 237-244.
  • Mirza S. 2008. Reduction of energy consumption in process plants using nanofiltration and reverse osmosis. Desalination, 224 (1-3): 132-142.
  • Mulder M. 1996. Basic Principles of Membrane Technology. 2ndEdition, Kluwer Academic Publishers, Dordrecht, 564 p.
  • Argüello MA, Alvarez S, Riera FA, Alvarez R. 2002. Enzymatic cleaning of inorganic ultrafiltration membranes fouled by whey proteins. J Agr Food Chem, 50 (7): 1951-1958.
  • Madaeni SS, Tavakolian HR, Rahimpour F. 2011. Cleaning optimization of microfiltration membrane employed form milk sterilization. Separ Sci Technol, 46 (4): 571-580.
  • Madaeni SS, Mansourpanah Y. 2004. Chemical cleaning of reverse osmosis membranes fouled by whey. Desalination, 161 (1): 13-24.
  • Xiao K, Wang X, Huang X, Waite TD, Wen X. 2011. Combined effect of membrane and foulant hydrophobicity and surface charge on adsorptive fouling during microfiltration. J Membr Sci, 373 (1-2): 140-151.
  • Rahimpour A. 2011. Preparation and modification of nano-porous polyimide (PI) membranes by UV photo-grafting process: Ultrafiltration and nanofiltration performance. Korean J Chem Eng, 28 (1): 261-266.
  • Juang R-S, Huang C, Hsieh C-L. 2014. Surface modification of PVDF ultrafiltration membranes by remote argon/methane gas mixture plasma for fouling reduction. J Taiwan Inst Chem Eng, 45 (5): 2176-2186.
  • Rahimpour A, Madaeni SS, Amirinejad M, Mansourpanah Y, Zereshki S. 2009. The effect of heat treatment of PES and PVDF ultrafiltration membranes on morphology and performance for milk filtration. J Membr Sci, 330 (1-2): 189-194.
  • Zhang M, Nguyen QT, Pinga Z. 2009. Hydrophilic modification of poly (vinylidenefluoride) microporous membrane. J Membr Sci, 327 (1-2): 78-86.
  • Gulec HA, Sarıoglu K, Mutlu M. 2006. Modification of food contacting surfaces by plasma polymerization technique. Part I. Determination of hydrophilicity, hydrophobicity and surface free energy by contact angle method. J Food Eng, 75 (2): 187-195.
  • Young T. 1805. An Essay on the Cohesion of Fluids. Philos T Roy Soc A, 95: 65-87.
  • Gindl M, Sinn G, Gindl W, Reiterer A, Tschegg S. 2001. A comparison of different methods to calculate the surface free energy of wood using contact angle measurements. Colloid Surface A, 181 (1-3): 279-287.
  • David R, Neumann AW. 2014. Contact Angle Patterns on Low-Energy Surfaces. Adv Colloid Interfac, 206: 46–56.
  • Siboni S, Volpe CD, Maniglio D, Brugnara M. 2004. The solid surface free energy calculation II. The limits of the Zisman and of the "equation-of- state" approaches. J Colloid Interf Sci, 271 (2): 454-472.
  • Morrison ID. 1989. On the Existence of an Equation of State for Interfacial Free Energies. Langmuir, 5 (2): 540-543.
  • Gancarz I, Pozniak G, Bryjak M. 2000. Modification of polysulfone membranes 3. Effect of nitrogen plasma. Eur Polym J, 36 (8): 1563-1569.
  • Erbil HY. 2014. The debate on the dependence of apparent contact angles on drop contact area or three-phase contact line: A review. Surf Sci Rep, 69 (4): 25–36.
  • Zisman WA. 1964. Relation of the Equilibrium Contact Angle to Liquid and Solid Constitution In: Contact Angle, Wettability, and Adhesion, Frederick M. Fowkes (chief ed), Volume 43, ACS Adv. Chem. Ser., Washington, DC, pp. 1-51.
  • Zenkiewicz M. 2007. Methods for the calculation of surface free energy of solids. J Achiev Mater Manuf Eng, 24 (1): 137-145.
  • Neumann AW, Good RJ, Hope CJ, Sejpal M. 1974. An equation of state approach to determine surface tensions of low-energy solids from contact angles. J Colloid Interf Sci, 49 (2): 291-304.
  • Berthelot M. 1898. Sur le mélangede gaz. Compt Rend Acad Sci, 126: 1703-1706.
  • Girifalco LA, Good RJ. 1957. A Theory for the estimation of surface and interfacial energies. I. Derivation and application to interfacial tension. J Phys Chem, 61 (7): 904-909.
  • Li D, Neumann AW. 1990. A reformulation of the equation of state for interfacial tensions. J Colloid Interf Sci, 137 (1): 304.
  • Spelt JK, Li D, Neumann AW. 1992. The Equation of State Approach to Interfacial. In: Tension Modern Approach of Wettability: Theory and Application, Schrader ME and Loeb GI (chief ed), Chapter 5, Plenum Press, New York, pp. 101-141.
  • Kwok D, Neumann AW. 1999. Contact angle measurement and contact angle inter-pretation. Adv Colloid Interfac, 81 (3): 167-249.
  • Fowkes FM. 1964. Attractive forces at interfaces. Ind Eng Chem, 56 (12): 40-52.
  • Fowkes FM. 1987. Role of acid–base interfacial bonding in adhesion. J Adhes Sci Technol, 1 (1): 7-27. 33. Owens DK, Wendt RC. 1969. Estimation of the surface free energy of polymers. J Appl Polym Sci, 13 (8): 1741-1747.
  • Wu W. 1994. Linkage Between ζ-potential and Electron Donicity of Charged Polar Surfaces- the Mechanisms of Flocculation and Repeptization of Particle Suspensions, Ph.D. Dissertation, State University of New York at Buffalo, 460 p.
  • vanOss CJ, Chaudhury MK, Good RJ. 1988. Interfacial Lifshitz–van der Waals and polar interactions in macroscopic systems. Chem Rev, 88 (6): 927-941.
  • Cantin S, Bouteau M, Benhabib F, Perrot F. 2006. Surface free energy evaluation of well- ordered Langmuir Blodgett surfaces Comparison of different approaches. Colloid Surface A, 276 (1-3): 107-115.
  • Rieke PC. 1997. Application of Van Oss- Chaudhury-Good theory of wettability to interpretation of interracial free energies of heterogeneous nucleation. J Cryst Growth, 182 (3-4): 472-484.
  • Hansen FK. 2004. The Measurement of Surface Energy of Polymers by Means of Contact Angles of Liquids on Solid Surfaces, A short overview of frequently used methods. Surf Energ Polym, 1-11p. 39. Metsämuuronen S, Nyström M. 2009. Enrichment of α-lactalbumin from diluted whey with polymeric ultrafiltration membranes. J Membr Sci, 337 (1-2): 248-256.
  • Wavhal DS, Fisher ER. 2005. Modification of polysulfone ultrafiltration membranes by CO2 plasma treatment. Desalination, 172 (2): 189-205. 41. Muppalla R, Jewrajkaa SK, Reddy AVR. 2015. Fouling resistant nanofiltration membranes for the separation of oil-water emulsion and micro pollutants from water. Sep Purif Technol, 143: 125-134.
  • Wu S. 1979. Surface tension of solids: An equation of state analysis. J Colloid Interf Sci, 71 (3): 605-609.
  • Roudman AR, DiGiano F. 2000. Surface energy of experimental and commercial nanofiltration membranes: effects of wetting and natural organic matter fouling. J Membr Sci, 175 (1): 61-73.
  • Zuo G, Wang R. 2013. Novel membrane surface modification to enhance anti-oil fouling property for membrane distillation application. J Membr Sci, 447: 26-35.
  • Zhang J, Wang Q, Wang Z, Zhu C, Wu Z. 2014. Modification of poly(vinylidenefluoride)/ polyethersulfone blend membrane with polyvinylalcohol for improving anti fouling ability. J Membr Sci, 466: 293-301.

SURFACE FREE ENERGY ANALYSIS OF POLYMERIC ULTRAFILTRATION MEMBRANES USED IN FOOD INDUSTRY: A COMPARISON OF DIFFERENT APPROACHES

Year 2016, Volume: 41 Issue: 2, 77 - 84, 01.04.2016

Abstract

The aim of this study was to compare of different approaches used to calculate the surface free energy(SFE) of polysulfone ultrafiltration membrane. SFE of polysulfone membrane was calculated by ZismanPlot (ZP), Equation of State (ES), Fowkes/OWRK (GM), Wu (HM) and van Oss-Chaudhury-Good (AB)approaches. The results of ZP and HM approaches were significantly different than the others (P<0.01).According to GM and AB methods, the total SFE values were 38.0±2.3 and 36.1±1.8 mN/m, respectively.No statistical difference observed between two approaches based on dispersive and polar components(P>0.01). However, AB approach provided more detailed information about electron-acceptor (1.0±0.7mN/m) and electron–donor (12.8±1.4 mN/m) components of the SFE. In conclusion, carrying out theanalysis of surface characteristics of a polymeric membrane with three different test liquids used in ABapproach have shown to be a more accurate way due to variation of characteristics of feed solutionsduring the separation processes

References

  • Baldasso C, Barros TC, Tessaro IC. 2011. Concentration and purification of whey proteins by ultrafiltration. Desalination, 278 (1): 381-386.
  • Onsekizoglu P. 2013. Production of high quality clarified pomegranate juice concentrate by membrane processes. J Membr Sci, 442 (1): 264-271.
  • Schmidt A, Schomacker R. 2007. Partial hydrogenation of sunflower oil in a membrane reactor. J Mol Catal A: Chem, 271 (1-2): 192-199. 4. Lawrence ND, Kentish SE, O’Connor AJ, Bar- ber AR, Stevens GW. 2008. Microfiltration of skim milk using polymeric membranes for casein concentrate manufacture. Sep Purif Technol, 60 (3): 237-244.
  • Mirza S. 2008. Reduction of energy consumption in process plants using nanofiltration and reverse osmosis. Desalination, 224 (1-3): 132-142.
  • Mulder M. 1996. Basic Principles of Membrane Technology. 2ndEdition, Kluwer Academic Publishers, Dordrecht, 564 p.
  • Argüello MA, Alvarez S, Riera FA, Alvarez R. 2002. Enzymatic cleaning of inorganic ultrafiltration membranes fouled by whey proteins. J Agr Food Chem, 50 (7): 1951-1958.
  • Madaeni SS, Tavakolian HR, Rahimpour F. 2011. Cleaning optimization of microfiltration membrane employed form milk sterilization. Separ Sci Technol, 46 (4): 571-580.
  • Madaeni SS, Mansourpanah Y. 2004. Chemical cleaning of reverse osmosis membranes fouled by whey. Desalination, 161 (1): 13-24.
  • Xiao K, Wang X, Huang X, Waite TD, Wen X. 2011. Combined effect of membrane and foulant hydrophobicity and surface charge on adsorptive fouling during microfiltration. J Membr Sci, 373 (1-2): 140-151.
  • Rahimpour A. 2011. Preparation and modification of nano-porous polyimide (PI) membranes by UV photo-grafting process: Ultrafiltration and nanofiltration performance. Korean J Chem Eng, 28 (1): 261-266.
  • Juang R-S, Huang C, Hsieh C-L. 2014. Surface modification of PVDF ultrafiltration membranes by remote argon/methane gas mixture plasma for fouling reduction. J Taiwan Inst Chem Eng, 45 (5): 2176-2186.
  • Rahimpour A, Madaeni SS, Amirinejad M, Mansourpanah Y, Zereshki S. 2009. The effect of heat treatment of PES and PVDF ultrafiltration membranes on morphology and performance for milk filtration. J Membr Sci, 330 (1-2): 189-194.
  • Zhang M, Nguyen QT, Pinga Z. 2009. Hydrophilic modification of poly (vinylidenefluoride) microporous membrane. J Membr Sci, 327 (1-2): 78-86.
  • Gulec HA, Sarıoglu K, Mutlu M. 2006. Modification of food contacting surfaces by plasma polymerization technique. Part I. Determination of hydrophilicity, hydrophobicity and surface free energy by contact angle method. J Food Eng, 75 (2): 187-195.
  • Young T. 1805. An Essay on the Cohesion of Fluids. Philos T Roy Soc A, 95: 65-87.
  • Gindl M, Sinn G, Gindl W, Reiterer A, Tschegg S. 2001. A comparison of different methods to calculate the surface free energy of wood using contact angle measurements. Colloid Surface A, 181 (1-3): 279-287.
  • David R, Neumann AW. 2014. Contact Angle Patterns on Low-Energy Surfaces. Adv Colloid Interfac, 206: 46–56.
  • Siboni S, Volpe CD, Maniglio D, Brugnara M. 2004. The solid surface free energy calculation II. The limits of the Zisman and of the "equation-of- state" approaches. J Colloid Interf Sci, 271 (2): 454-472.
  • Morrison ID. 1989. On the Existence of an Equation of State for Interfacial Free Energies. Langmuir, 5 (2): 540-543.
  • Gancarz I, Pozniak G, Bryjak M. 2000. Modification of polysulfone membranes 3. Effect of nitrogen plasma. Eur Polym J, 36 (8): 1563-1569.
  • Erbil HY. 2014. The debate on the dependence of apparent contact angles on drop contact area or three-phase contact line: A review. Surf Sci Rep, 69 (4): 25–36.
  • Zisman WA. 1964. Relation of the Equilibrium Contact Angle to Liquid and Solid Constitution In: Contact Angle, Wettability, and Adhesion, Frederick M. Fowkes (chief ed), Volume 43, ACS Adv. Chem. Ser., Washington, DC, pp. 1-51.
  • Zenkiewicz M. 2007. Methods for the calculation of surface free energy of solids. J Achiev Mater Manuf Eng, 24 (1): 137-145.
  • Neumann AW, Good RJ, Hope CJ, Sejpal M. 1974. An equation of state approach to determine surface tensions of low-energy solids from contact angles. J Colloid Interf Sci, 49 (2): 291-304.
  • Berthelot M. 1898. Sur le mélangede gaz. Compt Rend Acad Sci, 126: 1703-1706.
  • Girifalco LA, Good RJ. 1957. A Theory for the estimation of surface and interfacial energies. I. Derivation and application to interfacial tension. J Phys Chem, 61 (7): 904-909.
  • Li D, Neumann AW. 1990. A reformulation of the equation of state for interfacial tensions. J Colloid Interf Sci, 137 (1): 304.
  • Spelt JK, Li D, Neumann AW. 1992. The Equation of State Approach to Interfacial. In: Tension Modern Approach of Wettability: Theory and Application, Schrader ME and Loeb GI (chief ed), Chapter 5, Plenum Press, New York, pp. 101-141.
  • Kwok D, Neumann AW. 1999. Contact angle measurement and contact angle inter-pretation. Adv Colloid Interfac, 81 (3): 167-249.
  • Fowkes FM. 1964. Attractive forces at interfaces. Ind Eng Chem, 56 (12): 40-52.
  • Fowkes FM. 1987. Role of acid–base interfacial bonding in adhesion. J Adhes Sci Technol, 1 (1): 7-27. 33. Owens DK, Wendt RC. 1969. Estimation of the surface free energy of polymers. J Appl Polym Sci, 13 (8): 1741-1747.
  • Wu W. 1994. Linkage Between ζ-potential and Electron Donicity of Charged Polar Surfaces- the Mechanisms of Flocculation and Repeptization of Particle Suspensions, Ph.D. Dissertation, State University of New York at Buffalo, 460 p.
  • vanOss CJ, Chaudhury MK, Good RJ. 1988. Interfacial Lifshitz–van der Waals and polar interactions in macroscopic systems. Chem Rev, 88 (6): 927-941.
  • Cantin S, Bouteau M, Benhabib F, Perrot F. 2006. Surface free energy evaluation of well- ordered Langmuir Blodgett surfaces Comparison of different approaches. Colloid Surface A, 276 (1-3): 107-115.
  • Rieke PC. 1997. Application of Van Oss- Chaudhury-Good theory of wettability to interpretation of interracial free energies of heterogeneous nucleation. J Cryst Growth, 182 (3-4): 472-484.
  • Hansen FK. 2004. The Measurement of Surface Energy of Polymers by Means of Contact Angles of Liquids on Solid Surfaces, A short overview of frequently used methods. Surf Energ Polym, 1-11p. 39. Metsämuuronen S, Nyström M. 2009. Enrichment of α-lactalbumin from diluted whey with polymeric ultrafiltration membranes. J Membr Sci, 337 (1-2): 248-256.
  • Wavhal DS, Fisher ER. 2005. Modification of polysulfone ultrafiltration membranes by CO2 plasma treatment. Desalination, 172 (2): 189-205. 41. Muppalla R, Jewrajkaa SK, Reddy AVR. 2015. Fouling resistant nanofiltration membranes for the separation of oil-water emulsion and micro pollutants from water. Sep Purif Technol, 143: 125-134.
  • Wu S. 1979. Surface tension of solids: An equation of state analysis. J Colloid Interf Sci, 71 (3): 605-609.
  • Roudman AR, DiGiano F. 2000. Surface energy of experimental and commercial nanofiltration membranes: effects of wetting and natural organic matter fouling. J Membr Sci, 175 (1): 61-73.
  • Zuo G, Wang R. 2013. Novel membrane surface modification to enhance anti-oil fouling property for membrane distillation application. J Membr Sci, 447: 26-35.
  • Zhang J, Wang Q, Wang Z, Zhu C, Wu Z. 2014. Modification of poly(vinylidenefluoride)/ polyethersulfone blend membrane with polyvinylalcohol for improving anti fouling ability. J Membr Sci, 466: 293-301.
There are 41 citations in total.

Details

Other ID JA34KJ96TU
Journal Section Research Article
Authors

İrem Damar Hüner This is me

Hacı Ali Güleç This is me

Publication Date April 1, 2016
Published in Issue Year 2016 Volume: 41 Issue: 2

Cite

APA Hüner, İ. D., & Güleç, H. A. (2016). GIDA ENDÜSTRİSİNDE KULLANILAN POLİMERİK YAPIDA ULTRAFİLTRASYON MEMBRANLARININ SERBEST YÜZEY ENERJİSİ ANALİZİNDE FARKLI YAKLAŞIMLARIN KARŞILAŞTIRILMASI. Gıda, 41(2), 77-84.
AMA Hüner İD, Güleç HA. GIDA ENDÜSTRİSİNDE KULLANILAN POLİMERİK YAPIDA ULTRAFİLTRASYON MEMBRANLARININ SERBEST YÜZEY ENERJİSİ ANALİZİNDE FARKLI YAKLAŞIMLARIN KARŞILAŞTIRILMASI. The Journal of Food. April 2016;41(2):77-84.
Chicago Hüner, İrem Damar, and Hacı Ali Güleç. “GIDA ENDÜSTRİSİNDE KULLANILAN POLİMERİK YAPIDA ULTRAFİLTRASYON MEMBRANLARININ SERBEST YÜZEY ENERJİSİ ANALİZİNDE FARKLI YAKLAŞIMLARIN KARŞILAŞTIRILMASI”. Gıda 41, no. 2 (April 2016): 77-84.
EndNote Hüner İD, Güleç HA (April 1, 2016) GIDA ENDÜSTRİSİNDE KULLANILAN POLİMERİK YAPIDA ULTRAFİLTRASYON MEMBRANLARININ SERBEST YÜZEY ENERJİSİ ANALİZİNDE FARKLI YAKLAŞIMLARIN KARŞILAŞTIRILMASI. Gıda 41 2 77–84.
IEEE İ. D. Hüner and H. A. Güleç, “GIDA ENDÜSTRİSİNDE KULLANILAN POLİMERİK YAPIDA ULTRAFİLTRASYON MEMBRANLARININ SERBEST YÜZEY ENERJİSİ ANALİZİNDE FARKLI YAKLAŞIMLARIN KARŞILAŞTIRILMASI”, The Journal of Food, vol. 41, no. 2, pp. 77–84, 2016.
ISNAD Hüner, İrem Damar - Güleç, Hacı Ali. “GIDA ENDÜSTRİSİNDE KULLANILAN POLİMERİK YAPIDA ULTRAFİLTRASYON MEMBRANLARININ SERBEST YÜZEY ENERJİSİ ANALİZİNDE FARKLI YAKLAŞIMLARIN KARŞILAŞTIRILMASI”. Gıda 41/2 (April 2016), 77-84.
JAMA Hüner İD, Güleç HA. GIDA ENDÜSTRİSİNDE KULLANILAN POLİMERİK YAPIDA ULTRAFİLTRASYON MEMBRANLARININ SERBEST YÜZEY ENERJİSİ ANALİZİNDE FARKLI YAKLAŞIMLARIN KARŞILAŞTIRILMASI. The Journal of Food. 2016;41:77–84.
MLA Hüner, İrem Damar and Hacı Ali Güleç. “GIDA ENDÜSTRİSİNDE KULLANILAN POLİMERİK YAPIDA ULTRAFİLTRASYON MEMBRANLARININ SERBEST YÜZEY ENERJİSİ ANALİZİNDE FARKLI YAKLAŞIMLARIN KARŞILAŞTIRILMASI”. Gıda, vol. 41, no. 2, 2016, pp. 77-84.
Vancouver Hüner İD, Güleç HA. GIDA ENDÜSTRİSİNDE KULLANILAN POLİMERİK YAPIDA ULTRAFİLTRASYON MEMBRANLARININ SERBEST YÜZEY ENERJİSİ ANALİZİNDE FARKLI YAKLAŞIMLARIN KARŞILAŞTIRILMASI. The Journal of Food. 2016;41(2):77-84.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/