Research Article
BibTex RIS Cite

BURUK, BURUK OLMAYAN ve YABANİ (ANAÇ) HURMALARIN TOPLAM FENOLİK BİLEŞEN, ANTİOKSİDANT KAPASİTE ve IN-VITRO SİMULE EDİLMİŞ BİYOALINABİLİRLİK ÖZELLİKLERİ

Year 2021, Volume: 46 Issue: 3, 669 - 680, 15.05.2021
https://doi.org/10.15237/gida.GD21032

Abstract

Parlak turuncu renge sahip olan hurma, Türkiye’de daha çok “Trabzon Hurması” ve “Cennet Meyvesi” olarak bilinmektedir. Bu çalışmada üç farklı çeşitte (buruk, buruk olmayan ve yabani) Trabzon hurmasının; ekstrakte, ekstrakte olmayan, toplam fenolik bileşen, antioksidan kapasite ve biyoalınabilirlikleri araştırılmıştır. Bu çalışmanın sonuçlarına göre, bütün hurma çeşitlerinde toplam fenolik bileşen, antioksidan kapasite ve biyoalınabilirlik büyük öneme sahiptir. Buruk ve buruk olmayan hurma çeşitleri ile karşılaştırıldığında, yabani hurma çeşidinin daha fazla toplam fenolik bileşen (864.85 mg GAE/100 g) içerdiği tespit edilmiştir. Bu çalışmadan elde edilen bir başka ilgi çekici sonuçta ise her ne kadar tüketim için tercih edilmese de yabani hurma çeşidinin buruk olmayan hurma çeşidinden 6.7 kat, buruk hurma çeşidinden ise 4.7 kat daha yüksek biyoalınabilirliğe sahip olduğu tespit edilmiştir. Özellikle yabani hurma iyi bir doğal antioksidan kaynağıdır ve üzerinde daha fazla çalışma yapılmalıdır.

References

  • Anson, N.M., Selinheimo, E., Havenaar R., Aura, A.M., Mattila, I., Lehtinen, P., Bast, A., Poutanen, K., Haenen, G.R.M.M. (2009). Bioprocessing of wheat bran improves in vitro bioaccessibility and colonic metabolism of phenolic compounds. J. Agric. Food Chem, 57(14): 6148-6155, doi: 10.1021/jf900492h.
  • Apak R., Güçlü, K., Demirata, B., Özyürek, M., Çelik, E.S., Bektaşoğlu, B.K., Berker, I., Özyurt, D. (2007). Comparative evaluation of total antioxidant capacity assays applied to phenolic compounds and the CUPRAC Assay. Molecule, 12: 1496-1547. doi:10.3390/12071496.
  • Arranz, S., Saura Calixto, F., Shaha, S., Kroon, P.A. (2009). High contents of nonextractable polyphenols in fruits suggest that polyphenol contents of plant foods have been underestimated. J Agr Food Chem, 57: 7298–7303. doi: 10.1021/jf9016652.
  • Baytop,T. (1999). Türkçe Bitki Adları Sözlüğü. Atatürk Kültür, Dil ve Tarih Yüksek Kurumu, Türk Dil Kurumu Yayınları, No 578, Ankara, 1999, 156 s.
  • Benzie, I.F.F., Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Anal Biochem 239:70–76. doi: 10.1006/abio19960292.
  • Bibi, N., Khattak, A.B., Mehmood, Z. (2007). Quality improvement and shelf life extension of persimmon fruit Diospyros kaki. J Food Eng. 79:1359–63. doi: 10.1016/j.jfoodeng.2006.04.016.
  • Bölek, S. (2013). Farklı yöntemlerle kurutulmuş trabzon hurmalarının çeşı̇tlı̇ kalı̇te karakterı̇stı̇klerı̇nı̇n kıyaslanması. Celal Bayar Ünı̇versı̇tesı̇ Fen Bı̇lı̇mlerı̇ Enstı̇tüsü Gıda Mühendisliği Anabilim Dalı Yüksek Lı̇sans Tezı̇, Manisa, Türkiye, 120 s.
  • Brand-Williams, W., Cavalier, M.E., Berset, C. (1995). Use of free radical method to evaluate antioxidant capacity. Food Sci Technol, 28(1):25-30. doi:10.1016/S0023-6438(95)80008-5.
  • Butt, M. S., Sultan, M. T., Aziz, M., Naz, A., Ahmed, W., Kumar, N., Imran, M. (2015). Persimmon (Diospyros kaki) fruit: hidden phytochemicals and health claims. EXCLI Journal, 14, 542–561. doi:10.17179/excli2015-159.
  • Gorinstein, S., Zemser, M., Weisz, M., Halevy, S., Deutsch, J., Tilus, K., Feintuch, D., Guerra, N., Fishman, M., Bartnikowska, E. (1994). Fluorometric analyses of phenolics in persimmons. Biosci Biotechnol Biochem, 58:1087-1092. doi: 10.1271/bbb.58.1087.
  • Grygorieva, O., Kucharska, A.Z., Piórecki, N., Klymenko, S., Vergun, O., Brindza, J. (2018). Antioxidant activities and phenolic compounds in fruits of various genotypes of American Persimmon (Diospyros virginiana L.). Acta Sci Pol Technol Aliment, 17(2):117-124. doi: 10.17306/J.AFS.2018.0544.
  • Gunathilake, K.D.P.P., Ranaweera, K.K.D.S., Rupasinghe, H.P.V. (2018). Change of phenolics, carotenoids, and antioxidant capacity following simulated gastrointestinal digestion and dialysis of selected edible green leaves. Food Chem, 245:371-379. doi: 10.1016/j.foodchem.2017.10.096.
  • Günal N. (2002). Türkiye Doğal Bitki Örtüsünde Relik Bir Tür: Diospyros Lotus L. (Küçük meyveli Trabzon hurması). Öneri, 5(55):.237-244.
  • Heras, R.M.-L., Pinazo, A., Heredia, A., Andrés, A. (2017). Evaluation studies of persimmon plant (Diospyros kaki) for physiological benefits and bioaccessibility of antioxidants by in vitro simulated gastrointestinal digestion. Food Chem, 214:478-485.
  • Imeh, U., Khokhar, S. (2002). Distribution of conjugated and free phenols in fruits: antioxidant activity and cultivar variations. J Agr Food Chem, 50(22):6301-6306. Karhan, M., Artık, N., Özdemir, F. (2003). Changes of major phenolic compounds, major carotenoids and L-Ascorbic acid composition determined by HPLC in persimmon (Diospyros kaki L.) during ripening. Gıda, 28(4):349-353.
  • Kayacan, S., Karasu, S., Akman, P.K., Goktas, H., Doymaz, I. (2020). Effect of different drying methods on total bioactive compounds, phenolic profile, in vitro bioaccessibility of phenolic and HMF formation of persimmon. LWT-Food Sci Technol. 118:108830.
  • Kaplankıran, M. (2011). Subtropik Meyveler II (Ders Notları). Mustafa Kemal Üniversitesi Ziraat Fakültesi Bahçe Bitkileri Bölümü, Hatay (Yayımlanmamış).
  • Kim, Y.M., Park, Y.S., Park, Y.K., Ham, K.S., Kang, S.G., Barach, D., Nemirovski, A., Gorinstein, S. (2020). Phytochemical analysis of two main varieties of persimmon and kiwifruit and their antioxidative and quenching capacities. European Food Research and Technology, 246:1259–1268. doi: 10.1007/s00217-020-03486-z.
  • Martínez-Calvo, J., Naval, M., Zuriaga, E., Llácer, G., Badenes, M.L. (2013). Morphological characterization of the IVIA persimmon (Diospyros kaki Thunb.) germplasm collection by multivariate analysis. Genetic Resources and Crop Evolution, 60:233–241. doi: 10.1007/s10722-012-9828-4.
  • Macheix, J., Fluriet, A., Billot, J. (1990). Fruit Phenolics. CRC Press, Boca Raton, Florida, USA, 378 p.
  • Mehmood, T., Siddique, F., Malik, S.A., Tabassam, Q., Khan, A.S., Karim, A., Shaheen, M.A. (2016). Antioxidant attributes, phenolics acids composition and biological activity of extracts from japanese persimmon (Diospyros kaki) as effected by organic solvents and drying technique. Oxid Commun, 39(3): 2260–2279.
  • Messaoudi, Z., Gmili, R.E., Khatib, F., Helmy, Y. (2009). Effect of pollination, fruit thinning and gibberellic acid application on ‘Fuyu’ kaki fruit development. Acta Hort, 833, 233–237. doi:10.17660/ActaHortic.2009.833.37
  • Mowat A. (1990). The world scene-production and marketing. In: Collins RJ, (editor). Charting the future. Proceedings of the first national non-astringent persimmon industry workshop, The University of Queensland, Gatton College, 6-7 February, Brisbane, Australia, 37-51p.
  • Murathan, Z.T. (2020). Phytochemical screening and antioxidant activity of Diospyros Lotus L. fruits grown in Turkey. Acta Sci Pol Hortorum Cultus, 19(2):49-55. doi: 10.24326/asphc.2020.2.5.
  • Oksuz, T., Surek, E., Tacer-Caba, Z., Nilufer-Erdil, D. (2015). Phenolic contents and antioxidant activities of persimmon and red beet jams produced by sucrose im- pregnation. Food Sci Technol, 3(1):1–8. doi:10.13189/fst.2015.030101.
  • Pérez-Jiménez, J., Torres, J.L. (2011). Analysis of nonextractable phenolic compounds in foods: the current state of the art. J Agr Food Chem, 59: 12713–12724. doi: 10.1021/jf203372w.
  • Pu, F., Ren, X.-L., Zhang, X.-P. (2013). Phenolic compounds and antioxidant activity in fruits of six Diospyros kaki genotypes. Eur. Food Res. Technol. 237:923–932. doi:10.1007/s00217-013-2065-z. Senica, M., Veberic, R., Grabnar, J. J., Stampar, F., Jakopic, J. (2016). Selected chemical compounds in firm and mellow persimmon fruit before and after the drying process. J Sci Food Agric, 96(9):3140–3147. doi:10.1002/jsfa.7492.
  • Sahan, Y., Gurbuz, O., Guldas, M., Degirmencioglu, N., Bgenirbas, A. (2017). Phenolics, antioxidant capacity and bioaccessibility of chicory varieties (Cichorium spp.) grown in Turkey. Food Chem, 217:483-489. doi:10.1016/j.foodchem.2016.08.108.
  • Sun, J., Chu, Y., Wu, X., Liu, R.H. (2002). Antioxidant and antiproliferative activities of common fruits. J Agr Food Chem, 50:7449–7454. doi: 10.1021/jf0207530
  • Yeşiloğlu, T., Aka Kacar, Y., Yılmaz, B., İncesu, M., Çimen, B. (2017). Bazı yerli ve yabancı Trabzon Hurması (Diospyros kaki L.) çeşit ve tiplerinin morfolojik ve moleküler karakterizasyonu. Türk Tarım-Gıda Bilim ve Teknoloji Dergisi, 5(12):1580-1589.
  • Yönel, S., Uylaşer, V., Yonak, S. (2008). Trabzon hurmasının bileşimi ve besleyici değeri. Türkiye 10. Gıda Kongresi; 2008 Mayıs 21-23; Erzurum. s 339-342.
  • Tuzcu, Ö., Yıldırım, B. (2000). Trabzon Hurması (Diospyros kaki L.) ve Yetiştiriciliği. TÜBİTAK Yayınları, TÜBİTAK Matbaası, Ankara. 24 s.
  • Xu, J.G., Tian, C.R., Hu, Q.P., Luo, J.Y., Wang, X.D., Tian, X.D. (2009). Dynamic changes in phenolic compounds and antioxidant activity in oats (Avena nuda L.) during steeping and germination, J Agric Food Chem, 57:10392-10398. doi:10.1021/jf902778j.
  • Vitali, D., Vedrina Dragojević, I., Šebečic, B. (2009). Effects of incorporation of integral raw materials and dietary fibre on the selected nutritional and functional properties of biscuits. Food Chem, 114:1462-1469. doi: 10.1016/j.foodchem.2008.11.032.
  • Zheng, Q.L., Nakatsuka, A., Itamura, H. (2006). Involvement of negative feedback regulation in wound induced ethylene synthesis in ‘Saijo’ persimmon. J Agric Food Chem, 54:5875-9. doi: 10.1021/jf060048h.

ATTRIBUTES of TOTAL PHENOLIC CONTENT, ANTIOXIDANT CAPACITY and IN-VITRO SIMULATED BIOACCESSIBILITY of ASTRINGENT, NON-ASTRINGENT and WILD (ROOTSTOCK) PERSIMMONS

Year 2021, Volume: 46 Issue: 3, 669 - 680, 15.05.2021
https://doi.org/10.15237/gida.GD21032

Abstract

Persimmon which is widely known as “Trabzon Hurması” and “Cennet Meyvesi” is a very popular fruit with bright orange color. In the presented study, extractable, non-extractable, total phenolic content (TPC), antioxidant capacity (AC) and bioaccessibility of Trabzon persimmons (astringent, non-astringent and wild persimmon) were determined. The results of this study indicated that all types of persimmons have great importance both on TPC, AC and bioaccessibility. Compared to astringent and non-astringent types, the wild persimmon type had the highest TPC. Another attractive result from this study, although the wild persimmons do not prefer for consumption, the results demonstrated that the bioaccessible phenolics of this type of persimmons were found to be 6.7 fold higher than the non-astringent types and 4.7 fold higher than the astringent types. Especially the wild type of persimmon is a good source of natural antioxidant and further studies should be carried out for wild type persimmon.

References

  • Anson, N.M., Selinheimo, E., Havenaar R., Aura, A.M., Mattila, I., Lehtinen, P., Bast, A., Poutanen, K., Haenen, G.R.M.M. (2009). Bioprocessing of wheat bran improves in vitro bioaccessibility and colonic metabolism of phenolic compounds. J. Agric. Food Chem, 57(14): 6148-6155, doi: 10.1021/jf900492h.
  • Apak R., Güçlü, K., Demirata, B., Özyürek, M., Çelik, E.S., Bektaşoğlu, B.K., Berker, I., Özyurt, D. (2007). Comparative evaluation of total antioxidant capacity assays applied to phenolic compounds and the CUPRAC Assay. Molecule, 12: 1496-1547. doi:10.3390/12071496.
  • Arranz, S., Saura Calixto, F., Shaha, S., Kroon, P.A. (2009). High contents of nonextractable polyphenols in fruits suggest that polyphenol contents of plant foods have been underestimated. J Agr Food Chem, 57: 7298–7303. doi: 10.1021/jf9016652.
  • Baytop,T. (1999). Türkçe Bitki Adları Sözlüğü. Atatürk Kültür, Dil ve Tarih Yüksek Kurumu, Türk Dil Kurumu Yayınları, No 578, Ankara, 1999, 156 s.
  • Benzie, I.F.F., Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Anal Biochem 239:70–76. doi: 10.1006/abio19960292.
  • Bibi, N., Khattak, A.B., Mehmood, Z. (2007). Quality improvement and shelf life extension of persimmon fruit Diospyros kaki. J Food Eng. 79:1359–63. doi: 10.1016/j.jfoodeng.2006.04.016.
  • Bölek, S. (2013). Farklı yöntemlerle kurutulmuş trabzon hurmalarının çeşı̇tlı̇ kalı̇te karakterı̇stı̇klerı̇nı̇n kıyaslanması. Celal Bayar Ünı̇versı̇tesı̇ Fen Bı̇lı̇mlerı̇ Enstı̇tüsü Gıda Mühendisliği Anabilim Dalı Yüksek Lı̇sans Tezı̇, Manisa, Türkiye, 120 s.
  • Brand-Williams, W., Cavalier, M.E., Berset, C. (1995). Use of free radical method to evaluate antioxidant capacity. Food Sci Technol, 28(1):25-30. doi:10.1016/S0023-6438(95)80008-5.
  • Butt, M. S., Sultan, M. T., Aziz, M., Naz, A., Ahmed, W., Kumar, N., Imran, M. (2015). Persimmon (Diospyros kaki) fruit: hidden phytochemicals and health claims. EXCLI Journal, 14, 542–561. doi:10.17179/excli2015-159.
  • Gorinstein, S., Zemser, M., Weisz, M., Halevy, S., Deutsch, J., Tilus, K., Feintuch, D., Guerra, N., Fishman, M., Bartnikowska, E. (1994). Fluorometric analyses of phenolics in persimmons. Biosci Biotechnol Biochem, 58:1087-1092. doi: 10.1271/bbb.58.1087.
  • Grygorieva, O., Kucharska, A.Z., Piórecki, N., Klymenko, S., Vergun, O., Brindza, J. (2018). Antioxidant activities and phenolic compounds in fruits of various genotypes of American Persimmon (Diospyros virginiana L.). Acta Sci Pol Technol Aliment, 17(2):117-124. doi: 10.17306/J.AFS.2018.0544.
  • Gunathilake, K.D.P.P., Ranaweera, K.K.D.S., Rupasinghe, H.P.V. (2018). Change of phenolics, carotenoids, and antioxidant capacity following simulated gastrointestinal digestion and dialysis of selected edible green leaves. Food Chem, 245:371-379. doi: 10.1016/j.foodchem.2017.10.096.
  • Günal N. (2002). Türkiye Doğal Bitki Örtüsünde Relik Bir Tür: Diospyros Lotus L. (Küçük meyveli Trabzon hurması). Öneri, 5(55):.237-244.
  • Heras, R.M.-L., Pinazo, A., Heredia, A., Andrés, A. (2017). Evaluation studies of persimmon plant (Diospyros kaki) for physiological benefits and bioaccessibility of antioxidants by in vitro simulated gastrointestinal digestion. Food Chem, 214:478-485.
  • Imeh, U., Khokhar, S. (2002). Distribution of conjugated and free phenols in fruits: antioxidant activity and cultivar variations. J Agr Food Chem, 50(22):6301-6306. Karhan, M., Artık, N., Özdemir, F. (2003). Changes of major phenolic compounds, major carotenoids and L-Ascorbic acid composition determined by HPLC in persimmon (Diospyros kaki L.) during ripening. Gıda, 28(4):349-353.
  • Kayacan, S., Karasu, S., Akman, P.K., Goktas, H., Doymaz, I. (2020). Effect of different drying methods on total bioactive compounds, phenolic profile, in vitro bioaccessibility of phenolic and HMF formation of persimmon. LWT-Food Sci Technol. 118:108830.
  • Kaplankıran, M. (2011). Subtropik Meyveler II (Ders Notları). Mustafa Kemal Üniversitesi Ziraat Fakültesi Bahçe Bitkileri Bölümü, Hatay (Yayımlanmamış).
  • Kim, Y.M., Park, Y.S., Park, Y.K., Ham, K.S., Kang, S.G., Barach, D., Nemirovski, A., Gorinstein, S. (2020). Phytochemical analysis of two main varieties of persimmon and kiwifruit and their antioxidative and quenching capacities. European Food Research and Technology, 246:1259–1268. doi: 10.1007/s00217-020-03486-z.
  • Martínez-Calvo, J., Naval, M., Zuriaga, E., Llácer, G., Badenes, M.L. (2013). Morphological characterization of the IVIA persimmon (Diospyros kaki Thunb.) germplasm collection by multivariate analysis. Genetic Resources and Crop Evolution, 60:233–241. doi: 10.1007/s10722-012-9828-4.
  • Macheix, J., Fluriet, A., Billot, J. (1990). Fruit Phenolics. CRC Press, Boca Raton, Florida, USA, 378 p.
  • Mehmood, T., Siddique, F., Malik, S.A., Tabassam, Q., Khan, A.S., Karim, A., Shaheen, M.A. (2016). Antioxidant attributes, phenolics acids composition and biological activity of extracts from japanese persimmon (Diospyros kaki) as effected by organic solvents and drying technique. Oxid Commun, 39(3): 2260–2279.
  • Messaoudi, Z., Gmili, R.E., Khatib, F., Helmy, Y. (2009). Effect of pollination, fruit thinning and gibberellic acid application on ‘Fuyu’ kaki fruit development. Acta Hort, 833, 233–237. doi:10.17660/ActaHortic.2009.833.37
  • Mowat A. (1990). The world scene-production and marketing. In: Collins RJ, (editor). Charting the future. Proceedings of the first national non-astringent persimmon industry workshop, The University of Queensland, Gatton College, 6-7 February, Brisbane, Australia, 37-51p.
  • Murathan, Z.T. (2020). Phytochemical screening and antioxidant activity of Diospyros Lotus L. fruits grown in Turkey. Acta Sci Pol Hortorum Cultus, 19(2):49-55. doi: 10.24326/asphc.2020.2.5.
  • Oksuz, T., Surek, E., Tacer-Caba, Z., Nilufer-Erdil, D. (2015). Phenolic contents and antioxidant activities of persimmon and red beet jams produced by sucrose im- pregnation. Food Sci Technol, 3(1):1–8. doi:10.13189/fst.2015.030101.
  • Pérez-Jiménez, J., Torres, J.L. (2011). Analysis of nonextractable phenolic compounds in foods: the current state of the art. J Agr Food Chem, 59: 12713–12724. doi: 10.1021/jf203372w.
  • Pu, F., Ren, X.-L., Zhang, X.-P. (2013). Phenolic compounds and antioxidant activity in fruits of six Diospyros kaki genotypes. Eur. Food Res. Technol. 237:923–932. doi:10.1007/s00217-013-2065-z. Senica, M., Veberic, R., Grabnar, J. J., Stampar, F., Jakopic, J. (2016). Selected chemical compounds in firm and mellow persimmon fruit before and after the drying process. J Sci Food Agric, 96(9):3140–3147. doi:10.1002/jsfa.7492.
  • Sahan, Y., Gurbuz, O., Guldas, M., Degirmencioglu, N., Bgenirbas, A. (2017). Phenolics, antioxidant capacity and bioaccessibility of chicory varieties (Cichorium spp.) grown in Turkey. Food Chem, 217:483-489. doi:10.1016/j.foodchem.2016.08.108.
  • Sun, J., Chu, Y., Wu, X., Liu, R.H. (2002). Antioxidant and antiproliferative activities of common fruits. J Agr Food Chem, 50:7449–7454. doi: 10.1021/jf0207530
  • Yeşiloğlu, T., Aka Kacar, Y., Yılmaz, B., İncesu, M., Çimen, B. (2017). Bazı yerli ve yabancı Trabzon Hurması (Diospyros kaki L.) çeşit ve tiplerinin morfolojik ve moleküler karakterizasyonu. Türk Tarım-Gıda Bilim ve Teknoloji Dergisi, 5(12):1580-1589.
  • Yönel, S., Uylaşer, V., Yonak, S. (2008). Trabzon hurmasının bileşimi ve besleyici değeri. Türkiye 10. Gıda Kongresi; 2008 Mayıs 21-23; Erzurum. s 339-342.
  • Tuzcu, Ö., Yıldırım, B. (2000). Trabzon Hurması (Diospyros kaki L.) ve Yetiştiriciliği. TÜBİTAK Yayınları, TÜBİTAK Matbaası, Ankara. 24 s.
  • Xu, J.G., Tian, C.R., Hu, Q.P., Luo, J.Y., Wang, X.D., Tian, X.D. (2009). Dynamic changes in phenolic compounds and antioxidant activity in oats (Avena nuda L.) during steeping and germination, J Agric Food Chem, 57:10392-10398. doi:10.1021/jf902778j.
  • Vitali, D., Vedrina Dragojević, I., Šebečic, B. (2009). Effects of incorporation of integral raw materials and dietary fibre on the selected nutritional and functional properties of biscuits. Food Chem, 114:1462-1469. doi: 10.1016/j.foodchem.2008.11.032.
  • Zheng, Q.L., Nakatsuka, A., Itamura, H. (2006). Involvement of negative feedback regulation in wound induced ethylene synthesis in ‘Saijo’ persimmon. J Agric Food Chem, 54:5875-9. doi: 10.1021/jf060048h.
There are 35 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Articles
Authors

Emine Aydın 0000-0001-9635-4791

Publication Date May 15, 2021
Published in Issue Year 2021 Volume: 46 Issue: 3

Cite

APA Aydın, E. (2021). ATTRIBUTES of TOTAL PHENOLIC CONTENT, ANTIOXIDANT CAPACITY and IN-VITRO SIMULATED BIOACCESSIBILITY of ASTRINGENT, NON-ASTRINGENT and WILD (ROOTSTOCK) PERSIMMONS. Gıda, 46(3), 669-680. https://doi.org/10.15237/gida.GD21032
AMA Aydın E. ATTRIBUTES of TOTAL PHENOLIC CONTENT, ANTIOXIDANT CAPACITY and IN-VITRO SIMULATED BIOACCESSIBILITY of ASTRINGENT, NON-ASTRINGENT and WILD (ROOTSTOCK) PERSIMMONS. The Journal of Food. May 2021;46(3):669-680. doi:10.15237/gida.GD21032
Chicago Aydın, Emine. “ATTRIBUTES of TOTAL PHENOLIC CONTENT, ANTIOXIDANT CAPACITY and IN-VITRO SIMULATED BIOACCESSIBILITY of ASTRINGENT, NON-ASTRINGENT and WILD (ROOTSTOCK) PERSIMMONS”. Gıda 46, no. 3 (May 2021): 669-80. https://doi.org/10.15237/gida.GD21032.
EndNote Aydın E (May 1, 2021) ATTRIBUTES of TOTAL PHENOLIC CONTENT, ANTIOXIDANT CAPACITY and IN-VITRO SIMULATED BIOACCESSIBILITY of ASTRINGENT, NON-ASTRINGENT and WILD (ROOTSTOCK) PERSIMMONS. Gıda 46 3 669–680.
IEEE E. Aydın, “ATTRIBUTES of TOTAL PHENOLIC CONTENT, ANTIOXIDANT CAPACITY and IN-VITRO SIMULATED BIOACCESSIBILITY of ASTRINGENT, NON-ASTRINGENT and WILD (ROOTSTOCK) PERSIMMONS”, The Journal of Food, vol. 46, no. 3, pp. 669–680, 2021, doi: 10.15237/gida.GD21032.
ISNAD Aydın, Emine. “ATTRIBUTES of TOTAL PHENOLIC CONTENT, ANTIOXIDANT CAPACITY and IN-VITRO SIMULATED BIOACCESSIBILITY of ASTRINGENT, NON-ASTRINGENT and WILD (ROOTSTOCK) PERSIMMONS”. Gıda 46/3 (May 2021), 669-680. https://doi.org/10.15237/gida.GD21032.
JAMA Aydın E. ATTRIBUTES of TOTAL PHENOLIC CONTENT, ANTIOXIDANT CAPACITY and IN-VITRO SIMULATED BIOACCESSIBILITY of ASTRINGENT, NON-ASTRINGENT and WILD (ROOTSTOCK) PERSIMMONS. The Journal of Food. 2021;46:669–680.
MLA Aydın, Emine. “ATTRIBUTES of TOTAL PHENOLIC CONTENT, ANTIOXIDANT CAPACITY and IN-VITRO SIMULATED BIOACCESSIBILITY of ASTRINGENT, NON-ASTRINGENT and WILD (ROOTSTOCK) PERSIMMONS”. Gıda, vol. 46, no. 3, 2021, pp. 669-80, doi:10.15237/gida.GD21032.
Vancouver Aydın E. ATTRIBUTES of TOTAL PHENOLIC CONTENT, ANTIOXIDANT CAPACITY and IN-VITRO SIMULATED BIOACCESSIBILITY of ASTRINGENT, NON-ASTRINGENT and WILD (ROOTSTOCK) PERSIMMONS. The Journal of Food. 2021;46(3):669-80.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/