Review
BibTex RIS Cite

ETTE TAZELİĞİN BELİRLENMESİ: YENİ YAKLAŞIMLAR

Year 2021, Volume: 46 Issue: 4, 1053 - 1067, 17.05.2021
https://doi.org/10.15237/gida.GD21078

Abstract

Sağlıklı beslenme anlayışı ile taze ve kaliteli gıdaya ulaşma talebi son zamanlarda giderek artmaktadır. Gıdaların tazeliğini ve kalitesini yitirmeye başlamış olması, tüketici güvenini ve memnuniyetini sarsmakla kalmamakta, ürünün risk durumuna göre tüketicinin sağlığını da tehlikeye atmaktadır. Beslenmede akla ilk gelen temel gıda maddelerinden olan et gibi besleyici ve ekonomik değeri yüksek bir gıdanın tazeliğinin belirlenmesinde zamanla yarış söz konusudur. Ne var ki, bu amaca yönelik klasik yöntemler fazla malzeme, işgücü ve zaman harcanan zorlu bir analiz sürecini beraberinde getirmekte, bu nedenle sözü geçen dezavantajların giderildiği alternatif yöntemlere ihtiyaç duyulmaktadır. Hatta tazelikteki değişimin izlenmesinde tüketicinin de dahil edildiği gerçek zamanlı tespitler mümkün hale getirilmeye çalışılmaktadır. Bu derlemede, çeşitli et ve et ürünlerinin tazeliğini belirlemeye yönelik özellikle renk indikatörleri, sensörler ve biyosensörler gibi yeni yaklaşımlar ele alınmıştır.

References

  • Aghaei, Z., Ghorani, B., Emadzadeh, B., Kadkhodaee, R., Tucker, N. (2020). Protein-based halochromic electrospun nanosensor for monitoring trout fish freshness. Food Control Vol. 111, 107065.
  • Ahmed, I., Lin, H., Zou, L., Li, Z., Brody, A. L., Qazi, I., M., Lv, L., Pavase, T. R., Khan, M. U., Khan, S., Sun, L. (2018). An overview of smart packaging technologies for monitoring safety and quality of meat and meat products. Packag Tech Sci. 31:449–471. DOI: 10.1002/pts.2380.
  • Albeda, J. A. V., Uzunoğlu, A., Santos, G. N. C., Stanciu, L. A. (2017). Graphene-titanium dioxide nanocomposite based hypoxanthine sensor for assessment of meat freshness. Biosens Bioelectron. 89, p: 518–524.
  • Alizadeh-Sani, M., Tavassoli, M., Mohammadian, E., Ehsani, A., Khaniki, G. J., Priyadarshi, R., Rhim, J-W. (2020). pH-responsive color indicator films based on methylcellulose/chitosan nanofiber and barberry anthocyanins for real-time monitoring of meat freshness. Int J Biol Macromol S0141-8130(20)34871-6. https://doi.org/10.1016/j.ijbiomac.2020.10.231.
  • Chen, Z., Lin, Y., Ma, X., Guo, L., Qiu, B., Chen, G., Lin, Z. (2017). Multicolor biosensor for fish freshness assessment with the naked eye. Sensor Actuat B-Chem Vol. 252: p: 201-208.
  • Chen, S., Wu, M., Lu, P., Gao, L., Yan, S., Wang, S. (2020a). Development of pH indicator and antimicrobial cellulose nanofibre packaging film based on purple sweet potato anthocyanin and oregano essential oil. Int J Biol Macromol. Vol. 149, p: 271-280.
  • Chen, M., Yan, T., Huang, J., Zhou, Y., Hu, Y. (2021). Fabrication of halochromic smart films by immobilizing red cabbage anthocyanins into chitosan/oxidized-chitin nanocrystals composites for real-time hairtail and shrimp freshness monitoring. Int J Biol Macromol Vol. 179, p: 90-100.
  • Chen, J., Yu, L., Yan, F., Wu, Y., Huang, D., Weng, Z. (2019). A fluorescent biosensor based on catalytic activity of platinum nanoparticles for freshness evaluation of aquatic products. Food Chem 310: 125922.
  • Chen, H., Zhang, M., Bhandari, B., Yang, C. (2020b). Novel pH-sensitive films containing curcumin and anthocyanins to monitor fish freshness. Food Hydrocoll 100: 105438.
  • Deligöz, E., Bilge, N. (2017). Sütle Gelen Tehdit: Aflatoksin M1. Turjaf 5 (8): 846-857.
  • Devi, R., Batra, B., Suman, L., Yadav, S. (2013). A method for determination of xanthine in meat by amperometric biosensor based on silver nanoparticles/cysteine modified Au electrode. Process Biochem. 48 (2): 242-249.
  • Dobrucka, R., Cierpiszewski, R. (2014). Active and Intelligent Packaging Food Research and Development- A Review. Pol J Food Nutr Sci 64 (1) p: 7–15.
  • Dudnyk, I., Janecek, E. R., Joset, J. V., Stellacci, F. (2018). Edible sensors for meat and seafood freshness. Sensor Actuat B-Chem 259: 1108–1112.
  • Etxabide, A., Kilmartin, P. A., Mate, J. I. (2021). Color stability and pH-indicator ability of curcumin, anthocyanin and betanin containing colorants under different storage conditions for intelligent packaging development. Food Control 121: 107645.
  • Ezati, P., Bang, Y., Rhim, J-W. (2021). Preparation of a shikonin-based pH-sensitive color indicator for monitoring the freshness of fish and pork. Food Chem 337: 127995.
  • Ezati, P., Rhim, J-W. (2020). pH-responsive pectin-based multifunctional films incorporated with curcumin and sulfur nanoparticles. Carbohyd Polym 230: 115638.
  • Ezati, P., Rhim, J-W., Moradi, M., Tajik, H., Molaei, R. (2020). CMC and CNF-based alizarin incorporated reversible pH-responsive color T indicator films. Carbohyd Polym 246: 116614.
  • Ezati, P., Tajik, H., Moradi, M. (2019). Fabrication and characterization of alizarin colorimetric indicator based on cellulose-chitosan to monitor the freshness of minced beef. Sensor Actuat B-Chem 285: 519–528.
  • Fazial, F. F., Tan, L. L., Zubairi, S. I. (2018). Bienzymatic creatine biosensor based on reflectance measurement for real-time monitoring of fish freshness. Sensor Actuat B-Chem 269: 36–45.
  • Fisher, F. (1995). Commission decision of 8 March 1995, fixing the total volatile basic nitrogen (TVB-N) limit values for certain categories of fishery products and specifying the analysis methods to be used. Official Journal of the European Communities. Retrieved from http://data.europa.eu/eli/dec/1995/149/oj.
  • Fu, L., Wang, A., Zhang, H., Zhou, Q., Chen, F., Su, W., Yu, A., Ji, Z., Liu, Q. (2019). Analysis of chicken breast meat freshness with an electrochemical approach. J. Electroanal. Chem 855, 113622.
  • Ge, Y., Li, Y., Bai, Y., Yuan, C., Wu, C., Hu, Y. (2020). Intelligent gelatin/oxidized chitin nanocrystals nanocomposite films containing black rice bran anthocyanins for fish freshness monitorings. Int J Biol Macromol Vol. 155, p: 1296-1306.
  • Halonen, N., Pálvölgyi, P. S., Bassani, A., Fiorentini, C., Nair, R., Spigno, G., Kordas, K. (2020). Bio-Based Smart Materials for Food Packaging and Sensors – A Review. Bio-Based Smart Material Vol 7, article 82 doi: 10.3389/fmats.2020.00082.
  • Huang X.W., Zou X.B., Shi J.Y. (2014). Determination of pork spoilage by colorimetric gas sensor array based on natural pigments. Food Chem.145: 549‐554.
  • Ian, M., Fiona, J., Christopher B., C. (2020). An edible genipin-based sensor for biogenic amine detection. J Chem Tech Biotechnol. https://doi.org/jctb.6556
  • Jia, S., Li, Y., Zhuang, S., Sun, X., Zhang, L., Shi, J., Hong, H., Luo, Y. (2019). Biochemical changes induced by dominant bacteria in chill-stored silver carp (Hypophthalmichthys molitrix) and GC-IMS identification of volatile organic compounds. Food Microbiol. Dec; 84:103248. doi: 10.1016/j.fm.2019.103248.
  • Jiang, G., Hou, X., Zeng, X., Zhang, C., Wu, H., Shen, G., Li, S., Luo, Q., Li, M., Liu, X., Chen, A., Wang, Z., Zhang, Z. (2020). Preparation and characterization of indicator films from carboxymethyl-cellulose/starch and purple sweet potato (Ipomoea batatas (L.) lam) anthocyanins for monitoring fish freshness. Int J Biol Macromol 143, 359–372.
  • Karim, N, U., Kennedy, J. T., Linton, M., Patterson, M.,Watson, S., Gault, N. (2019). Determination of nucleotide and enzyme degradation in haddock (Melanogrammus aeglefinus) and herring (Clupea harengus) after high pressure processing. PeerJ 7: e7527 (doi: 10.7717/peerj.7527).
  • Kang, S., Wang, H., Xia, L., Chen, M., Li, L., Cheng, J., Li, X., Jiang, S. (2020). Colorimetric film based on polyvinyl alcohol/okra mucilage polysaccharide incorporated with rose anthocyanins for shrimp freshness monitoring. Carbohyd Polym Vol. 229, 115402.
  • Kant, R., Tabassum, R., Gupta, B. D. (2018). Xanthine oxidase functionalized Ta2O5 nanostructures as a novel scaffold for highly sensitive SPR based lif optic xanthine sensor. Biosens Bioelectron 99, 637–645.
  • Kıvrak, E. (2019). Klı̇nı̇k Analı̇zlere Yönelı̇k Aptamer Tabanlı Elektrokı̇myasal Bı̇yosensör Tasarımı, Ege Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi, İzmir, Türkiye.
  • Kocaman, N., Sarımehmetoğlu, B. (2010). Gıdalarda Akıllı Ambalaj Kullanımı. Vet Hekim Der Derg 81(2): 67-72.
  • Kuntzler, S. G., Costa, J. A. V., Brizio, A. P. D. R., de Morais, M. G. (2020). Development of a colorimetric pH indicator using nanofibers containing T Spirulina sp. LEB 18. Food Chem 328: 126768.
  • Kuswandi, B., Nurfawaidi, A. (2017). On-package dual sensors label based on pH indicators for real-time monitoring of beef freshness. Food Control 82, 91-100.
  • Kürek, M., Hlupic, L., Scetar, M., Bosiljkov, T., Galic, K. (2019). Comparison of two pH-responsive color-changing bio-based films containing wasted fruit pomace as a source of colorants. J Food Sci 84 (9):2490–8. doi: 10.1111/1750-3841.14716.
  • Lafarga, T., Fernandez-Sevilla, J. M., Gonzalez-Lopez, C., Acien-Fernandez, F. G. (2020). Spirulina for the food and functional food industries. Food Res Int 137: 109356.
  • Latos-Brozio, M., Masek, A. (2020). The application of natural food colorants as indicator substances in T intelligent biodegradable packaging materials. Food Chem Toxicol 135: 110975.
  • Lazaro, C.A., Junior, C.A.C., Canto, A.C.V.C.S., Monteiro, M., L., G. (2015). Biogenic amines as bacterial quality indicators in different poultry meat species. LWT- Food Science and Technology (60):15-21.
  • Lee, K., Baek, S., Kim, D., Seo, J. (2019). A freshness indicator for monitoring chicken-breast spoilage using a Tyvek® T sheet and RGB color analysis. Food Packaging and Shelf Life 19, 40–46.
  • Li, Y., Wu, K., Wang, B., Li, X. (2021). Colorimetric indicator based on purple tomato anthocyanins and chitosan for application in intelligent packaging. Int J Biol Macromol. Vol 174, p: 370-376.
  • Liu, D., Cui, Z., Shang, M., Zhong, Y. (2021). A colorimetric film based on polyvinyl alcohol/sodium carboxymethyl cellulose incorporated with red cabbage anthocyanin for monitoring pork freshness. Food Packaging and Shelf Life Vol. 28, 100641.
  • Luo, X., Lim, L-T. (2020). Curcumin-loaded electrospun nonwoven as a colorimetric indicator for volatile amines. LWT - Food Science and Technology 128: 109493.
  • Metin, S., Erkan, N., Varlık, C. (2002). The Application of Hypoxanthine Activity as a Quality Indicator of Cold Stored Fish Burgers. Turk J Vet Anim Sci (26): 363-367.
  • Miklicanin, E. O., Valzacchi, S. (2017). Development of new chemiluminescence biosensors for determination of biogenic amines in meat. Food Chem 235: 98–103.
  • Mohammadalinejhad, S., Almasi, H., Moradi, M. (2020). Immobilization of Echium amoenum anthocyanins into bacterial cellulose film: A novel colorimetric pH indicator for freshness/spoilage monitoring of shrimp. Food Control https://doi.org/10.1016/j.foodcont.2020.107169.
  • Moradi, M., Tajik, H., Almasi, H., Forough, M., Ezati, P. (2019). A novel pH-sensing indicator based on bacterial cellulose nanofibers and black carrot anthocyanins for monitoring fish freshness. Carbohyd Polym Vol. 222, 115030.
  • Moreira, J. B., Terra, A. L. M., Costa, J. A. V., de Morais, M. G. (2018). Development of pH indicator from PLA/PEO ultrafine fibers containing pigment of microalgae origin. Int J Biol Macromol Vol. 118, Part B, p: 1855-1862.
  • Mustafa, F., Othman, A., Andeescu, S. (2021). Cerium oxide-based hypoxanthine biosensor for Fish spoilage monitoring. Sensor Actuat B-Chem 332: 129435.
  • Öksüztepe, G. ve Beyazgül, P. (2015). Akıllı Ambalajlama Sistemleri ve Gıda Güvenliği. F.Ü. Sağ. Bil. Vet. Derg. 29 (1): 67 – 74.
  • Pacquit, A., Lau, K. T., McLaughlin, H., Frisby, J., Quilty, B., & Diamond, D. (2006). Development of a volatile amine sensor for the monitoring of fish spoilage. Talanta, 69 (2) p: 515-520.
  • Park, Y. V., Kim, S. M., Lee, J. Y., Jang, W. (2015). Application of biosensors in smart packaging. Mol Cell Toxicol 11:277-285 Doi: 10.1007/s13273-015-0027-1
  • Purma, Ç., Serdaroğlu, M. (2006). Akıllı Ambalajlama Sistemlerinin Gıda Sanayiinde Kullanımı. Türkiye 9. Gıda Kongresi; 24-26 Mayıs 2006 Bolu, s: 49-52.
  • Qiao, L., Tang, X., Dong, J. (2017). A feasibility quantification study of total volatile basic nitrogen (TVB-N) content in duck meat for freshness evaluation. Food Chem. 237, 1179–1185.
  • Rajamäki T., Alatomi H., Titvanen T., Skyttä E., Smolander M., Ahvenainen R. (2004). Application of an electronic nose for quality assessment of modified atmosphere packaged poultry meat. Food Control 17:5–13.
  • Reza, K.K., Singh, N., Yadav, S.K., Singh, M.K., Biradar, A.M. (2014). Pearl shaped highly sensitive Mn3O4 nanocomposite interface for biosensor applications. Biosens Bioelectron (62), p 47-51.
  • Roy, S., Rhim, J-W. (2020). Anthocyanin food colorant and its application in pH-responsive color change indicator films. Crit Rev Food Sci Nutr., DOI: 10.1080/10408398.2020.1776211.
  • Saraç, A. (2011). Atatürk Baraj Gölü’nde yaşayan Carasobarbus luteus ve Capoeta rutta’ da balık tazelı̇ğı̇nı̇n tespı̇tı̇. Harran Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi, Şanlıurfa, Türkiye.
  • Sinelli, N., Limbo, S., Torri, L., di Egidio, V., Casiraghi, E. (2010). Evaluation of freshness decay of minced beef stored in high-oxygen modified atmosphere packaged at different temperatures using NIR and MIR spectroscopy. Meat Sci 86: 748–752.
  • Sujiwo, J., Kim, D., Jang, A. (2018). Relation among quality traits of chicken breast meat during cold storage: Correlations between freshness traits and torrymeter va- lues. Poult Sci, 97, 2887–2894.
  • Sujiwo, J., Kim, H-J., Song, S-O., Jang, A. (2019). Relationship between quality and freshness traits and torrymeter value of beef loin during cold storage. Meat Sci 149: 120–125.
  • Şenman, N. H. (2007). Gökkuşağı alabalıklarında (onchornycus mykiss) biyojen aminlerin HPLC ile saptanması. Ankara Üniversitesi Sağlık Bilimleri Enstitüsü Besin Hijyeni ve Teknolojisi Anabilim Dalı Yüksek Lisans Tezi, Ankara, Türkiye.
  • Takma, D. K., Nadeem, H. Ş. (2019). Gıdalarda akıllı ambalajlama teknolojı̇sı̇ ve güncel uygulamalar. GIDA 44 (1): 131-142 doi: 10.15237/gida.GD18106.
  • Topçu, Ş., Çölgeçen, H. (2015). Bitki Sekonder Metabolitlerinin Biyoreaktörlerde Üretilmesi. Türk Bilimsel Derlemeler Dergisi 8 (2): 09-29.
  • Vanegas, D., Patin~o, L., Mendez, C., Oliveira, D.A., Torres, A.M., Gomes, C.L., McLamore, E.S. (2018). Laser scribed graphene biosensor for detection of biogenic amines in food samples using locally sourced materials. Biosensors 8 (2):42.
  • Verma, N., Hooda, V., Gahlaut, A., Gothwal, A., Hooda, V. (2019). Enzymatic biosensors for the quantification of biogenic amines: a literature update. Crit Rev Biotechnol Volume 40, 2020 - Issue 1 p:1-14.
  • Vo, T.-V., Dang, T.-H., Chen, B.-H. (2019). Synthesis of intelligent pH indicative films from chitosan/poly(vinyl alcohol)/anthocyanin extracted from red cabbage. Polymers 11 (7):1088. doi: 10.3390/ polym11071088.
  • Wang, Z., Ma, B., Shen, C., Lai, O., Tan, C., Cheong, L. (2019). Electrochemical Biosensing of Chilled Seafood Freshness by Xanthine Oxidase Immobilized on Copper-Based Metal–Organic Framework Nanolif Film. Food Anal. Methods 12: 1715–1724. Wei, Y-C., Cheng, C-H., Ho, Y-C., Tsai, M-L., Mi, F-L. (2017). Active gellan gum/purple sweet potato composite films capable of monitoring pH variations. Food Hydrocoll Vol. 69, p: 491-502.
  • Werner, T., Klimant, I., Wolfbeis, O.S. (1995). Ammonia-sensitive polymer matrix employing immobilised indicator ion pairs. Analyst, 120: pp. 1627-1631.
  • Wojnowski, W., Majchrzak, T., Dymerski, T., Gebicki, J., Namiesnik, J. (2017). Electronic noses: Powerful tools in meat quality assessment. Meat Sci 131: 119–131.
  • Wojnowski, W., Namieśnik, J., Płotka-Wasylka, J. (2019). Dispersive liquid-liquid microextraction combined with gas chromatography–mass spectrometry for in situ determination of biogenic amines in meat: Estimation of meat's freshness. Microchem J 145, 130–138.
  • Wu, C., Li, Y., Sun, J., Lu, Y., Tong, C., Wang, L., Yan, Z., Pang, J. (2020). Novel konjac glucomannan films with oxidized chitin nanocrystals immobilized red cabbage anthocyanins for intelligent food packaging. Food Hydrocoll. 98:105245. doi: 10.1016/j.foodhyd.2019.105245.
  • Wu, C., Sun, J., Chen, M., Ge, Y., Ma, J., Hu, Y., Pang, J., Yan, Z. (2019). Effect of oxidized chitin nanocrystals and curcumin into chitosan films for T seafood freshness monitoring. Food Hydrocoll. 95: 308–317.
  • Yazdanparast, S., Benvidi, A., Abbasi, S., Rezaeinasab, M. (2019). Enzyme-based ultrasensitive electrochemical biosensor using poly(L-aspartic acid)/MWCNT bio-nanocomposite for xanthine detection: A meat freshness marker. Microchem J 149: 104000.
  • Zaragozá, P., Fuentes, A., Fernandez-Segovia, I., Vivancos, J. L., Rizo, A., Ros-Lis, J. V. (2013). Evaluation of sea bream (Sparus aurata) shelf life using an optoelectronic nose. Food Chem 138 (2–3), 1374–1380.
  • Zeng, P., Chen, X., Qin, Y., Zhang, Y., Wang, X., Wang, J., Ning, Z., Ruan, Q., Zhang, Y. (2019). Preparation and characterization of a novel colorimetric indicator film based T on gelatin/polyvinyl alcohol incorporating mulberry anthocyanin extracts for monitoring fish freshness. Food Res. Int. 126, 108604.
  • Zhai, X., Li, Z., Shi, Y., Huang, X., Sun, Z., Zhang, D., Zou, X., Sun, Y., Zhang, J., Holmes, M., Gong, Y., Povey, M., Wang, S. (2019). A colorimetric hydrogen sulfide sensor based on gellan gum-silver T nanoparticles bionanocomposite for monitoring of meat spoilage in intelligent packaging. Food Chem 290, 135–143.
  • Zhai, X., Shi, J., Zou, X., Wang, S., Jiang, C., Zhang, J., Huang, X., Zhang, W., Holmes, W. (2017). Novel colorimetric films based on starch/polyvinyl alcohol incorporated with roselle anthocyanins for fish freshness monitoring. Food Hydrocoll Vol. 69, p: 308-317.
  • Zhai, X., Wang, X., Zhang, J., Yang, Z., Sun, Y., Li, Z., Huang, X., Holmes, M., Gong, Y., Povey, M., Shi, J., Zou, X. (2020b). Extruded low density polyethylene-curcumin film: A hydrophobic ammonia sensor for intelligent food packaging. Food Packaging and Shelf Life Vol. 26, 100595.
  • Zhai, X., Zou, X., Shi, J., Huang, X., Sun, Z., Li, Z., Sun, Y., Li, Y., Wang, X., Holmes, M., Gong, Y., Povey, M., Xiao, J. (2020a). Amine-responsive bilayer films with improved illumination stability and T electrochemical writing property for visual monitoring of meat spoilage. Sensor Actuat B-Chem. 302: 127130.
  • Zhang, J., Huang, X., Shi, J., Liu, L., Zhang, X., Zou, X., Xiao, J., Zhai, X., Zhang, D., Li, Y., Shen, T. (2021). A visual bi-layer indicator based on roselle anthocyanins with high hydrophobic property for monitoring griskin freshness. Food Chem Vol. 355, 129573.
  • Zhang, J., Huang, X., Zou, X., Shi, J., Zhai, X., Liu, L., Li, Z., Holmes, M., Gong, Y., Povey, M., Xiao, J. (2021). A visual indicator based on curcumin with high stability for monitoring the freshness of freshwater shrimp, Macrobrachium rosenbergii. J. Food Eng. 292: 110290.
  • Zohora, S.E., Khan, A.M., Srivastava, A.K., Hundewale, N. (2013). Electronic noses application to food analysis using metal oxide sensors: a review. Int. J. Soft Comput. Eng. 3, 199–205.

DETECTION OF MEAT FRESHNESS: NEW APPROACHES

Year 2021, Volume: 46 Issue: 4, 1053 - 1067, 17.05.2021
https://doi.org/10.15237/gida.GD21078

Abstract

Recently, there has been an increasing demand for fresh and high quality food as a result of healthy eating awareness. Depending on the risk status of the product, consumer health and safety get into danger as well as breaking consumer reliance and satisfaction due to the foods which have started to become unfresh and lose quality at the time of purchasing. Nutritious and economically valuable foods such as meat has been one of the major product groups which is needed to be checked for its freshness against time. However, classical methods require much labor and chemical usage as well as being time consuming. Therefore, there has been a need for alternative methods which can eliminate present disadvantages. Moreover, it is aimed to make possible real time detection of meat freshness including consumer based controls. This review evaluates new detection methods such as color indicators, sensors and biosensors to determine freshness of several kinds of meat.

References

  • Aghaei, Z., Ghorani, B., Emadzadeh, B., Kadkhodaee, R., Tucker, N. (2020). Protein-based halochromic electrospun nanosensor for monitoring trout fish freshness. Food Control Vol. 111, 107065.
  • Ahmed, I., Lin, H., Zou, L., Li, Z., Brody, A. L., Qazi, I., M., Lv, L., Pavase, T. R., Khan, M. U., Khan, S., Sun, L. (2018). An overview of smart packaging technologies for monitoring safety and quality of meat and meat products. Packag Tech Sci. 31:449–471. DOI: 10.1002/pts.2380.
  • Albeda, J. A. V., Uzunoğlu, A., Santos, G. N. C., Stanciu, L. A. (2017). Graphene-titanium dioxide nanocomposite based hypoxanthine sensor for assessment of meat freshness. Biosens Bioelectron. 89, p: 518–524.
  • Alizadeh-Sani, M., Tavassoli, M., Mohammadian, E., Ehsani, A., Khaniki, G. J., Priyadarshi, R., Rhim, J-W. (2020). pH-responsive color indicator films based on methylcellulose/chitosan nanofiber and barberry anthocyanins for real-time monitoring of meat freshness. Int J Biol Macromol S0141-8130(20)34871-6. https://doi.org/10.1016/j.ijbiomac.2020.10.231.
  • Chen, Z., Lin, Y., Ma, X., Guo, L., Qiu, B., Chen, G., Lin, Z. (2017). Multicolor biosensor for fish freshness assessment with the naked eye. Sensor Actuat B-Chem Vol. 252: p: 201-208.
  • Chen, S., Wu, M., Lu, P., Gao, L., Yan, S., Wang, S. (2020a). Development of pH indicator and antimicrobial cellulose nanofibre packaging film based on purple sweet potato anthocyanin and oregano essential oil. Int J Biol Macromol. Vol. 149, p: 271-280.
  • Chen, M., Yan, T., Huang, J., Zhou, Y., Hu, Y. (2021). Fabrication of halochromic smart films by immobilizing red cabbage anthocyanins into chitosan/oxidized-chitin nanocrystals composites for real-time hairtail and shrimp freshness monitoring. Int J Biol Macromol Vol. 179, p: 90-100.
  • Chen, J., Yu, L., Yan, F., Wu, Y., Huang, D., Weng, Z. (2019). A fluorescent biosensor based on catalytic activity of platinum nanoparticles for freshness evaluation of aquatic products. Food Chem 310: 125922.
  • Chen, H., Zhang, M., Bhandari, B., Yang, C. (2020b). Novel pH-sensitive films containing curcumin and anthocyanins to monitor fish freshness. Food Hydrocoll 100: 105438.
  • Deligöz, E., Bilge, N. (2017). Sütle Gelen Tehdit: Aflatoksin M1. Turjaf 5 (8): 846-857.
  • Devi, R., Batra, B., Suman, L., Yadav, S. (2013). A method for determination of xanthine in meat by amperometric biosensor based on silver nanoparticles/cysteine modified Au electrode. Process Biochem. 48 (2): 242-249.
  • Dobrucka, R., Cierpiszewski, R. (2014). Active and Intelligent Packaging Food Research and Development- A Review. Pol J Food Nutr Sci 64 (1) p: 7–15.
  • Dudnyk, I., Janecek, E. R., Joset, J. V., Stellacci, F. (2018). Edible sensors for meat and seafood freshness. Sensor Actuat B-Chem 259: 1108–1112.
  • Etxabide, A., Kilmartin, P. A., Mate, J. I. (2021). Color stability and pH-indicator ability of curcumin, anthocyanin and betanin containing colorants under different storage conditions for intelligent packaging development. Food Control 121: 107645.
  • Ezati, P., Bang, Y., Rhim, J-W. (2021). Preparation of a shikonin-based pH-sensitive color indicator for monitoring the freshness of fish and pork. Food Chem 337: 127995.
  • Ezati, P., Rhim, J-W. (2020). pH-responsive pectin-based multifunctional films incorporated with curcumin and sulfur nanoparticles. Carbohyd Polym 230: 115638.
  • Ezati, P., Rhim, J-W., Moradi, M., Tajik, H., Molaei, R. (2020). CMC and CNF-based alizarin incorporated reversible pH-responsive color T indicator films. Carbohyd Polym 246: 116614.
  • Ezati, P., Tajik, H., Moradi, M. (2019). Fabrication and characterization of alizarin colorimetric indicator based on cellulose-chitosan to monitor the freshness of minced beef. Sensor Actuat B-Chem 285: 519–528.
  • Fazial, F. F., Tan, L. L., Zubairi, S. I. (2018). Bienzymatic creatine biosensor based on reflectance measurement for real-time monitoring of fish freshness. Sensor Actuat B-Chem 269: 36–45.
  • Fisher, F. (1995). Commission decision of 8 March 1995, fixing the total volatile basic nitrogen (TVB-N) limit values for certain categories of fishery products and specifying the analysis methods to be used. Official Journal of the European Communities. Retrieved from http://data.europa.eu/eli/dec/1995/149/oj.
  • Fu, L., Wang, A., Zhang, H., Zhou, Q., Chen, F., Su, W., Yu, A., Ji, Z., Liu, Q. (2019). Analysis of chicken breast meat freshness with an electrochemical approach. J. Electroanal. Chem 855, 113622.
  • Ge, Y., Li, Y., Bai, Y., Yuan, C., Wu, C., Hu, Y. (2020). Intelligent gelatin/oxidized chitin nanocrystals nanocomposite films containing black rice bran anthocyanins for fish freshness monitorings. Int J Biol Macromol Vol. 155, p: 1296-1306.
  • Halonen, N., Pálvölgyi, P. S., Bassani, A., Fiorentini, C., Nair, R., Spigno, G., Kordas, K. (2020). Bio-Based Smart Materials for Food Packaging and Sensors – A Review. Bio-Based Smart Material Vol 7, article 82 doi: 10.3389/fmats.2020.00082.
  • Huang X.W., Zou X.B., Shi J.Y. (2014). Determination of pork spoilage by colorimetric gas sensor array based on natural pigments. Food Chem.145: 549‐554.
  • Ian, M., Fiona, J., Christopher B., C. (2020). An edible genipin-based sensor for biogenic amine detection. J Chem Tech Biotechnol. https://doi.org/jctb.6556
  • Jia, S., Li, Y., Zhuang, S., Sun, X., Zhang, L., Shi, J., Hong, H., Luo, Y. (2019). Biochemical changes induced by dominant bacteria in chill-stored silver carp (Hypophthalmichthys molitrix) and GC-IMS identification of volatile organic compounds. Food Microbiol. Dec; 84:103248. doi: 10.1016/j.fm.2019.103248.
  • Jiang, G., Hou, X., Zeng, X., Zhang, C., Wu, H., Shen, G., Li, S., Luo, Q., Li, M., Liu, X., Chen, A., Wang, Z., Zhang, Z. (2020). Preparation and characterization of indicator films from carboxymethyl-cellulose/starch and purple sweet potato (Ipomoea batatas (L.) lam) anthocyanins for monitoring fish freshness. Int J Biol Macromol 143, 359–372.
  • Karim, N, U., Kennedy, J. T., Linton, M., Patterson, M.,Watson, S., Gault, N. (2019). Determination of nucleotide and enzyme degradation in haddock (Melanogrammus aeglefinus) and herring (Clupea harengus) after high pressure processing. PeerJ 7: e7527 (doi: 10.7717/peerj.7527).
  • Kang, S., Wang, H., Xia, L., Chen, M., Li, L., Cheng, J., Li, X., Jiang, S. (2020). Colorimetric film based on polyvinyl alcohol/okra mucilage polysaccharide incorporated with rose anthocyanins for shrimp freshness monitoring. Carbohyd Polym Vol. 229, 115402.
  • Kant, R., Tabassum, R., Gupta, B. D. (2018). Xanthine oxidase functionalized Ta2O5 nanostructures as a novel scaffold for highly sensitive SPR based lif optic xanthine sensor. Biosens Bioelectron 99, 637–645.
  • Kıvrak, E. (2019). Klı̇nı̇k Analı̇zlere Yönelı̇k Aptamer Tabanlı Elektrokı̇myasal Bı̇yosensör Tasarımı, Ege Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi, İzmir, Türkiye.
  • Kocaman, N., Sarımehmetoğlu, B. (2010). Gıdalarda Akıllı Ambalaj Kullanımı. Vet Hekim Der Derg 81(2): 67-72.
  • Kuntzler, S. G., Costa, J. A. V., Brizio, A. P. D. R., de Morais, M. G. (2020). Development of a colorimetric pH indicator using nanofibers containing T Spirulina sp. LEB 18. Food Chem 328: 126768.
  • Kuswandi, B., Nurfawaidi, A. (2017). On-package dual sensors label based on pH indicators for real-time monitoring of beef freshness. Food Control 82, 91-100.
  • Kürek, M., Hlupic, L., Scetar, M., Bosiljkov, T., Galic, K. (2019). Comparison of two pH-responsive color-changing bio-based films containing wasted fruit pomace as a source of colorants. J Food Sci 84 (9):2490–8. doi: 10.1111/1750-3841.14716.
  • Lafarga, T., Fernandez-Sevilla, J. M., Gonzalez-Lopez, C., Acien-Fernandez, F. G. (2020). Spirulina for the food and functional food industries. Food Res Int 137: 109356.
  • Latos-Brozio, M., Masek, A. (2020). The application of natural food colorants as indicator substances in T intelligent biodegradable packaging materials. Food Chem Toxicol 135: 110975.
  • Lazaro, C.A., Junior, C.A.C., Canto, A.C.V.C.S., Monteiro, M., L., G. (2015). Biogenic amines as bacterial quality indicators in different poultry meat species. LWT- Food Science and Technology (60):15-21.
  • Lee, K., Baek, S., Kim, D., Seo, J. (2019). A freshness indicator for monitoring chicken-breast spoilage using a Tyvek® T sheet and RGB color analysis. Food Packaging and Shelf Life 19, 40–46.
  • Li, Y., Wu, K., Wang, B., Li, X. (2021). Colorimetric indicator based on purple tomato anthocyanins and chitosan for application in intelligent packaging. Int J Biol Macromol. Vol 174, p: 370-376.
  • Liu, D., Cui, Z., Shang, M., Zhong, Y. (2021). A colorimetric film based on polyvinyl alcohol/sodium carboxymethyl cellulose incorporated with red cabbage anthocyanin for monitoring pork freshness. Food Packaging and Shelf Life Vol. 28, 100641.
  • Luo, X., Lim, L-T. (2020). Curcumin-loaded electrospun nonwoven as a colorimetric indicator for volatile amines. LWT - Food Science and Technology 128: 109493.
  • Metin, S., Erkan, N., Varlık, C. (2002). The Application of Hypoxanthine Activity as a Quality Indicator of Cold Stored Fish Burgers. Turk J Vet Anim Sci (26): 363-367.
  • Miklicanin, E. O., Valzacchi, S. (2017). Development of new chemiluminescence biosensors for determination of biogenic amines in meat. Food Chem 235: 98–103.
  • Mohammadalinejhad, S., Almasi, H., Moradi, M. (2020). Immobilization of Echium amoenum anthocyanins into bacterial cellulose film: A novel colorimetric pH indicator for freshness/spoilage monitoring of shrimp. Food Control https://doi.org/10.1016/j.foodcont.2020.107169.
  • Moradi, M., Tajik, H., Almasi, H., Forough, M., Ezati, P. (2019). A novel pH-sensing indicator based on bacterial cellulose nanofibers and black carrot anthocyanins for monitoring fish freshness. Carbohyd Polym Vol. 222, 115030.
  • Moreira, J. B., Terra, A. L. M., Costa, J. A. V., de Morais, M. G. (2018). Development of pH indicator from PLA/PEO ultrafine fibers containing pigment of microalgae origin. Int J Biol Macromol Vol. 118, Part B, p: 1855-1862.
  • Mustafa, F., Othman, A., Andeescu, S. (2021). Cerium oxide-based hypoxanthine biosensor for Fish spoilage monitoring. Sensor Actuat B-Chem 332: 129435.
  • Öksüztepe, G. ve Beyazgül, P. (2015). Akıllı Ambalajlama Sistemleri ve Gıda Güvenliği. F.Ü. Sağ. Bil. Vet. Derg. 29 (1): 67 – 74.
  • Pacquit, A., Lau, K. T., McLaughlin, H., Frisby, J., Quilty, B., & Diamond, D. (2006). Development of a volatile amine sensor for the monitoring of fish spoilage. Talanta, 69 (2) p: 515-520.
  • Park, Y. V., Kim, S. M., Lee, J. Y., Jang, W. (2015). Application of biosensors in smart packaging. Mol Cell Toxicol 11:277-285 Doi: 10.1007/s13273-015-0027-1
  • Purma, Ç., Serdaroğlu, M. (2006). Akıllı Ambalajlama Sistemlerinin Gıda Sanayiinde Kullanımı. Türkiye 9. Gıda Kongresi; 24-26 Mayıs 2006 Bolu, s: 49-52.
  • Qiao, L., Tang, X., Dong, J. (2017). A feasibility quantification study of total volatile basic nitrogen (TVB-N) content in duck meat for freshness evaluation. Food Chem. 237, 1179–1185.
  • Rajamäki T., Alatomi H., Titvanen T., Skyttä E., Smolander M., Ahvenainen R. (2004). Application of an electronic nose for quality assessment of modified atmosphere packaged poultry meat. Food Control 17:5–13.
  • Reza, K.K., Singh, N., Yadav, S.K., Singh, M.K., Biradar, A.M. (2014). Pearl shaped highly sensitive Mn3O4 nanocomposite interface for biosensor applications. Biosens Bioelectron (62), p 47-51.
  • Roy, S., Rhim, J-W. (2020). Anthocyanin food colorant and its application in pH-responsive color change indicator films. Crit Rev Food Sci Nutr., DOI: 10.1080/10408398.2020.1776211.
  • Saraç, A. (2011). Atatürk Baraj Gölü’nde yaşayan Carasobarbus luteus ve Capoeta rutta’ da balık tazelı̇ğı̇nı̇n tespı̇tı̇. Harran Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi, Şanlıurfa, Türkiye.
  • Sinelli, N., Limbo, S., Torri, L., di Egidio, V., Casiraghi, E. (2010). Evaluation of freshness decay of minced beef stored in high-oxygen modified atmosphere packaged at different temperatures using NIR and MIR spectroscopy. Meat Sci 86: 748–752.
  • Sujiwo, J., Kim, D., Jang, A. (2018). Relation among quality traits of chicken breast meat during cold storage: Correlations between freshness traits and torrymeter va- lues. Poult Sci, 97, 2887–2894.
  • Sujiwo, J., Kim, H-J., Song, S-O., Jang, A. (2019). Relationship between quality and freshness traits and torrymeter value of beef loin during cold storage. Meat Sci 149: 120–125.
  • Şenman, N. H. (2007). Gökkuşağı alabalıklarında (onchornycus mykiss) biyojen aminlerin HPLC ile saptanması. Ankara Üniversitesi Sağlık Bilimleri Enstitüsü Besin Hijyeni ve Teknolojisi Anabilim Dalı Yüksek Lisans Tezi, Ankara, Türkiye.
  • Takma, D. K., Nadeem, H. Ş. (2019). Gıdalarda akıllı ambalajlama teknolojı̇sı̇ ve güncel uygulamalar. GIDA 44 (1): 131-142 doi: 10.15237/gida.GD18106.
  • Topçu, Ş., Çölgeçen, H. (2015). Bitki Sekonder Metabolitlerinin Biyoreaktörlerde Üretilmesi. Türk Bilimsel Derlemeler Dergisi 8 (2): 09-29.
  • Vanegas, D., Patin~o, L., Mendez, C., Oliveira, D.A., Torres, A.M., Gomes, C.L., McLamore, E.S. (2018). Laser scribed graphene biosensor for detection of biogenic amines in food samples using locally sourced materials. Biosensors 8 (2):42.
  • Verma, N., Hooda, V., Gahlaut, A., Gothwal, A., Hooda, V. (2019). Enzymatic biosensors for the quantification of biogenic amines: a literature update. Crit Rev Biotechnol Volume 40, 2020 - Issue 1 p:1-14.
  • Vo, T.-V., Dang, T.-H., Chen, B.-H. (2019). Synthesis of intelligent pH indicative films from chitosan/poly(vinyl alcohol)/anthocyanin extracted from red cabbage. Polymers 11 (7):1088. doi: 10.3390/ polym11071088.
  • Wang, Z., Ma, B., Shen, C., Lai, O., Tan, C., Cheong, L. (2019). Electrochemical Biosensing of Chilled Seafood Freshness by Xanthine Oxidase Immobilized on Copper-Based Metal–Organic Framework Nanolif Film. Food Anal. Methods 12: 1715–1724. Wei, Y-C., Cheng, C-H., Ho, Y-C., Tsai, M-L., Mi, F-L. (2017). Active gellan gum/purple sweet potato composite films capable of monitoring pH variations. Food Hydrocoll Vol. 69, p: 491-502.
  • Werner, T., Klimant, I., Wolfbeis, O.S. (1995). Ammonia-sensitive polymer matrix employing immobilised indicator ion pairs. Analyst, 120: pp. 1627-1631.
  • Wojnowski, W., Majchrzak, T., Dymerski, T., Gebicki, J., Namiesnik, J. (2017). Electronic noses: Powerful tools in meat quality assessment. Meat Sci 131: 119–131.
  • Wojnowski, W., Namieśnik, J., Płotka-Wasylka, J. (2019). Dispersive liquid-liquid microextraction combined with gas chromatography–mass spectrometry for in situ determination of biogenic amines in meat: Estimation of meat's freshness. Microchem J 145, 130–138.
  • Wu, C., Li, Y., Sun, J., Lu, Y., Tong, C., Wang, L., Yan, Z., Pang, J. (2020). Novel konjac glucomannan films with oxidized chitin nanocrystals immobilized red cabbage anthocyanins for intelligent food packaging. Food Hydrocoll. 98:105245. doi: 10.1016/j.foodhyd.2019.105245.
  • Wu, C., Sun, J., Chen, M., Ge, Y., Ma, J., Hu, Y., Pang, J., Yan, Z. (2019). Effect of oxidized chitin nanocrystals and curcumin into chitosan films for T seafood freshness monitoring. Food Hydrocoll. 95: 308–317.
  • Yazdanparast, S., Benvidi, A., Abbasi, S., Rezaeinasab, M. (2019). Enzyme-based ultrasensitive electrochemical biosensor using poly(L-aspartic acid)/MWCNT bio-nanocomposite for xanthine detection: A meat freshness marker. Microchem J 149: 104000.
  • Zaragozá, P., Fuentes, A., Fernandez-Segovia, I., Vivancos, J. L., Rizo, A., Ros-Lis, J. V. (2013). Evaluation of sea bream (Sparus aurata) shelf life using an optoelectronic nose. Food Chem 138 (2–3), 1374–1380.
  • Zeng, P., Chen, X., Qin, Y., Zhang, Y., Wang, X., Wang, J., Ning, Z., Ruan, Q., Zhang, Y. (2019). Preparation and characterization of a novel colorimetric indicator film based T on gelatin/polyvinyl alcohol incorporating mulberry anthocyanin extracts for monitoring fish freshness. Food Res. Int. 126, 108604.
  • Zhai, X., Li, Z., Shi, Y., Huang, X., Sun, Z., Zhang, D., Zou, X., Sun, Y., Zhang, J., Holmes, M., Gong, Y., Povey, M., Wang, S. (2019). A colorimetric hydrogen sulfide sensor based on gellan gum-silver T nanoparticles bionanocomposite for monitoring of meat spoilage in intelligent packaging. Food Chem 290, 135–143.
  • Zhai, X., Shi, J., Zou, X., Wang, S., Jiang, C., Zhang, J., Huang, X., Zhang, W., Holmes, W. (2017). Novel colorimetric films based on starch/polyvinyl alcohol incorporated with roselle anthocyanins for fish freshness monitoring. Food Hydrocoll Vol. 69, p: 308-317.
  • Zhai, X., Wang, X., Zhang, J., Yang, Z., Sun, Y., Li, Z., Huang, X., Holmes, M., Gong, Y., Povey, M., Shi, J., Zou, X. (2020b). Extruded low density polyethylene-curcumin film: A hydrophobic ammonia sensor for intelligent food packaging. Food Packaging and Shelf Life Vol. 26, 100595.
  • Zhai, X., Zou, X., Shi, J., Huang, X., Sun, Z., Li, Z., Sun, Y., Li, Y., Wang, X., Holmes, M., Gong, Y., Povey, M., Xiao, J. (2020a). Amine-responsive bilayer films with improved illumination stability and T electrochemical writing property for visual monitoring of meat spoilage. Sensor Actuat B-Chem. 302: 127130.
  • Zhang, J., Huang, X., Shi, J., Liu, L., Zhang, X., Zou, X., Xiao, J., Zhai, X., Zhang, D., Li, Y., Shen, T. (2021). A visual bi-layer indicator based on roselle anthocyanins with high hydrophobic property for monitoring griskin freshness. Food Chem Vol. 355, 129573.
  • Zhang, J., Huang, X., Zou, X., Shi, J., Zhai, X., Liu, L., Li, Z., Holmes, M., Gong, Y., Povey, M., Xiao, J. (2021). A visual indicator based on curcumin with high stability for monitoring the freshness of freshwater shrimp, Macrobrachium rosenbergii. J. Food Eng. 292: 110290.
  • Zohora, S.E., Khan, A.M., Srivastava, A.K., Hundewale, N. (2013). Electronic noses application to food analysis using metal oxide sensors: a review. Int. J. Soft Comput. Eng. 3, 199–205.
There are 82 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Articles
Authors

Pelin Özkaya 0000-0001-6198-8313

Seval Dağbağlı 0000-0001-9465-0116

Semra Kayaardı 0000-0003-1747-0976

Publication Date May 17, 2021
Published in Issue Year 2021 Volume: 46 Issue: 4

Cite

APA Özkaya, P., Dağbağlı, S., & Kayaardı, S. (2021). ETTE TAZELİĞİN BELİRLENMESİ: YENİ YAKLAŞIMLAR. Gıda, 46(4), 1053-1067. https://doi.org/10.15237/gida.GD21078
AMA Özkaya P, Dağbağlı S, Kayaardı S. ETTE TAZELİĞİN BELİRLENMESİ: YENİ YAKLAŞIMLAR. The Journal of Food. May 2021;46(4):1053-1067. doi:10.15237/gida.GD21078
Chicago Özkaya, Pelin, Seval Dağbağlı, and Semra Kayaardı. “ETTE TAZELİĞİN BELİRLENMESİ: YENİ YAKLAŞIMLAR”. Gıda 46, no. 4 (May 2021): 1053-67. https://doi.org/10.15237/gida.GD21078.
EndNote Özkaya P, Dağbağlı S, Kayaardı S (May 1, 2021) ETTE TAZELİĞİN BELİRLENMESİ: YENİ YAKLAŞIMLAR. Gıda 46 4 1053–1067.
IEEE P. Özkaya, S. Dağbağlı, and S. Kayaardı, “ETTE TAZELİĞİN BELİRLENMESİ: YENİ YAKLAŞIMLAR”, The Journal of Food, vol. 46, no. 4, pp. 1053–1067, 2021, doi: 10.15237/gida.GD21078.
ISNAD Özkaya, Pelin et al. “ETTE TAZELİĞİN BELİRLENMESİ: YENİ YAKLAŞIMLAR”. Gıda 46/4 (May 2021), 1053-1067. https://doi.org/10.15237/gida.GD21078.
JAMA Özkaya P, Dağbağlı S, Kayaardı S. ETTE TAZELİĞİN BELİRLENMESİ: YENİ YAKLAŞIMLAR. The Journal of Food. 2021;46:1053–1067.
MLA Özkaya, Pelin et al. “ETTE TAZELİĞİN BELİRLENMESİ: YENİ YAKLAŞIMLAR”. Gıda, vol. 46, no. 4, 2021, pp. 1053-67, doi:10.15237/gida.GD21078.
Vancouver Özkaya P, Dağbağlı S, Kayaardı S. ETTE TAZELİĞİN BELİRLENMESİ: YENİ YAKLAŞIMLAR. The Journal of Food. 2021;46(4):1053-67.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/