Research Article
BibTex RIS Cite

DETERMINATION OF PHYSICOCHEMICAL, ANTIOXIDANT, ANTIMICROBIAL AND ANTIQUORUM SENSING PROPERTIES OF CHITOSAN FILMS INCORPORATED WITH ETHYL PYRUVATE FILMS

Year 2021, Volume: 46 Issue: 6, 1425 - 1439, 15.10.2021
https://doi.org/10.15237/gida.GD21111

Abstract

The aim of this study is to develop an environmentally friendly packaging material by adding ethyl pyruvate (EP) to the chitosan film (CS) formulation in two different concentrations (1% and 3%). Thus, the moisture, water solubility, apparent density, color, biodegradability, and chemical resistance of the films were determined, and the surface morphology was characterized by SEM and functional groups were characterized by FTIR. Additionally, the antimicrobial and anti-qs activities of the films were determined by the disk diffusion method. The moisture, apparent density, biodegradability, and antioxidant activity of chitosan film were increased by adding EP. It was observed that EP caused porous structure in CS. Films showed antimicrobial effect against Escherichia coli O157:H7, Bacillus cereus, Staphylococcus aureus, Alternaria arborescens, Aspergillus flavus, Penicillium digitatum, Penicillium citrinum and Penicillum expansum. It was determined that all films showed anti-qs activity. Results showed that CS-EP1 film can be used as an alternative food packaging

Project Number

2018-FYL-1373

References

  • Aday M. S., Caner C. (2010). Understanding the effects of various edible coatings on the storability of fresh cherry. Packag. Technol. Sci, 441-456.
  • Akyuz, L., Kaya, M., Mujtaba, M., Ilk, S., Sargin, I., Salaberria, A. M., Islek, C. (2018). Supplementing capsaicin with chitosan-based films enhanced the anti-quorum sensing, antimicrobial, antioxidant, transparency, elasticity and hydrophobicity. Int J Biol Macromol, 115: 438-446.
  • Al-Naamani, L., Dobretsov, S., Dutta, J., Burgess, J. G. (2017). Chitosan-zinc oxide nanocomposite coatings for the prevention of marine biofouling. Chemosphere, 168: 408-417.
  • Avella M., De Vlieger J. J., Errico M. E., Fischer S., Vacca P., Volpe M. G. (2005). Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem, 93: 467–474.
  • Badawy, M. S. E., Riad, O. K. M., Taher, F. A., Zaki, S. A. (2020). Chitosan and chitosan-zinc oxide nanocomposite inhibit expression of LasI and RhlI genes and quorum sensing dependent virulence factors of Pseudomonas aeruginosa. Int J Biol Macromol, 149: 1109-1117.
  • Beaula, T. J., James, C. (2014). FT IR, FT-Raman spectra and chemical computations of herbicide 2-phenoxy propionic acid–A DFT approach. Spectrochim. Acta A Mol. Biomol Spectrosc, 122: 661-669.
  • Bozkurt F., Tornuk F., Toker O. S., Karasu S., Arici M., Durak M. Z., 2016. Effect of vaporized ethyl pyruvate as a novel preservation agent for control of postharvest quality and fungal damage of strawberry and cherry fruits. LWT, 65: 1044-1049.
  • Cetin, B., Ucak Ozkaya, G., Uran, H., Durak, M. Z. (2019a). Determination of the effect of ethyl pyruvate on the surface contamination of sausage to Listeria monocytogenes by using Q‐PCR assay. J Food Saf, 39(6): e12689.
  • Cetin, B., Uran, H., Konak, M. (2019b). Effect of evaporated ethyl pyruvate on reducing Salmonella Enteritidis in raw chicken meat. Braz J of Poultry Sci, 21(2).
  • Chang, A. K. T., Frias Jr, R. R., Alvarez, L. V., Bigol, U. G., Guzman, J. P. M. D. (2019). Comparative antibacterial activity of commercial chitosan and chitosan extracted from Auricularia sp. Biocatal Agric Biotechnol, 17: 189-195.
  • Çoban Ö. E., Patır B. (2010). Antioksidan etkili bazı bitki ve baharatların gıdalarda kullanımı. Gıda Teknolojileri Elektronik Dergisi, 5(2):7-19.
  • De Elguea-Culebras G. O., Bourbon A. I., Costa M. J., Muñoz-Tebar N., Carmona M., Molina A., Vicente A. A. (2019). Optimization of a chitosan solution as potential carrier for the incorporation of Santolina Chamaecyparissus L. solid by-product in an edible vegetal coating on ‘Manchego’Cheese. Food Hydrocoll, 89: 272-282.
  • Fernandes Queiroz, M., Melo, K. R. T., Sabry, D. A., Sassaki, G. L., Rocha, H. A. O. (2015). Does the use of chitosan contribute to oxalate kidney stone formation. Mar drugs, 13(1): 141-158.
  • Fink, M. P. (2007). Ethyl pyruvate: a novel anti‐inflammatory agent. J Intern. Med, 261(4): 349-362.
  • Ghaderi, J., Hosseini, S. F., Keyvani, N., Gómez-Guillén, M. C. (2019). Polymer blending effects on the physicochemical and structural features of the chitosan/poly (vinyl alcohol)/fish gelatin ternary biodegradable films. Food Hydrocoll, 95: 122-132.
  • Goy, R. C., & Assis, O. B. G. (2014). Antimicrobial analysis of films processed from chitosan and N, N, N-trimethylchitosan. Braz JChem Eng, 31: 643-648.
  • Hu D., Wang H., Wang L. (2016). Physical properties and antibacterial activity of quaternized chitosan/carboxymethyl cellulose blend films. LWT, 65: 398-405.
  • Ignatova, M., Starbova, K., Markova, N., Manolova, N., Rashkov, I. (2006). Electrospun nano-fibre mats with antibacterial properties from quaternised chitosan and poly (vinyl alcohol). Carbohydr Res, 341(12): 2098-2107.
  • Jakubowska, E., Gierszewska, M., Nowaczyk, J., Olewnik-Kruszkowska, E. (2020). Physicochemical and storage properties of chitosan-based films plasticized with deep eutectic solvent. Food Hydrocoll, 108: 106007.
  • Kaur P., Thakur R., Choudhary A. (2012). An in vitro study of the antifungal activity of silver/chitosan nanoformulations against important seed borne pathogens. Int J Sci Res, 1(7):83-86.
  • Koc, B., Akyuz, L., Cakmak, Y. S., Sargin, I., Salaberria, A. M., Labidi, J., Kaya, M. (2020). Production and characterization of chitosan-fungal extract films. Food Biosci, 35: 100545.
  • Lee, M. H., Kim, S. Y., Park, H. J. (2018). Effect of halloysite nanoclay on the physical, mechanical, and antioxidant properties of chitosan films incorporated with clove essential oil. Food Hydrocoll, 84: 58-67.
  • Lian, H., Shi, J., Zhang, X., Peng, Y. (2020). Effect of the added polysaccharide on the release of thyme essential oil and structure properties of chitosan based film. Food Packag, 23: 100467.
  • Lizárraga-Laborín, L. L., Quiroz-Castillo, J. M., Encinas-Encinas, J. C., Castillo-Ortega, M. M., Burruel-Ibarra, S. E., Romero-García, J., Rodríguez-Félix, D. E. (2018). Accelerated weathering study of extruded polyethylene/poly (lactic acid)/chitosan films. Polym Degrad Stab, 155: 43-51.
  • Lozano-Navarro J.I., Diaz-Zavala N. P., Velasco- Santos C., Melo-Banda J. A., Parama- Gorcia U., Paraguay-Delgado F., Garcio- Alamila R., Martinez-Hernande A. L., Zapien- Castillo S. (2018). Chitosan-starch films with natural extracts: physical, chemical, morphological and thermal properties. Materials, 11(1): 120.
  • Menazea, A. A., Eid, M. M., Ahmed, M. K. (2020). Synthesis, characterization, and evaluation of antimicrobial activity of novel Chitosan/Tigecycline composite. Int J Biol Macromol, 147: 194-199.
  • Namasivayam, S. K. R., Venkatachalam, G., Bharani, R. A. (2020). Immuno biocompatibility and anti-quorum sensing activities of chitosan-gum acacia gold nanocomposite (CS-GA-AuNC) against Pseudomonas aeruginosa drug-resistant pathogen. Sustain Chem Pharm, 17: 100300.
  • Nataraj, D., Sakkara, S., Meghwal, M., Reddy, N. (2018). Crosslinked chitosan films with controllable properties for commercial applications. Int J Biol Macromol, 120: 1256-1264.
  • Oh, J. W., Chun, S. C., Chandrasekaran, M. (2019). Preparation and in vitro characterization of chitosan nanoparticles and their broad-spectrum antifungal action compared to antibacterial activities against phytopathogens of tomato. Agronomy, 9(1): 21.
  • Ortiz-Duarte G., Pérez-Cabrera L. E., Artés-Hernández F., Martínez-Hernández G. B. (2019). Ag-chitosan nanocomposites in edible coatings affect the quality of fresh-cut melon. Postharvest Biol Tec, 147: 174-184.
  • Othman S. H. (2014). Bio-nanocomposite materials for food packaging applications: types of biopolymer and nano-sized filler. Agric Agric Sci Procedia, 2: 296-303.
  • Peng Y., Li Y. (2014). Combined effects of two kinds of essential oils on physical, mechanical and structural properties of chitosan films. Food Hydrocoll, 36: 287-293.
  • Perdones Á., Escriche I., Chiralt A.,Vargas M. (2016). Effect of chitosan–lemon essential oil coatings on volatile profile of strawberries during storage. Food Chem, 197: 979-986.
  • Perinelli D. R., Fagioli L., Campana R., Lam J. K., Baffone W., Palmieri G. F., Bonacucina G. (2018). Chitosan-based nanosystems and their exploited antimicrobial activity. Eur J Pharm Sci, 117: 8-20.
  • Pfaller, M. A., Messer, S. A., Boyken, L., Hollis, R. J., Diekema, D. J. (2003). In vitro susceptibility testing of filamentous fungi: Comparison of Etest and reference M38-A microdilution methods for determining posaconazole MICs. Diagn Microbiol Infect Dis, 45(4): 241–244.
  • Qin, Y., Liu, Y., Yuan, L., Yong, H., Liu, J. (2019). Preparation and characterization of antioxidant, antimicrobial and pH-sensitive films based on chitosan, silver nanoparticles and purple corn extract. Food Hydrocoll, 96: 102-111.
  • Rhim J. W., Hong S. I., Park H. M., Ng, P. K. (2006). Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J Agric Food Chem, 54(16): 5814-5822.
  • Salari, M., Khiabani, M. S., Mokarram, R. R., Ghanbarzadeh, B., Kafil, H. S. (2021). Use of gamma irradiation technology for modification of bacterial cellulose nanocrystals/chitosan nanocomposite film. Carbohydr Polym, 253: 117144.
  • Saricaoglu, F. T., Tural, S., Gul, O., Turhan, S. (2018). High pressure homogenization of mechanically deboned chicken meat protein suspensions to improve mechanical and barrier properties of edible films. Food Hydrocoll, 84: 135-145.
  • Seydim, A. C., Sarikus, G. (2006). Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils. Food Res Int, 39(5): 639-644.
  • Shankar S., Rhim J. W. (2018). Preparation of sulfur nanoparticle-incorporated antimicrobial chitosan films. Food Hydrocoll, 82:116-123.
  • Singh K., Mishra A., Sharma D., Singh K. (2019). Antiviral and antimicrobial potentiality of nano drugs. In Applications of Targeted Nano Drugs and Delivery Systems, 343-356.
  • da Silva, M. A., Iamanaka, B. T., Taniwaki, M. H., & Kieckbusch, T. G. (2013). Evaluation of the antimicrobial potential of alginate and alginate/chitosan films containing potassium sorbate and natamycin. Packag Technol Sci, 26(8): 479-492.
  • Swain S. K., Dash S., Behera C., Kisku S. K., Behera L. (2013). Cellulose nanobiocomposites with reinforcement of boron nitride: study of thermal, oxygen barrier and chemical resistant properties. Carbohydr Polym, 95(2): 728-732.
  • Tornuk F., Durak M. Z. (2015). A novel method for fresh‐cut decontamination: efficiency of vaporized ethyl pyruvate in reducing Staphylococcus aureus and Escherichia coli O157: H7 from fresh parsley. J Food Process Preserv, 39(6): 1518-1524.
  • Ulloa L., Ochani M., Yang H., Tanovic M., Halperin D., Yang R., Tracey K. J. (2002). Ethyl pyruvate prevents lethality in mice with established lethal sepsis and systemic inflammation. Proc Natl Acad Sci, 99(19): 12351-12356.
  • Wang, C., Niu, Y., Meng, Q., Zhang, L. (2019). Ethyl pyruvate (EP) suppressed post‐harvest blue mold of sweet cherry fruit by inhibiting the growth of Penicillium oxalicum. J Sci Food Agric, 99(7): 3517-3524.
  • Wang, X., Tang, R., Zhang, Y., Yu, Z., Qi, C. (2016). Preparation of a novel chitosan based biopolymer dye and application in wood dyeing. Polymers, 8(9): 338.
  • Yadav, S., Mehrotra, G. K., Bhartiya, P., Singh, A., Dutta, P. K. (2020). Preparation, physicochemical and biological evaluation of quercetin based chitosan-gelatin film for food packaging. Carbohydr Polym, 227: 115348.
  • Younes I., Sellimi S., Rinaudo M., Jellouli K., Nasri M. (2014). Influence of acetylation degree and molecular weight of homogeneous chitosans on antibacterial and antifungal activities. Int J Food Microbiol, 185: 57-63.
  • Youssef A. M., Abou-Yousef H., El-Sayed S. M., Kamel, S. (2015). Mechanical and antibacterial properties of novel high performance chitosan/nanocomposite films. Int J Biol Macromol, 76: 25-32.
  • Zarandona, I., Barba, C., Guerrero, P., de la Caba, K., Maté, J. (2020a). Development of chitosan films containing β-cyclodextrin inclusion complex for controlled release of bioactives. Food Hydrocoll, 104: 105720.
  • Zarandona, I., Puertas, A. I., Dueñas, M. T., Guerrero, P., de la Caba, K. (2020b). Assessment of active chitosan films incorporated with gallic acid. Food Hydrocoll, 101: 105486.
  • Zhang B., Wang D. F., Li H. Y., Xu Y., Zhang L. (2009). Preparation and Properties of Chitosan–Soybean Trypsin Inhibitor Blend Film with Anti-Aspergillus flavus Activity. Ind Crops and Prod, 29(2-3): 541-548.
  • Zhang X., Xiao G., Wang Y., Zhao Y., Su H., Tan T. (2017). Preparation of chitosan-TiO2 composite film with efficient antimicrobial activities under visible light for food packaging applications. Carbohydr Polym, 169: 101-107.
  • Zhang, Q., Wu, Q., Lin, D., Yao, S. (2013). Effect and mechanism of sodium chloride on the formation of chitosan–cellulose sulfate–tripolyphosphate crosslinked beads. Soft Matter, 9(43): 10354-10363.
  • Zhang, X., Zhang, Z., Wu, W., Yang, J., Yang, Q. (2021). Preparation and characterization of chitosan/Nano-ZnO composite film with antimicrobial activity. Bioprocess and Biosyst Eng, 44(6): 1193-1199.
  • Ilk, S., Sağlam, N., Özgen, M., Korkusuz, F. (2017). Chitosan nanoparticles enhances the anti-quorum sensing activity of kaempferol. Int J Biol Macromol, 94: 653-662.
  • Wang, B., Sui, J., Yu, B., Yuan, C., Guo, L., Abd El-Aty, A. M., Cui, B. (2021). Physicochemical properties and antibacterial activity of corn starch-based films incorporated with Zanthoxylum bungeanum essential oil. Carbohydr Polym, 254: 117314.

KİTOSAN BAZLI ETİL PİRÜVAT FİLMLERİN FİZİKOKİMYASAL, ANTİOKSİDAN, ANTİMİKROBİYAL VE ANTİ-QUORUM SENSİNG ÖZELLİKLERİNİN BELİRLENMESİ

Year 2021, Volume: 46 Issue: 6, 1425 - 1439, 15.10.2021
https://doi.org/10.15237/gida.GD21111

Abstract

Bu çalışmada kitosan film formülasyonuna iki farklı (%1 ve %3) konsantrasyonda etil pirüvat ilave edilerek, çevre dostu bir ambalaj materyali geliştirilmesi amaçlanmıştır. Bu kapsamda hazırlanan film örneklerinin nem, suda çözünürlük, görünür yoğunluk, renk, biyobozunurluk, kimyasallara karşı direnç özellikleri belirlenerek, filmlerin yüzey morfolojisi SEM, fonksiyonel grupları ise FTIR ile karakterize edilmiştir. Ayrıca film örneklerinin antimikrobiyal ve anti-quorum sensing aktivitesi disk difüzyon yöntemi ile belirlenmiştir. Sonuç olarak formülasyona etil pirüvat eklenmesiyle kitosan filmin nem içeriği, görünür yoğunluğu, biyobozunurluğu ve antioksidan aktivitesi artmıştır. SEM görüntüleri incelendiğinde ise etil pirüvatın, kitosan filmlerde gözenekli yapı oluşumuna neden olduğu gözlemlenmiştir. Film örnekleri Escherichia coli O157:H7, Bacillus cereus, Staphyloccocus aureus, Alternaria arborescens, Aspergillus flavus, Penicillium digitatum, Penicillium citrinum ve Penicillum expansum suşlarına karşı antimikrobiyal etki göstermiştir. Buna ek olarak tüm film örneklerinin anti-quorum sensing aktivite gösterdiği tespit edilmiştir. Elde edilen verilere göre özellikle CS-EP1 filminin, doğa dostu alternatif gıda ambalajı olarak kullanılabileceği belirlenmiştir

Supporting Institution

Çanakkale Onsekiz Mart Üniversitesi Bilimsel Araştırma Projeleri (BAP) Koordinasyon Birimi

Project Number

2018-FYL-1373

Thanks

Yapılan çalışma Çanakkale Onsekiz Mart Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından desteklenmiştir (Proje numarası: FYL-2018-1373). Ayrıca FTIR cihazının kullanımı için Doç. Dr. Hüseyin AYVAZ’a, küf kültürlerinin temini için Doç. Dr. Burhan ŞEN'e ve anti-quorum sensing kültürlerinin temini için Dr. Öğr. Üyesi Sedef İLK ve Arş. Gör. Kübra ERKAN TÜRKMEN'e teşekkür ederiz.

References

  • Aday M. S., Caner C. (2010). Understanding the effects of various edible coatings on the storability of fresh cherry. Packag. Technol. Sci, 441-456.
  • Akyuz, L., Kaya, M., Mujtaba, M., Ilk, S., Sargin, I., Salaberria, A. M., Islek, C. (2018). Supplementing capsaicin with chitosan-based films enhanced the anti-quorum sensing, antimicrobial, antioxidant, transparency, elasticity and hydrophobicity. Int J Biol Macromol, 115: 438-446.
  • Al-Naamani, L., Dobretsov, S., Dutta, J., Burgess, J. G. (2017). Chitosan-zinc oxide nanocomposite coatings for the prevention of marine biofouling. Chemosphere, 168: 408-417.
  • Avella M., De Vlieger J. J., Errico M. E., Fischer S., Vacca P., Volpe M. G. (2005). Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem, 93: 467–474.
  • Badawy, M. S. E., Riad, O. K. M., Taher, F. A., Zaki, S. A. (2020). Chitosan and chitosan-zinc oxide nanocomposite inhibit expression of LasI and RhlI genes and quorum sensing dependent virulence factors of Pseudomonas aeruginosa. Int J Biol Macromol, 149: 1109-1117.
  • Beaula, T. J., James, C. (2014). FT IR, FT-Raman spectra and chemical computations of herbicide 2-phenoxy propionic acid–A DFT approach. Spectrochim. Acta A Mol. Biomol Spectrosc, 122: 661-669.
  • Bozkurt F., Tornuk F., Toker O. S., Karasu S., Arici M., Durak M. Z., 2016. Effect of vaporized ethyl pyruvate as a novel preservation agent for control of postharvest quality and fungal damage of strawberry and cherry fruits. LWT, 65: 1044-1049.
  • Cetin, B., Ucak Ozkaya, G., Uran, H., Durak, M. Z. (2019a). Determination of the effect of ethyl pyruvate on the surface contamination of sausage to Listeria monocytogenes by using Q‐PCR assay. J Food Saf, 39(6): e12689.
  • Cetin, B., Uran, H., Konak, M. (2019b). Effect of evaporated ethyl pyruvate on reducing Salmonella Enteritidis in raw chicken meat. Braz J of Poultry Sci, 21(2).
  • Chang, A. K. T., Frias Jr, R. R., Alvarez, L. V., Bigol, U. G., Guzman, J. P. M. D. (2019). Comparative antibacterial activity of commercial chitosan and chitosan extracted from Auricularia sp. Biocatal Agric Biotechnol, 17: 189-195.
  • Çoban Ö. E., Patır B. (2010). Antioksidan etkili bazı bitki ve baharatların gıdalarda kullanımı. Gıda Teknolojileri Elektronik Dergisi, 5(2):7-19.
  • De Elguea-Culebras G. O., Bourbon A. I., Costa M. J., Muñoz-Tebar N., Carmona M., Molina A., Vicente A. A. (2019). Optimization of a chitosan solution as potential carrier for the incorporation of Santolina Chamaecyparissus L. solid by-product in an edible vegetal coating on ‘Manchego’Cheese. Food Hydrocoll, 89: 272-282.
  • Fernandes Queiroz, M., Melo, K. R. T., Sabry, D. A., Sassaki, G. L., Rocha, H. A. O. (2015). Does the use of chitosan contribute to oxalate kidney stone formation. Mar drugs, 13(1): 141-158.
  • Fink, M. P. (2007). Ethyl pyruvate: a novel anti‐inflammatory agent. J Intern. Med, 261(4): 349-362.
  • Ghaderi, J., Hosseini, S. F., Keyvani, N., Gómez-Guillén, M. C. (2019). Polymer blending effects on the physicochemical and structural features of the chitosan/poly (vinyl alcohol)/fish gelatin ternary biodegradable films. Food Hydrocoll, 95: 122-132.
  • Goy, R. C., & Assis, O. B. G. (2014). Antimicrobial analysis of films processed from chitosan and N, N, N-trimethylchitosan. Braz JChem Eng, 31: 643-648.
  • Hu D., Wang H., Wang L. (2016). Physical properties and antibacterial activity of quaternized chitosan/carboxymethyl cellulose blend films. LWT, 65: 398-405.
  • Ignatova, M., Starbova, K., Markova, N., Manolova, N., Rashkov, I. (2006). Electrospun nano-fibre mats with antibacterial properties from quaternised chitosan and poly (vinyl alcohol). Carbohydr Res, 341(12): 2098-2107.
  • Jakubowska, E., Gierszewska, M., Nowaczyk, J., Olewnik-Kruszkowska, E. (2020). Physicochemical and storage properties of chitosan-based films plasticized with deep eutectic solvent. Food Hydrocoll, 108: 106007.
  • Kaur P., Thakur R., Choudhary A. (2012). An in vitro study of the antifungal activity of silver/chitosan nanoformulations against important seed borne pathogens. Int J Sci Res, 1(7):83-86.
  • Koc, B., Akyuz, L., Cakmak, Y. S., Sargin, I., Salaberria, A. M., Labidi, J., Kaya, M. (2020). Production and characterization of chitosan-fungal extract films. Food Biosci, 35: 100545.
  • Lee, M. H., Kim, S. Y., Park, H. J. (2018). Effect of halloysite nanoclay on the physical, mechanical, and antioxidant properties of chitosan films incorporated with clove essential oil. Food Hydrocoll, 84: 58-67.
  • Lian, H., Shi, J., Zhang, X., Peng, Y. (2020). Effect of the added polysaccharide on the release of thyme essential oil and structure properties of chitosan based film. Food Packag, 23: 100467.
  • Lizárraga-Laborín, L. L., Quiroz-Castillo, J. M., Encinas-Encinas, J. C., Castillo-Ortega, M. M., Burruel-Ibarra, S. E., Romero-García, J., Rodríguez-Félix, D. E. (2018). Accelerated weathering study of extruded polyethylene/poly (lactic acid)/chitosan films. Polym Degrad Stab, 155: 43-51.
  • Lozano-Navarro J.I., Diaz-Zavala N. P., Velasco- Santos C., Melo-Banda J. A., Parama- Gorcia U., Paraguay-Delgado F., Garcio- Alamila R., Martinez-Hernande A. L., Zapien- Castillo S. (2018). Chitosan-starch films with natural extracts: physical, chemical, morphological and thermal properties. Materials, 11(1): 120.
  • Menazea, A. A., Eid, M. M., Ahmed, M. K. (2020). Synthesis, characterization, and evaluation of antimicrobial activity of novel Chitosan/Tigecycline composite. Int J Biol Macromol, 147: 194-199.
  • Namasivayam, S. K. R., Venkatachalam, G., Bharani, R. A. (2020). Immuno biocompatibility and anti-quorum sensing activities of chitosan-gum acacia gold nanocomposite (CS-GA-AuNC) against Pseudomonas aeruginosa drug-resistant pathogen. Sustain Chem Pharm, 17: 100300.
  • Nataraj, D., Sakkara, S., Meghwal, M., Reddy, N. (2018). Crosslinked chitosan films with controllable properties for commercial applications. Int J Biol Macromol, 120: 1256-1264.
  • Oh, J. W., Chun, S. C., Chandrasekaran, M. (2019). Preparation and in vitro characterization of chitosan nanoparticles and their broad-spectrum antifungal action compared to antibacterial activities against phytopathogens of tomato. Agronomy, 9(1): 21.
  • Ortiz-Duarte G., Pérez-Cabrera L. E., Artés-Hernández F., Martínez-Hernández G. B. (2019). Ag-chitosan nanocomposites in edible coatings affect the quality of fresh-cut melon. Postharvest Biol Tec, 147: 174-184.
  • Othman S. H. (2014). Bio-nanocomposite materials for food packaging applications: types of biopolymer and nano-sized filler. Agric Agric Sci Procedia, 2: 296-303.
  • Peng Y., Li Y. (2014). Combined effects of two kinds of essential oils on physical, mechanical and structural properties of chitosan films. Food Hydrocoll, 36: 287-293.
  • Perdones Á., Escriche I., Chiralt A.,Vargas M. (2016). Effect of chitosan–lemon essential oil coatings on volatile profile of strawberries during storage. Food Chem, 197: 979-986.
  • Perinelli D. R., Fagioli L., Campana R., Lam J. K., Baffone W., Palmieri G. F., Bonacucina G. (2018). Chitosan-based nanosystems and their exploited antimicrobial activity. Eur J Pharm Sci, 117: 8-20.
  • Pfaller, M. A., Messer, S. A., Boyken, L., Hollis, R. J., Diekema, D. J. (2003). In vitro susceptibility testing of filamentous fungi: Comparison of Etest and reference M38-A microdilution methods for determining posaconazole MICs. Diagn Microbiol Infect Dis, 45(4): 241–244.
  • Qin, Y., Liu, Y., Yuan, L., Yong, H., Liu, J. (2019). Preparation and characterization of antioxidant, antimicrobial and pH-sensitive films based on chitosan, silver nanoparticles and purple corn extract. Food Hydrocoll, 96: 102-111.
  • Rhim J. W., Hong S. I., Park H. M., Ng, P. K. (2006). Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J Agric Food Chem, 54(16): 5814-5822.
  • Salari, M., Khiabani, M. S., Mokarram, R. R., Ghanbarzadeh, B., Kafil, H. S. (2021). Use of gamma irradiation technology for modification of bacterial cellulose nanocrystals/chitosan nanocomposite film. Carbohydr Polym, 253: 117144.
  • Saricaoglu, F. T., Tural, S., Gul, O., Turhan, S. (2018). High pressure homogenization of mechanically deboned chicken meat protein suspensions to improve mechanical and barrier properties of edible films. Food Hydrocoll, 84: 135-145.
  • Seydim, A. C., Sarikus, G. (2006). Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils. Food Res Int, 39(5): 639-644.
  • Shankar S., Rhim J. W. (2018). Preparation of sulfur nanoparticle-incorporated antimicrobial chitosan films. Food Hydrocoll, 82:116-123.
  • Singh K., Mishra A., Sharma D., Singh K. (2019). Antiviral and antimicrobial potentiality of nano drugs. In Applications of Targeted Nano Drugs and Delivery Systems, 343-356.
  • da Silva, M. A., Iamanaka, B. T., Taniwaki, M. H., & Kieckbusch, T. G. (2013). Evaluation of the antimicrobial potential of alginate and alginate/chitosan films containing potassium sorbate and natamycin. Packag Technol Sci, 26(8): 479-492.
  • Swain S. K., Dash S., Behera C., Kisku S. K., Behera L. (2013). Cellulose nanobiocomposites with reinforcement of boron nitride: study of thermal, oxygen barrier and chemical resistant properties. Carbohydr Polym, 95(2): 728-732.
  • Tornuk F., Durak M. Z. (2015). A novel method for fresh‐cut decontamination: efficiency of vaporized ethyl pyruvate in reducing Staphylococcus aureus and Escherichia coli O157: H7 from fresh parsley. J Food Process Preserv, 39(6): 1518-1524.
  • Ulloa L., Ochani M., Yang H., Tanovic M., Halperin D., Yang R., Tracey K. J. (2002). Ethyl pyruvate prevents lethality in mice with established lethal sepsis and systemic inflammation. Proc Natl Acad Sci, 99(19): 12351-12356.
  • Wang, C., Niu, Y., Meng, Q., Zhang, L. (2019). Ethyl pyruvate (EP) suppressed post‐harvest blue mold of sweet cherry fruit by inhibiting the growth of Penicillium oxalicum. J Sci Food Agric, 99(7): 3517-3524.
  • Wang, X., Tang, R., Zhang, Y., Yu, Z., Qi, C. (2016). Preparation of a novel chitosan based biopolymer dye and application in wood dyeing. Polymers, 8(9): 338.
  • Yadav, S., Mehrotra, G. K., Bhartiya, P., Singh, A., Dutta, P. K. (2020). Preparation, physicochemical and biological evaluation of quercetin based chitosan-gelatin film for food packaging. Carbohydr Polym, 227: 115348.
  • Younes I., Sellimi S., Rinaudo M., Jellouli K., Nasri M. (2014). Influence of acetylation degree and molecular weight of homogeneous chitosans on antibacterial and antifungal activities. Int J Food Microbiol, 185: 57-63.
  • Youssef A. M., Abou-Yousef H., El-Sayed S. M., Kamel, S. (2015). Mechanical and antibacterial properties of novel high performance chitosan/nanocomposite films. Int J Biol Macromol, 76: 25-32.
  • Zarandona, I., Barba, C., Guerrero, P., de la Caba, K., Maté, J. (2020a). Development of chitosan films containing β-cyclodextrin inclusion complex for controlled release of bioactives. Food Hydrocoll, 104: 105720.
  • Zarandona, I., Puertas, A. I., Dueñas, M. T., Guerrero, P., de la Caba, K. (2020b). Assessment of active chitosan films incorporated with gallic acid. Food Hydrocoll, 101: 105486.
  • Zhang B., Wang D. F., Li H. Y., Xu Y., Zhang L. (2009). Preparation and Properties of Chitosan–Soybean Trypsin Inhibitor Blend Film with Anti-Aspergillus flavus Activity. Ind Crops and Prod, 29(2-3): 541-548.
  • Zhang X., Xiao G., Wang Y., Zhao Y., Su H., Tan T. (2017). Preparation of chitosan-TiO2 composite film with efficient antimicrobial activities under visible light for food packaging applications. Carbohydr Polym, 169: 101-107.
  • Zhang, Q., Wu, Q., Lin, D., Yao, S. (2013). Effect and mechanism of sodium chloride on the formation of chitosan–cellulose sulfate–tripolyphosphate crosslinked beads. Soft Matter, 9(43): 10354-10363.
  • Zhang, X., Zhang, Z., Wu, W., Yang, J., Yang, Q. (2021). Preparation and characterization of chitosan/Nano-ZnO composite film with antimicrobial activity. Bioprocess and Biosyst Eng, 44(6): 1193-1199.
  • Ilk, S., Sağlam, N., Özgen, M., Korkusuz, F. (2017). Chitosan nanoparticles enhances the anti-quorum sensing activity of kaempferol. Int J Biol Macromol, 94: 653-662.
  • Wang, B., Sui, J., Yu, B., Yuan, C., Guo, L., Abd El-Aty, A. M., Cui, B. (2021). Physicochemical properties and antibacterial activity of corn starch-based films incorporated with Zanthoxylum bungeanum essential oil. Carbohydr Polym, 254: 117314.
There are 59 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Articles
Authors

Burcu Kaya 0000-0003-1755-7705

Nükhet Nilüfer Zorba 0000-0001-6851-6474

Cengiz Caner 0000-0002-8293-7301

Project Number 2018-FYL-1373
Publication Date October 15, 2021
Published in Issue Year 2021 Volume: 46 Issue: 6

Cite

APA Kaya, B., Zorba, N. N., & Caner, C. (2021). KİTOSAN BAZLI ETİL PİRÜVAT FİLMLERİN FİZİKOKİMYASAL, ANTİOKSİDAN, ANTİMİKROBİYAL VE ANTİ-QUORUM SENSİNG ÖZELLİKLERİNİN BELİRLENMESİ. Gıda, 46(6), 1425-1439. https://doi.org/10.15237/gida.GD21111
AMA Kaya B, Zorba NN, Caner C. KİTOSAN BAZLI ETİL PİRÜVAT FİLMLERİN FİZİKOKİMYASAL, ANTİOKSİDAN, ANTİMİKROBİYAL VE ANTİ-QUORUM SENSİNG ÖZELLİKLERİNİN BELİRLENMESİ. The Journal of Food. October 2021;46(6):1425-1439. doi:10.15237/gida.GD21111
Chicago Kaya, Burcu, Nükhet Nilüfer Zorba, and Cengiz Caner. “KİTOSAN BAZLI ETİL PİRÜVAT FİLMLERİN FİZİKOKİMYASAL, ANTİOKSİDAN, ANTİMİKROBİYAL VE ANTİ-QUORUM SENSİNG ÖZELLİKLERİNİN BELİRLENMESİ”. Gıda 46, no. 6 (October 2021): 1425-39. https://doi.org/10.15237/gida.GD21111.
EndNote Kaya B, Zorba NN, Caner C (October 1, 2021) KİTOSAN BAZLI ETİL PİRÜVAT FİLMLERİN FİZİKOKİMYASAL, ANTİOKSİDAN, ANTİMİKROBİYAL VE ANTİ-QUORUM SENSİNG ÖZELLİKLERİNİN BELİRLENMESİ. Gıda 46 6 1425–1439.
IEEE B. Kaya, N. N. Zorba, and C. Caner, “KİTOSAN BAZLI ETİL PİRÜVAT FİLMLERİN FİZİKOKİMYASAL, ANTİOKSİDAN, ANTİMİKROBİYAL VE ANTİ-QUORUM SENSİNG ÖZELLİKLERİNİN BELİRLENMESİ”, The Journal of Food, vol. 46, no. 6, pp. 1425–1439, 2021, doi: 10.15237/gida.GD21111.
ISNAD Kaya, Burcu et al. “KİTOSAN BAZLI ETİL PİRÜVAT FİLMLERİN FİZİKOKİMYASAL, ANTİOKSİDAN, ANTİMİKROBİYAL VE ANTİ-QUORUM SENSİNG ÖZELLİKLERİNİN BELİRLENMESİ”. Gıda 46/6 (October 2021), 1425-1439. https://doi.org/10.15237/gida.GD21111.
JAMA Kaya B, Zorba NN, Caner C. KİTOSAN BAZLI ETİL PİRÜVAT FİLMLERİN FİZİKOKİMYASAL, ANTİOKSİDAN, ANTİMİKROBİYAL VE ANTİ-QUORUM SENSİNG ÖZELLİKLERİNİN BELİRLENMESİ. The Journal of Food. 2021;46:1425–1439.
MLA Kaya, Burcu et al. “KİTOSAN BAZLI ETİL PİRÜVAT FİLMLERİN FİZİKOKİMYASAL, ANTİOKSİDAN, ANTİMİKROBİYAL VE ANTİ-QUORUM SENSİNG ÖZELLİKLERİNİN BELİRLENMESİ”. Gıda, vol. 46, no. 6, 2021, pp. 1425-39, doi:10.15237/gida.GD21111.
Vancouver Kaya B, Zorba NN, Caner C. KİTOSAN BAZLI ETİL PİRÜVAT FİLMLERİN FİZİKOKİMYASAL, ANTİOKSİDAN, ANTİMİKROBİYAL VE ANTİ-QUORUM SENSİNG ÖZELLİKLERİNİN BELİRLENMESİ. The Journal of Food. 2021;46(6):1425-39.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/