Research Article
BibTex RIS Cite

γ-aminobutyric acid (GABA), carnosine, anserine, 5-hydroxymethylfurfural (HMF) and reducing sugar content of kefir fortified with alternative protein source Spirulina platensis

Year 2024, , 118 - 130, 25.03.2024
https://doi.org/10.29050/harranziraat.1401399

Abstract

The fact that the wastes generated during animal production activities cause environmental pollution and increase the rate of greenhouse gas emissions, which is shown as a cause of global warming, has brought protein-rich microalgae resources, especially Spirulina platensis, to the agenda. S. platensis, which has sustainable cultivation opportunities with less energy and affordable cost, has attracted attention with its high protein content as well as its environmentally friendly identity. In the present study, S. platensis was added at different ratios (0.5%, 1% and 1.5%) to kefir, which is characterized as a functional food due to the probiotic microorganisms it contains, and the content of γ-aminobutyric acid (GABA), which is characterized as a neurotransmitter substance, as well as carnosine and anserine dipeptides, which play an important role in the prevention of neurological diseases and oxidative stress accumulated in tissues, were determined in the samples. In addition, the effect of S. platensis addition was revealed by analyzing the formation of reducing sugar and Maillard reaction product 5-hydroxymethylfurfural (HMF) in kefir samples. In this context, it was determined that the addition of S. platensis to kefir samples statistically had a very significant effect on GABA, carnosine and HMF values (p<0.01) and a significant effect on reducing sugar (p<0.05), while it had no significant effect on anserine (p>0.05). While the GABA content was 544.52 nmol mL-1 in the control group kefir samples, it increased with the addition of S. platensis and ranged between 1310.62-2055.12 nmol mL-1. Similarly, carnosine and anserine contents increased with the addition of S. platensis and ranged between 10.51-16.01 nmol mL-1 and 12.41-17.38 nmol mL-1, respectively. Although HMF content in kefir samples increased with the addition of S. platensis, it was found to be within the consumable limits. In conclusion, kefir samples with S. platensis addition are recommended to be consumed as a source of GABA, carnosine and anserine and as a functional product.

References

  • Aktaş, B. (2022). Spirulina platensis ilave edilerek üretilen kefirin besin içeriğinin belirlenmesi. Yüksek Lisans Tezi, Sağlık Bilimleri Üniversitesi Hamidiye Sağlık Bilimleri Enstitüsü, İstanbul.
  • Aldini, G., de Courten, B., Regazzoni, L., Gilardoni, E., Ferrario, G., Baron, G., Altomare, A., D’Amato, A., Vistoli, G., & Carini, M. (2021). Understanding the antioxidant and carbonyl sequestering activity of carnosine: direct and indirect mechanisms. Free Radical Research, 55(4), 321-330. DOI: https://doi.org/10.1080/10715762.2020.1856830
  • Alkhatip, A., Feng, W. H., Huang, Y. J., Kuo, C. H., & Hou, C. W. (2020). Anserine reverses exercise-induced oxidative stress and preserves cellular homeostasis in healthy men. Nutrients, 12(4), 1146. DOI: https://doi.org/10.3390/nu12041146
  • Arslan, S. (2015). A review: chemical, microbiological and nutritional characteristics of kefir. CyTA-Journal of Food, 13(3), 340-345. DOI: http://dx.doi.org/10.1080/19476337.2014.981588
  • Atila, A., Alay, H., Yaman, M. E., Akman, T. C., Cadirci, E., Bayrak, B., Celik, S., Atila, N. E., Yaganoglu, A. M., Kadioglu, Y., Halıcı, Z., Parlak, E., & Bayraktutan, Z. (2021). The serum amino acid profile in COVID-19. Amino Acids, 53(10), 1569-1588. DOI: https://doi.org/10.1007/s00726-021-03081-w
  • Bakirci, İ., Terzioğlu, M. E., & Akkaya, İ. (2023). Volatile compounds, antioxidant activity, ACE inhibitory activity, HMF content and microstructure of fruit yoghurts. Mljekarstvo, 73(4), 250-262. DOI: https://doi.org/10.15567/mljekarstvo.2023.0404
  • Bartkiene, E., Tolpeznikaite, E., Klupsaite, D., Starkute, V., Bartkevics, V., Skrastina, A., Pavlenko, R., Mockus, E., Lele, V., Batkeviciute, G., Budrikyte, A., Janulyte, R., Jomantaite, I., Kybartaite, A., Knystautaite, K., Valionyte, A., Ruibys, R., & Rocha, J. M. (2023). Bio-converted Spirulina for nutraceutical chewing candy formulations rich in L-glutamic and gamma-aminobutyric acids. Microorganisms, 11(2), 441. DOI: https://doi.org/10.3390/microorganisms11020441
  • Bashir, S., Sharif, M. K., Butt, M. S., & Shahid, M. (2016). Functional properties and amino acid profile of Spirulina platensis protein isolates. Pakistan Journal of Scientific and Industrial Research Series B: Biological Sciences, 59(1), 12-19. DOI: https://doi.org/10.52763/PJSIR.BIOL.SCI.59.1.2016.12.19
  • Belay, A. (1997). Mass culture of Spirulina outdoors. The earthrise farms experience. In: Vonshak A (Ed.), Spirulina platensis (Arthrospira): Physiology, Cell-biology and Biotechnology, 1st edn. (pp. 131-158). Taylor & Francis.
  • Bilişli, A. (2019). Gıda Kimyası. İzmir: Sidaş Yayınları.
  • Cesak, O., Vostalova, J., Vidlar, A., Bastlova, P., & Student, V. (2023). Carnosine and beta-alanine supplementation in human medicine: narrative review and critical assesment. Nutrients, 15(7), 1770. DOI: https://doi.org/10.3390/nu15071770
  • Cui, Y., Shi, X., Tang, Y., Xie, Y., & Du, Z. (2020). The effects of heat treatment and fermentation processes on the formation of furfurals in milk-based dairy products using a QuEChERS technique followed by gas chromatography coupled with triple quadrupole mass spectrometry. Food Chemistry, 313, 125930. DOI: https://doi. org/10.1016/j.foodchem.2019.125930
  • Czerwonka, M., Pietrzak-Sajjad, R., & Bobrowska-Korczak, B. (2020). Evaluation of 5-hydroxymethylfurfural content in market milk products. Food Additives & Contaminants: Part A, 37(7), 1135-1144. DOI: https://doi.org/10.1080/19440049.2020.1757162
  • Das, D., & Goyal, A. (2015). Antioxidant activity and γ-aminobutyric acid (GABA) producing ability of probiotic Lactobacillus plantarum DM5 isolated from Marcha of Sikkim. LWT-Food Science and Technology, 61(1), 263-268. DOI: https://doi.org/10.1016/j.lwt.2014.11.013
  • Derave, W., De Courten, B., & Baba, S. P. (2019). An update on carnosine and anserine research. Amino Acids, 51, 1-4. DOI: https://doi.org/10.1007/s00726-018-02689-9
  • Diana, M., Quílez, J., & Rafecas, M. (2014). Gamma-aminobutyric acid as a bioactive compound in foods: a review. Journal of Functional Foods, 10, 407-420. DOI: https://doi.org/10.1016/j.jff.2014.07.004
  • Ding, Q., Tanigawa, K., Kaneko, J., Totsuka, M., Katakura, Y., Imabayashi, E., Matsuda, H., & Hisatsune, T. (2018). Anserine/carnosine supplementation preserves blood flow in the prefrontal brain of elderly people carrying APOE e4. Aging and Disease, 9(3), 334-345. DOI: https://doi.org/10.14336/AD.2017.0809
  • Dolan, E., Saunders, B., Dantas, W. S., Murai, I. H., Roschel, H., Artioli, G. G., Harris, R., Bicudo, J. E. P. W., Sale, C., & Gualano, B. (2018). A comparative study of hummingbirds and chickens provides mechanistic insight on the histidine containing dipeptide role in skeletal muscle metabolism. Scientific Reports, 8, 14788. DOI: https://doi.org/10.1038/s41598-018-32636-3.
  • Er Demirhan, B., Demirhan, B., Sönmez, C., Torul, H., Tamer, U., & Yentür, G. (2015). Determination of potential 5-hydroxymethyl-2-furaldehyde and 2-furaldehyde compounds in follow-on milks and infant formulas using the high-performance liquid chromatography method. Journal of Dairy Science, 98(2), 818-822. DOI: http://dx.doi.org/10.3168/jds.2014-8761
  • Everaert, I., Baron, G., Barbaresi, S., Gilardoni, E., Coppa, C., Carini, M., Vistoli, G., Bex, T., Stautemas, J., Blancquaert, L., Derave, W., Aldini, G., & Regazzoni, L. (2019). Development and validation of a sensitive LC–MS/MS assay for the quantification of anserine in human plasma and urine and its application to pharmacokinetic study. Amino Acids, 51, 103-114. DOI: https://doi.org/10.1007/s00726-018-2663-y
  • Farag, M. R., Alagawany, M., Bin-Jumah, M., Othman, S. I., Khafaga, A. F., Shaheen, H. M., Samak, D., Shehata, A. M., Allam, A. A., & Abd El-Hack, M. E. (2020). The toxicological aspects of the heat-borne toxicant 5-hydroxymethylfurfural in animals: a review. Molecules, 25(8), 1941. DOI: https://doi.org/10.3390/molecules25081941
  • Galli, V., Venturi, M., Mari, E., Guerrini, S., & Granchi, L. (2022). Gamma-aminobutyric acid (GABA) production in fermented milk by lactic acid bacteria isolated from spontaneous raw milk fermentation. International Dairy Journal, 127, 105284. DOI: https://doi.org/10.1016/j.idairyj.2021.105284
  • Garbowska, M. Pluta, A., & Berthold-Pluta, A. (2020). Contents of functionally bioactive peptides, free amino acids, and biogenic amines in Dutch-type cheese models produced with different Lactobacilli. Molecules, 25(22), 5465. DOI: https://doi.org/10.3390/molecules25225465
  • Gharehyakheh, S. (2021). Gamma aminobutyric acid (GABA) production using Lactobacillus sp. Makhdzir Naser-1 (GQ451633) in the cherry- kefir beverage. Journal of Food Processing and Preservation, 45, e15521. DOI: https://doi.org/10.1111/jfpp.15521
  • Gün, D. (2019). Spirulina platensis ilavesi ile fonksiyonel bisküvi ve kraker geliştirilmesi. Doktora Tezi, Gaziantep Üniversitesi Fen Bilimleri Enstitüsü, Gaziantep.
  • Hamzaoğlu, F. (2023). Amino asitlerle zenginleştirilmiş nar ve portakaldan oluşan karışık meyve suyunun depolama boyunca antosiyanin stabilitesi. Doktora Tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • Haus, J. M., & Thyfault, J. P. (2018). Therapeutic potential of carbonyl-scavenging carnosine derivative in metabolic disorders. The Journal of Clinical Investigation, 128(12), 5198-5200. DOI: https://doi.org/10.1172/JCI124304
  • Hisatsune, T., Kaneko, J., Kurashige, H., Cao, Y., Satsu, H., Totsuka, M., Katakura, Y., Imabayshi, E., & Matsuda, H. (2016). Effect of anserine/carnosine supplementation on verbal episodic memory in elderly people. Journal of Alzheimer’s Disease, 50(1), 149-159. DOI: https://doi.org/10.3233/JAD-150767
  • Hocquette, A., Lambert, C., Sinquin, C., Peterolff, L., Wagner, Z., Bonny, S. P. F., Lebert, A., & Hocquette, J. F. (2015). Educated consumers don't believe artificial meat is the solution to the problems with the meat industry. Journal of Integrative Agriculture, 14(2), 273-284. DOI: https://doi.org/10.1016/S2095-3119(14)60886-8
  • Hou, Y., Zhang, X., Liu, X., Wu, Q., Hou, J., Su, P., & Guo, Q. (2022). Comparison of the effects of 5-hydroxymethylfurfural in milk powder matrix and standard water on oxidative stress system of Zebrafish. Foods, 11(12), 1814. DOI: https://doi.org/10.3390/foods11121814
  • Hussin, F. S., Chay, S. Y., Hussin, A. S. M., Ibadullah, W. Z. W, Muhialdin, B. J., Ghani, M. S. A., & Saari, N. (2021). GABA enhancement by simple carbohydrates in yoghurt fermented using novel, self-cloned Lactobacillus plantarum Taj-Apis362 and metabolomics profiling. Scientific Reports, 11, 9417. DOI: https://doi.org/10.1038/s41598-021-88436-9
  • Hutkins, R. W. (2006). Microbiology and Technology of Fermented Foods. Ames: Blackwell Publishing.
  • Inoue, K., Shirai, T., Ochiai, H., Kasao, M., Hayakawa, K., Kimura, M., & Sansawa, H. (2003). Blood-pressure-lowering effect of a novel fermented milk containing γ-aminobutyric acid (GABA) in mild hypertensives. European Journal of Clinical Nutrition, 57(3), 490-495. DOI: https://doi.org/10.1038=sj.ejcn.1601555
  • Kaneko, J., Enya, A., Enomoto, K., Ding, Q., & Hisatsune, T. (2017). Anserine (beta-alanyl-3-methyl-L-histidine) improves neurovascular-unit dysfunction and spatial memory in aged AβPPswe/PSEN1dE9 Alzheimer's-model mice. Scientific Reports, 7, 12571. DOI: https://doi.org/10.1038/s41598-017-12785-7
  • Khanlari, Z., Moayedi, A., Ebrahimi, P., Khomeiri, M., & Sadeghi, A. (2021). Enhancement of γ‐aminobutyric acid (GABA) content in fermented milk by using Enterococcus faecium and Weissella confusa isolated from sourdough. Journal of Food Processing and Preservation, 45(10), e15869. DOI: https://doi.org/10.1111/jfpp.15869
  • Knoflach, F., Hernandez, M. C., & Bertrand, D. (2018). Methods for the discovery of novel compounds modulating a gamma-aminobutyric acid receptor type a neurotransmission. JoVE (Journal of Visualized Experiments), 138, e57842. DOI: https://doi.org/10.3791/57842
  • Li, M., Shen, M., Lu, J., Yang, J., Huang, Y., Liu, L., Fan, H., Xie, J., & Xie, M. (2022). Maillard reaction harmful products in dairy products: formation, occurrence, analysis, and mitigation strategies. Food Research International, 151, 110839. DOI: https://doi.org/10.1016/j.foodres.2021.110839
  • Li, Y. H., Wang, W. J., Guo, L., Shao, Z. P., & Xu, X. J. (2019). Comparative study on the characteristics and oxidation stability of commercial milk powder during storage. Journal of Dairy Science, 102(10), 8785-8797. DOI: https://doi.org/10.3168/jds.2018-16089
  • Masuoka, N., Yoshimine, C., Hori, M., Tanaka, M., Asada, T., Abe, K., & Hisatsune, T. (2019). Effects of anserine/carnosine supplementation on mild cognitive impairment with APOE4. Nutrients, 11(7), 1626. DOI: https://doi.org/10.3390/nu11071626
  • Mercan, F. (2022). Spirulina (Arthrospira) platensis biyokütlesinin laktik asit fermentasyonu için substrat olma potansiyelinin değerlendirilmesi. Yüksek Lisans Tezi, Bursa Uludağ Üniversitesi Fen Bilimleri Enstitüsü, Bursa.
  • Nejati, F., Rizzello, C. G., Di Cagno, R., Sheikh-Zeinoddin, M., Diviccaro, A., Minervini, F., & Gobbetti, M. (2013). Manufacture of a functional fermented milk enriched of Angiotensin-I Converting Enzyme (ACE)-inhibitory peptides and γ-amino butyric acid (GABA). LWT-Food Science and Technology, 51(1), 183-189. DOI: http://dx.doi.org/10.1016/j.lwt.2012.09.017
  • Ngo, D. H., & Vo, T. S. (2019). An updated review on pharmaceutical properties of gamma-aminobutyric acid. Molecules, 24(15), 2678. DOI: https://doi.org/10.3390/molecules24152678
  • Nuss, P. (2015). Anxiety disorders and GABA neurotransmission: a disturbance of modulation. Neuropsychiatric Disease and Treatment, 11, 165-175. DOI: https://doi.org/10.2147/NDT.S58841
  • Oketch-Rabah., H. A, Madden, E. F., Roe, A. L., & Betz, J. M. (2021). United States Pharmacopeia (USP) safety review of gamma-aminobutyric acid (GABA). Nutrients, 13(8), 2742. DOI: https://doi.org/10.3390/nu13082742
  • Özbal, B. (2020). Spirulina platensis ile fonksiyonel çikolata ürünü geliştirilmesi. Yüksek Lisans Tezi, Gaziantep Üniversitesi Fen Bilimleri Enstitüsü, Gaziantep.
  • Özdal, H. R., Yildiz, B., & Arkun, G. (2018). Hydroxymethylfurfural (HMF) formation in milk and dairy products. International Journal of Food Engineering Research, 4(1), 13-23.
  • Pellegrino, L., Masotti, F., Cattaneo, S., Hogenboom, J. A., & De Noni, I. (2013). Nutritional quality of milk proteins. Advanced Dairy Chemistry: Volume 1A: Proteins: Basic Aspects, 4th Edition, 515-538.
  • Recommended Dietary Allowance (RDA), (2005). Institute of Medicine. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. Washington, DC: The National Academies Press. Retrieved from: https://doi.org/10.17226/10490
  • Renes, E., Ladero, V., Tornadijo, M. E., & Fresno, J. M. (2019). Production of sheep milk cheese with high γ-aminobutyric acid and ornithine concentration and with reduced biogenic amines level using autochthonous lactic acid bacteria strains. Food Microbiology, 78, 1-10. DOI: https://doi.org/10.1016/j.fm.2018.09.003
  • Rosa, D. D., Dias, M. M. S., Grześkowiak, Ł. M., Reis, S. A., Conceição, L. L., & Peluzio, M. D. C. G. (2017). Milk kefir: nutritional, microbiological and health benefits. Nutrition Research Reviews, 30(1), 82-96. DOI: https://doi.org/10.1017/S0954422416000275
  • Sahab, N. R., Subroto, E., Balia, R. L., & Utama, G. L. (2020). γ-Aminobutyric acid found in fermented foods and beverages: current trends. Heliyon, 6(11), e05526. DOI:https://doi.org/10.1016/j.heliyon.2020.e05526
  • Saldamlı, İ., & Temiz, A. (2017). Amino asitler, peptitler, proteinler. Saldamlı, İ. (Ed.), Gıda Kimyası, (pp. 227-317). Hacettepe Üniversitesi Yayınları.
  • Siragusa, S., De Angelis, M., Di Cagno, R., Rizzello, C. G., Coda, R., & Gobbetti, M. (2007). Synthesis of γ-aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses. Applied and Environmental Microbiology, 73(22), 7283-7290. DOI: https://doi.org/10.1128/AEM.01064-07
  • Terzioğlu, M. E., & Bakırcı, İ. (2023). Comparison of buffalo’s, sheep’s and goat’s yoghurts in terms of their antioxidant activity, angiotensin-converting enzyme (ACE) inhibitory activity, volatile compound content and 5-hydroxymethylfurfural (HMF) content. Medycyna Weterynaryjna-Veterinary Medicine-Science and Practice, 79(3), 148-152. DOI: dx.doi.org/10.21521/mw.6727
  • Terzioğlu, M. E., Arslaner, A., & Bakırcı, İ. (2023). Çilekle zenginleştirilmiş manda yoğurdunun kalite karakteristikleri ile yağ asidi kompozisyonu, ACE inhibitör aktivite ve HMF içeriği bakımından incelenmesi. Gıda, 48(2), 381-393. DOI: https://doi.org/10.15237/gida.GD22101
  • Urdaneta, E., Barrenetxe, J., Aranguren, P., Irigoyen, A., Marzo, F., & Ibáñez, F. C. (2007). Intestinal beneficial effects of kefir-supplemented diet in rats. Nutrition Research, 27(10), 653-658. DOI:https://doi.org/10.1016/j.nutres.2007.08.002
  • Van den Oever, S. P., & Mayer, H. K. (2021). Analytical assessment of the intensity of heat treatment of milk and dairy products. International Dairy Journal, 121, 105097. DOI: https://doi.org/10.1016/j.idairyj.2021.105097
  • Xing, Q., Fu, X., Liu, Z., Cao, Q., & You, C. (2021). Contents and evolution of potential furfural compounds in milk-based formula, ultra-high temperature milk and pasteurised yoghurt. International Dairy Journal, 120, 105086. DOI: https://doi.org/10.1016/j.idairyj.2021.105086
  • Xing, Q., Ma, Y., Fu, X., Cao, Q., Zhang, Y., & You, C. (2020). Effects of heat treatment, homogenization pressure, and overprocessing on the content of furfural compounds in liquid milk. Journal of the Science of Food and Agriculture, 100, 5276-5282. DOI: https://doi.org/10.1002/jsfa.10578
  • Yetim, H., & Tekiner İ. H. (2020). Alternatif protein kaynaklarından yapay et üretimi kavramına eleştirel bir bakış. Helal ve Etik Araştırmalar Dergisi, 2(2), 85-100.
  • Yeum, K. J., Orioli, M., Regazzoni, L., Carini, M., Rasmussen, H., Russell, R. M., & Aldini, G. (2010). Profiling histidine dipeptides in plasma and urine after ingesting beef, chicken or chicken broth in humans. Amino Acids, 38, 847-858. DOI: https://doi.org/10.1007/s00726-009-0291-2
  • Yilmaz‐Ersan, L., Sahin, S., Ozcan, T., Akpinar‐Bayizit, A., Usta‐Gorgun, B., Ciniviz, M., & Keser, G. (2022). Interaction of probiotic activity, antioxidative capacity, and gamma‐amino butyric acid (GABA) in chestnut milk‐fortified yogurt. Journal of Food Processing and Preservation, 46(12), e17266. DOI: https://doi.org/10.1111/jfpp.17266
  • Zepka, L. Q., Jacob-Lopes, E., & Roca, M. (2019). Catabolism and bioactive properties of chlorophylls. Current Opinion in Food Science, 26, 94-100. DOI: https://doi.org/10.1016/j.cofs.2019.04.004
  • Zhang, L., Hu, Y., Badar, I. H., Xia, X., Kong, B., & Chen, Q. (2021). Prospects of artificial meat: Opportunities and challenges around consumer acceptance. Trends in Food Science & Technology, 116, 434-444. DOI: https://doi.org/10.1016/j.tifs.2021.07.01

Alternatif protein kaynağı Spirulina platensis ile zenginleştirilen kefirin γ-aminobütirik asit (GABA), karnosin, anserin, 5-hidroksimetilfurfural (HMF) ve indirgen şeker içeriği

Year 2024, , 118 - 130, 25.03.2024
https://doi.org/10.29050/harranziraat.1401399

Abstract

Hayvansal üretim faaliyetleri esnasında oluşan atıkların, çevre kirliliğine neden olması ve küresel ısınmanın bir nedeni olarak gösterilen sera gazı emisyon oranını arttırması başta Spirulina platensis olmak üzere protein açısından zengin mikroalg kaynaklarını gündeme getirmiştir. Daha az enerji kullanılarak, uygun maaliyetle sürdürülebilir yetiştirme imkanlarına sahip olan S. platensis yüksek protein içeriğinin yanı sıra çevre dostu kimliğiyle dikkatleri üzerine çekmiştir. Mevcut çalışmada içerdiği probiyotik mikroorganizmalar neticesinde fonksiyonel gıda olarak nitelendirilen kefire farklı oranlarda (%0.5, %1 ve %1.5) S. platensis ilave edilmiş ve örneklerde nörotransmiter madde olarak nitelendirilen γ-aminobütirik asit (GABA) içeriğinin yanı sıra nörolojik hastalıkların ve dokularda biriken oksidatif stresin önlenmesinde önemli bir rol oynayan karnosin ve anserin dipeptilerinin içeriği belirlenmiştir. Ayrıca kefir örneklerinde indirgen şeker ve Maillard reaksiyon ürünü olan 5-hidroksimetilfurfural (HMF) oluşumu incelenerek S. platensis ilavesinin etkisi ortaya konmuştur. Bu bağlamda, kefir örneklerine S. platensis ilavesinin istatistiksel olarak GABA, karnosin ve HMF değerleri üzerinde çok önemli (p<0.01) ve indirgen şeker üzerinde önemli (p<0.05) etkiye sahip olduğu, anserin üzerinde ise önemli bir etkisinin olmadığı (p>0.05) belirlenmiştir. Kontrol grubu kefir örneklerinde GABA içeriğinin 544.52 nmol mL-1 olduğu belirlenirken, S. platensis ilavesiyle artarak 1310.62-2055.12 nmol mL-1 arasında değiştiği saptanmıştır. Benzer şekilde karnosin ve anserin içeriklerinin de S. platensis ilavesiyle artarak, sırasıyla 10.51-16.01 nmol mL-1 ve 12.41-17.38 nmol mL-1 arasında değiştiği belirlenmiştir. Kefir örneklerinde saptanan HMF içeriği S. platensis ilavesiyle artmış olmasına rağmen, tüketilebilir limitler içerisinde yer aldığı ortaya konmuştur. Sonuç olarak, S. platensis ilaveli kefir örneklerinin GABA, karnosin ve anserin kaynağı ve fonksiyonel bir ürün olarak tüketimi tavsiye edilmektedir.

References

  • Aktaş, B. (2022). Spirulina platensis ilave edilerek üretilen kefirin besin içeriğinin belirlenmesi. Yüksek Lisans Tezi, Sağlık Bilimleri Üniversitesi Hamidiye Sağlık Bilimleri Enstitüsü, İstanbul.
  • Aldini, G., de Courten, B., Regazzoni, L., Gilardoni, E., Ferrario, G., Baron, G., Altomare, A., D’Amato, A., Vistoli, G., & Carini, M. (2021). Understanding the antioxidant and carbonyl sequestering activity of carnosine: direct and indirect mechanisms. Free Radical Research, 55(4), 321-330. DOI: https://doi.org/10.1080/10715762.2020.1856830
  • Alkhatip, A., Feng, W. H., Huang, Y. J., Kuo, C. H., & Hou, C. W. (2020). Anserine reverses exercise-induced oxidative stress and preserves cellular homeostasis in healthy men. Nutrients, 12(4), 1146. DOI: https://doi.org/10.3390/nu12041146
  • Arslan, S. (2015). A review: chemical, microbiological and nutritional characteristics of kefir. CyTA-Journal of Food, 13(3), 340-345. DOI: http://dx.doi.org/10.1080/19476337.2014.981588
  • Atila, A., Alay, H., Yaman, M. E., Akman, T. C., Cadirci, E., Bayrak, B., Celik, S., Atila, N. E., Yaganoglu, A. M., Kadioglu, Y., Halıcı, Z., Parlak, E., & Bayraktutan, Z. (2021). The serum amino acid profile in COVID-19. Amino Acids, 53(10), 1569-1588. DOI: https://doi.org/10.1007/s00726-021-03081-w
  • Bakirci, İ., Terzioğlu, M. E., & Akkaya, İ. (2023). Volatile compounds, antioxidant activity, ACE inhibitory activity, HMF content and microstructure of fruit yoghurts. Mljekarstvo, 73(4), 250-262. DOI: https://doi.org/10.15567/mljekarstvo.2023.0404
  • Bartkiene, E., Tolpeznikaite, E., Klupsaite, D., Starkute, V., Bartkevics, V., Skrastina, A., Pavlenko, R., Mockus, E., Lele, V., Batkeviciute, G., Budrikyte, A., Janulyte, R., Jomantaite, I., Kybartaite, A., Knystautaite, K., Valionyte, A., Ruibys, R., & Rocha, J. M. (2023). Bio-converted Spirulina for nutraceutical chewing candy formulations rich in L-glutamic and gamma-aminobutyric acids. Microorganisms, 11(2), 441. DOI: https://doi.org/10.3390/microorganisms11020441
  • Bashir, S., Sharif, M. K., Butt, M. S., & Shahid, M. (2016). Functional properties and amino acid profile of Spirulina platensis protein isolates. Pakistan Journal of Scientific and Industrial Research Series B: Biological Sciences, 59(1), 12-19. DOI: https://doi.org/10.52763/PJSIR.BIOL.SCI.59.1.2016.12.19
  • Belay, A. (1997). Mass culture of Spirulina outdoors. The earthrise farms experience. In: Vonshak A (Ed.), Spirulina platensis (Arthrospira): Physiology, Cell-biology and Biotechnology, 1st edn. (pp. 131-158). Taylor & Francis.
  • Bilişli, A. (2019). Gıda Kimyası. İzmir: Sidaş Yayınları.
  • Cesak, O., Vostalova, J., Vidlar, A., Bastlova, P., & Student, V. (2023). Carnosine and beta-alanine supplementation in human medicine: narrative review and critical assesment. Nutrients, 15(7), 1770. DOI: https://doi.org/10.3390/nu15071770
  • Cui, Y., Shi, X., Tang, Y., Xie, Y., & Du, Z. (2020). The effects of heat treatment and fermentation processes on the formation of furfurals in milk-based dairy products using a QuEChERS technique followed by gas chromatography coupled with triple quadrupole mass spectrometry. Food Chemistry, 313, 125930. DOI: https://doi. org/10.1016/j.foodchem.2019.125930
  • Czerwonka, M., Pietrzak-Sajjad, R., & Bobrowska-Korczak, B. (2020). Evaluation of 5-hydroxymethylfurfural content in market milk products. Food Additives & Contaminants: Part A, 37(7), 1135-1144. DOI: https://doi.org/10.1080/19440049.2020.1757162
  • Das, D., & Goyal, A. (2015). Antioxidant activity and γ-aminobutyric acid (GABA) producing ability of probiotic Lactobacillus plantarum DM5 isolated from Marcha of Sikkim. LWT-Food Science and Technology, 61(1), 263-268. DOI: https://doi.org/10.1016/j.lwt.2014.11.013
  • Derave, W., De Courten, B., & Baba, S. P. (2019). An update on carnosine and anserine research. Amino Acids, 51, 1-4. DOI: https://doi.org/10.1007/s00726-018-02689-9
  • Diana, M., Quílez, J., & Rafecas, M. (2014). Gamma-aminobutyric acid as a bioactive compound in foods: a review. Journal of Functional Foods, 10, 407-420. DOI: https://doi.org/10.1016/j.jff.2014.07.004
  • Ding, Q., Tanigawa, K., Kaneko, J., Totsuka, M., Katakura, Y., Imabayashi, E., Matsuda, H., & Hisatsune, T. (2018). Anserine/carnosine supplementation preserves blood flow in the prefrontal brain of elderly people carrying APOE e4. Aging and Disease, 9(3), 334-345. DOI: https://doi.org/10.14336/AD.2017.0809
  • Dolan, E., Saunders, B., Dantas, W. S., Murai, I. H., Roschel, H., Artioli, G. G., Harris, R., Bicudo, J. E. P. W., Sale, C., & Gualano, B. (2018). A comparative study of hummingbirds and chickens provides mechanistic insight on the histidine containing dipeptide role in skeletal muscle metabolism. Scientific Reports, 8, 14788. DOI: https://doi.org/10.1038/s41598-018-32636-3.
  • Er Demirhan, B., Demirhan, B., Sönmez, C., Torul, H., Tamer, U., & Yentür, G. (2015). Determination of potential 5-hydroxymethyl-2-furaldehyde and 2-furaldehyde compounds in follow-on milks and infant formulas using the high-performance liquid chromatography method. Journal of Dairy Science, 98(2), 818-822. DOI: http://dx.doi.org/10.3168/jds.2014-8761
  • Everaert, I., Baron, G., Barbaresi, S., Gilardoni, E., Coppa, C., Carini, M., Vistoli, G., Bex, T., Stautemas, J., Blancquaert, L., Derave, W., Aldini, G., & Regazzoni, L. (2019). Development and validation of a sensitive LC–MS/MS assay for the quantification of anserine in human plasma and urine and its application to pharmacokinetic study. Amino Acids, 51, 103-114. DOI: https://doi.org/10.1007/s00726-018-2663-y
  • Farag, M. R., Alagawany, M., Bin-Jumah, M., Othman, S. I., Khafaga, A. F., Shaheen, H. M., Samak, D., Shehata, A. M., Allam, A. A., & Abd El-Hack, M. E. (2020). The toxicological aspects of the heat-borne toxicant 5-hydroxymethylfurfural in animals: a review. Molecules, 25(8), 1941. DOI: https://doi.org/10.3390/molecules25081941
  • Galli, V., Venturi, M., Mari, E., Guerrini, S., & Granchi, L. (2022). Gamma-aminobutyric acid (GABA) production in fermented milk by lactic acid bacteria isolated from spontaneous raw milk fermentation. International Dairy Journal, 127, 105284. DOI: https://doi.org/10.1016/j.idairyj.2021.105284
  • Garbowska, M. Pluta, A., & Berthold-Pluta, A. (2020). Contents of functionally bioactive peptides, free amino acids, and biogenic amines in Dutch-type cheese models produced with different Lactobacilli. Molecules, 25(22), 5465. DOI: https://doi.org/10.3390/molecules25225465
  • Gharehyakheh, S. (2021). Gamma aminobutyric acid (GABA) production using Lactobacillus sp. Makhdzir Naser-1 (GQ451633) in the cherry- kefir beverage. Journal of Food Processing and Preservation, 45, e15521. DOI: https://doi.org/10.1111/jfpp.15521
  • Gün, D. (2019). Spirulina platensis ilavesi ile fonksiyonel bisküvi ve kraker geliştirilmesi. Doktora Tezi, Gaziantep Üniversitesi Fen Bilimleri Enstitüsü, Gaziantep.
  • Hamzaoğlu, F. (2023). Amino asitlerle zenginleştirilmiş nar ve portakaldan oluşan karışık meyve suyunun depolama boyunca antosiyanin stabilitesi. Doktora Tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • Haus, J. M., & Thyfault, J. P. (2018). Therapeutic potential of carbonyl-scavenging carnosine derivative in metabolic disorders. The Journal of Clinical Investigation, 128(12), 5198-5200. DOI: https://doi.org/10.1172/JCI124304
  • Hisatsune, T., Kaneko, J., Kurashige, H., Cao, Y., Satsu, H., Totsuka, M., Katakura, Y., Imabayshi, E., & Matsuda, H. (2016). Effect of anserine/carnosine supplementation on verbal episodic memory in elderly people. Journal of Alzheimer’s Disease, 50(1), 149-159. DOI: https://doi.org/10.3233/JAD-150767
  • Hocquette, A., Lambert, C., Sinquin, C., Peterolff, L., Wagner, Z., Bonny, S. P. F., Lebert, A., & Hocquette, J. F. (2015). Educated consumers don't believe artificial meat is the solution to the problems with the meat industry. Journal of Integrative Agriculture, 14(2), 273-284. DOI: https://doi.org/10.1016/S2095-3119(14)60886-8
  • Hou, Y., Zhang, X., Liu, X., Wu, Q., Hou, J., Su, P., & Guo, Q. (2022). Comparison of the effects of 5-hydroxymethylfurfural in milk powder matrix and standard water on oxidative stress system of Zebrafish. Foods, 11(12), 1814. DOI: https://doi.org/10.3390/foods11121814
  • Hussin, F. S., Chay, S. Y., Hussin, A. S. M., Ibadullah, W. Z. W, Muhialdin, B. J., Ghani, M. S. A., & Saari, N. (2021). GABA enhancement by simple carbohydrates in yoghurt fermented using novel, self-cloned Lactobacillus plantarum Taj-Apis362 and metabolomics profiling. Scientific Reports, 11, 9417. DOI: https://doi.org/10.1038/s41598-021-88436-9
  • Hutkins, R. W. (2006). Microbiology and Technology of Fermented Foods. Ames: Blackwell Publishing.
  • Inoue, K., Shirai, T., Ochiai, H., Kasao, M., Hayakawa, K., Kimura, M., & Sansawa, H. (2003). Blood-pressure-lowering effect of a novel fermented milk containing γ-aminobutyric acid (GABA) in mild hypertensives. European Journal of Clinical Nutrition, 57(3), 490-495. DOI: https://doi.org/10.1038=sj.ejcn.1601555
  • Kaneko, J., Enya, A., Enomoto, K., Ding, Q., & Hisatsune, T. (2017). Anserine (beta-alanyl-3-methyl-L-histidine) improves neurovascular-unit dysfunction and spatial memory in aged AβPPswe/PSEN1dE9 Alzheimer's-model mice. Scientific Reports, 7, 12571. DOI: https://doi.org/10.1038/s41598-017-12785-7
  • Khanlari, Z., Moayedi, A., Ebrahimi, P., Khomeiri, M., & Sadeghi, A. (2021). Enhancement of γ‐aminobutyric acid (GABA) content in fermented milk by using Enterococcus faecium and Weissella confusa isolated from sourdough. Journal of Food Processing and Preservation, 45(10), e15869. DOI: https://doi.org/10.1111/jfpp.15869
  • Knoflach, F., Hernandez, M. C., & Bertrand, D. (2018). Methods for the discovery of novel compounds modulating a gamma-aminobutyric acid receptor type a neurotransmission. JoVE (Journal of Visualized Experiments), 138, e57842. DOI: https://doi.org/10.3791/57842
  • Li, M., Shen, M., Lu, J., Yang, J., Huang, Y., Liu, L., Fan, H., Xie, J., & Xie, M. (2022). Maillard reaction harmful products in dairy products: formation, occurrence, analysis, and mitigation strategies. Food Research International, 151, 110839. DOI: https://doi.org/10.1016/j.foodres.2021.110839
  • Li, Y. H., Wang, W. J., Guo, L., Shao, Z. P., & Xu, X. J. (2019). Comparative study on the characteristics and oxidation stability of commercial milk powder during storage. Journal of Dairy Science, 102(10), 8785-8797. DOI: https://doi.org/10.3168/jds.2018-16089
  • Masuoka, N., Yoshimine, C., Hori, M., Tanaka, M., Asada, T., Abe, K., & Hisatsune, T. (2019). Effects of anserine/carnosine supplementation on mild cognitive impairment with APOE4. Nutrients, 11(7), 1626. DOI: https://doi.org/10.3390/nu11071626
  • Mercan, F. (2022). Spirulina (Arthrospira) platensis biyokütlesinin laktik asit fermentasyonu için substrat olma potansiyelinin değerlendirilmesi. Yüksek Lisans Tezi, Bursa Uludağ Üniversitesi Fen Bilimleri Enstitüsü, Bursa.
  • Nejati, F., Rizzello, C. G., Di Cagno, R., Sheikh-Zeinoddin, M., Diviccaro, A., Minervini, F., & Gobbetti, M. (2013). Manufacture of a functional fermented milk enriched of Angiotensin-I Converting Enzyme (ACE)-inhibitory peptides and γ-amino butyric acid (GABA). LWT-Food Science and Technology, 51(1), 183-189. DOI: http://dx.doi.org/10.1016/j.lwt.2012.09.017
  • Ngo, D. H., & Vo, T. S. (2019). An updated review on pharmaceutical properties of gamma-aminobutyric acid. Molecules, 24(15), 2678. DOI: https://doi.org/10.3390/molecules24152678
  • Nuss, P. (2015). Anxiety disorders and GABA neurotransmission: a disturbance of modulation. Neuropsychiatric Disease and Treatment, 11, 165-175. DOI: https://doi.org/10.2147/NDT.S58841
  • Oketch-Rabah., H. A, Madden, E. F., Roe, A. L., & Betz, J. M. (2021). United States Pharmacopeia (USP) safety review of gamma-aminobutyric acid (GABA). Nutrients, 13(8), 2742. DOI: https://doi.org/10.3390/nu13082742
  • Özbal, B. (2020). Spirulina platensis ile fonksiyonel çikolata ürünü geliştirilmesi. Yüksek Lisans Tezi, Gaziantep Üniversitesi Fen Bilimleri Enstitüsü, Gaziantep.
  • Özdal, H. R., Yildiz, B., & Arkun, G. (2018). Hydroxymethylfurfural (HMF) formation in milk and dairy products. International Journal of Food Engineering Research, 4(1), 13-23.
  • Pellegrino, L., Masotti, F., Cattaneo, S., Hogenboom, J. A., & De Noni, I. (2013). Nutritional quality of milk proteins. Advanced Dairy Chemistry: Volume 1A: Proteins: Basic Aspects, 4th Edition, 515-538.
  • Recommended Dietary Allowance (RDA), (2005). Institute of Medicine. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. Washington, DC: The National Academies Press. Retrieved from: https://doi.org/10.17226/10490
  • Renes, E., Ladero, V., Tornadijo, M. E., & Fresno, J. M. (2019). Production of sheep milk cheese with high γ-aminobutyric acid and ornithine concentration and with reduced biogenic amines level using autochthonous lactic acid bacteria strains. Food Microbiology, 78, 1-10. DOI: https://doi.org/10.1016/j.fm.2018.09.003
  • Rosa, D. D., Dias, M. M. S., Grześkowiak, Ł. M., Reis, S. A., Conceição, L. L., & Peluzio, M. D. C. G. (2017). Milk kefir: nutritional, microbiological and health benefits. Nutrition Research Reviews, 30(1), 82-96. DOI: https://doi.org/10.1017/S0954422416000275
  • Sahab, N. R., Subroto, E., Balia, R. L., & Utama, G. L. (2020). γ-Aminobutyric acid found in fermented foods and beverages: current trends. Heliyon, 6(11), e05526. DOI:https://doi.org/10.1016/j.heliyon.2020.e05526
  • Saldamlı, İ., & Temiz, A. (2017). Amino asitler, peptitler, proteinler. Saldamlı, İ. (Ed.), Gıda Kimyası, (pp. 227-317). Hacettepe Üniversitesi Yayınları.
  • Siragusa, S., De Angelis, M., Di Cagno, R., Rizzello, C. G., Coda, R., & Gobbetti, M. (2007). Synthesis of γ-aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses. Applied and Environmental Microbiology, 73(22), 7283-7290. DOI: https://doi.org/10.1128/AEM.01064-07
  • Terzioğlu, M. E., & Bakırcı, İ. (2023). Comparison of buffalo’s, sheep’s and goat’s yoghurts in terms of their antioxidant activity, angiotensin-converting enzyme (ACE) inhibitory activity, volatile compound content and 5-hydroxymethylfurfural (HMF) content. Medycyna Weterynaryjna-Veterinary Medicine-Science and Practice, 79(3), 148-152. DOI: dx.doi.org/10.21521/mw.6727
  • Terzioğlu, M. E., Arslaner, A., & Bakırcı, İ. (2023). Çilekle zenginleştirilmiş manda yoğurdunun kalite karakteristikleri ile yağ asidi kompozisyonu, ACE inhibitör aktivite ve HMF içeriği bakımından incelenmesi. Gıda, 48(2), 381-393. DOI: https://doi.org/10.15237/gida.GD22101
  • Urdaneta, E., Barrenetxe, J., Aranguren, P., Irigoyen, A., Marzo, F., & Ibáñez, F. C. (2007). Intestinal beneficial effects of kefir-supplemented diet in rats. Nutrition Research, 27(10), 653-658. DOI:https://doi.org/10.1016/j.nutres.2007.08.002
  • Van den Oever, S. P., & Mayer, H. K. (2021). Analytical assessment of the intensity of heat treatment of milk and dairy products. International Dairy Journal, 121, 105097. DOI: https://doi.org/10.1016/j.idairyj.2021.105097
  • Xing, Q., Fu, X., Liu, Z., Cao, Q., & You, C. (2021). Contents and evolution of potential furfural compounds in milk-based formula, ultra-high temperature milk and pasteurised yoghurt. International Dairy Journal, 120, 105086. DOI: https://doi.org/10.1016/j.idairyj.2021.105086
  • Xing, Q., Ma, Y., Fu, X., Cao, Q., Zhang, Y., & You, C. (2020). Effects of heat treatment, homogenization pressure, and overprocessing on the content of furfural compounds in liquid milk. Journal of the Science of Food and Agriculture, 100, 5276-5282. DOI: https://doi.org/10.1002/jsfa.10578
  • Yetim, H., & Tekiner İ. H. (2020). Alternatif protein kaynaklarından yapay et üretimi kavramına eleştirel bir bakış. Helal ve Etik Araştırmalar Dergisi, 2(2), 85-100.
  • Yeum, K. J., Orioli, M., Regazzoni, L., Carini, M., Rasmussen, H., Russell, R. M., & Aldini, G. (2010). Profiling histidine dipeptides in plasma and urine after ingesting beef, chicken or chicken broth in humans. Amino Acids, 38, 847-858. DOI: https://doi.org/10.1007/s00726-009-0291-2
  • Yilmaz‐Ersan, L., Sahin, S., Ozcan, T., Akpinar‐Bayizit, A., Usta‐Gorgun, B., Ciniviz, M., & Keser, G. (2022). Interaction of probiotic activity, antioxidative capacity, and gamma‐amino butyric acid (GABA) in chestnut milk‐fortified yogurt. Journal of Food Processing and Preservation, 46(12), e17266. DOI: https://doi.org/10.1111/jfpp.17266
  • Zepka, L. Q., Jacob-Lopes, E., & Roca, M. (2019). Catabolism and bioactive properties of chlorophylls. Current Opinion in Food Science, 26, 94-100. DOI: https://doi.org/10.1016/j.cofs.2019.04.004
  • Zhang, L., Hu, Y., Badar, I. H., Xia, X., Kong, B., & Chen, Q. (2021). Prospects of artificial meat: Opportunities and challenges around consumer acceptance. Trends in Food Science & Technology, 116, 434-444. DOI: https://doi.org/10.1016/j.tifs.2021.07.01
There are 64 citations in total.

Details

Primary Language Turkish
Subjects Fermentation Technology, Food Biotechnology, Food Sustainability, Dairy Technology
Journal Section Araştırma Makaleleri
Authors

Murat Emre Terzioğlu 0000-0001-6370-0694

Ezgi Edebali 0000-0001-6912-7569

İhsan Bakırcı 0000-0002-3744-3863

Early Pub Date March 25, 2024
Publication Date March 25, 2024
Submission Date December 6, 2023
Acceptance Date February 16, 2024
Published in Issue Year 2024

Cite

APA Terzioğlu, M. E., Edebali, E., & Bakırcı, İ. (2024). Alternatif protein kaynağı Spirulina platensis ile zenginleştirilen kefirin γ-aminobütirik asit (GABA), karnosin, anserin, 5-hidroksimetilfurfural (HMF) ve indirgen şeker içeriği. Harran Tarım Ve Gıda Bilimleri Dergisi, 28(1), 118-130. https://doi.org/10.29050/harranziraat.1401399

Derginin Tarandığı İndeksler

13435  19617   22065  13436  134401344513449 13439 13464  22066   22069  13466 

10749 Harran Tarım ve Gıda Bilimi Dergisi, Creative Commons Atıf –Gayrı Ticari 4.0 Uluslararası (CC BY-NC 4.0) Lisansı ile lisanslanmıştır.