Loading [a11y]/accessibility-menu.js
Research Article
BibTex RIS Cite

Polietilen filmlerden baklagillere geçen antioksidanların saptanması

Year 2020, Volume: 24 Issue: 1, 26 - 32, 20.03.2020
https://doi.org/10.29050/harranziraat.590841

Abstract

Polietilen paketleme, ekmek, bakliyat ve et ürünleri gibi çok çeşitli gıdalarda yaygın olarak kullanılan bir ambalaj malzemesidir. Küçük granül formunda üretilen bu malzemeler kullanım alanlarına bağlı olarak farklı tekniklerle üretilmektedir. Ekstrüzyon, şişirmeli kalıplama ve kalıplama gibi yöntemler bu üretim formlarında en sık kullanılanlardır. Bazı çalışmalar sonucunda, üretim sırasında kullanılan ve “masterbatch” olarak adlandırılan bazı katkı maddelerinin gıda ile temas ettiği ve bu şekilde yiyecek ve içeceklere geçtikleri tespit edilmiştir. Bu çalışmada, 1000 ppm ve 3000 ppm Irganoks 1010 ve Irganoks 1076 içeren polietilen örnekler hazırlandı. Daha sonra, beş farklı baklagil numunesi (pirinç, bulgur, mısır, kuru fasulye ve nohut) iki dairesel polietilen film parçası arasına yerleştirildi. Örnekler 30 gün boyunca farklı iki sıcaklıkta (4 ºC and 25 ºC) depolandı. Migrasyon miktarları GC-MS aracılığıyla belirlendi ve birbirleriyle karşılaştırıldı. Elde edilen sonuçlara göre Irganox 1010’un 4 ºC’de 1000 ppm’lik polietilen numunelerinden gerçekleşen migrasyon miktarları 364-642 ppb, 3000 ppm’lik polietilen numunelerinde gerçekleşen migrasyon miktarları ise 407-682 ppb şeklindedir. Bu koşullarda en yüksek migrasyon 682 ppb ile 30 günlük sürede 3000 ppm’lik polietilenden bulgura doğru iken, en düşük migrasyon ise 364 ppb ile 10 günlük sürede 1000 ppm’lik polietilenden kuru fasulyeye doğru olan migrasyondur. Irganox 1010’un 25 ºC’de 1000 ppm’lik polietilen numunelerinden gerçekleşen geçişler ise 423-827 ppb aralığında olup, 3000 ppm’lik polietilen numunelerinden gerçekleşen migrasyon miktarları ise 512-848 ppb aralığındadır. Bu koşullarda en yüksek migrasyon 848 ppb ile 30 günlük sürede 3000 ppm’lik polietilenden bulgura doğru olan migrasyon iken, en düşük migrasyon ise 423 ppb ile 10 günlük sürede 1000 ppm’lik polietilenden kuru fasulyeye doğru olan migrasyondur.

Supporting Institution

Hatay Mustafa Kemal Üniversitesi

Project Number

14301

Thanks

This research (14301) was supported by the Scientific Research Projects Coordination Unit of Hatay Mustafa Kemal University. The authors would like to thank the Scientific Research Projects Coordination Unit of Hatay Mustafa Kemal University for financial support.

References

  • Al-Malaika, S. (2004). Perspectives in Stabilization of Polyolefins. Advances in Polymer Science, 169, 121-150.
  • Burman, L., Albertsson, A. C., & Hoglund, A. (2005). Solid – Phase Microextraction for Qualitative and Quantitative Determination of Migrated Degradation Products of Antioxidants in an Organic Aqueous Solution. Journal of Chromatography A, 1080, 107-116.
  • Chang, Y., Kang, K., Park, S. J., Choi, J. C., & Kim, M. (2019). Experimental and Theoretical Study of Polypropylene: Antioxidant Migration with Different Food Simulants and Temperatures. Journal of Food Engineering, 244, 142-149.
  • Coltro, L., Pitta, J. B., Da Costa, P. A., Perez, M. A. F., De Araújo, V. A., & Rodrigues, R. (2014). Migration of Conventional and New Plasticizers from PVC Films into Food Simulants: A Comparative Study. Food Control, 44, 118-129.
  • Dopico - Garcia, M. S., Lopez - Vilarino, J. M., & Gonzalez – Rodriguez, M. V. (2007). Antioxidant Content of and Migration from Commercial Polyethylene, Polypropylene, and Polyvinyl Chloride Packages. Journal of Agricultural and Food Chemistry, 55, 3225-3231.
  • European (EU) Commission. (2003). A Practical Guide for Users of European Directives. SANCO D3/LR D. https://www.esac.pt/noronha/manuais/ practical_guide_en_sanco_d3_ lrd_ 0 4%202003. pdf.
  • Galotto, M. J., Torres, A., Guarda, A., Moraga, N., & Romero, J. (2011). Experimental and Theoretical Study of LDPE Versus Different Concentrations of Irganox 1076 and Different Thickness. Food Research International, 44, 566–574.
  • Karaca, G., & Taşdemir, Y. (2014). Migration of PAHs in Food Industry Sludge to the Air During Removal by UV and TiO2. Science of the Total Environment, 488-489, 356-361.
  • Marcato, B., Guerro, S., Vianello, M., & Scalia, S. (2003). Migration of Antioxidant Additives from Various Polyolefinic Plastics into Oleaginous Vehicles. International Journal of Pharmaceutics, 257, 217-225.
  • McCombie, G., Hotzer, K., Daniel, J., Biedermann, M., Eicher, A., & Grob, K. (2016). Compliance Work for Polyolefins in Food Contact: Results of an Official Control Campaign, Food Control, 59, 793–800.
  • Peacock, A.J. (2000). Handbook of Polyethylene, Marcel Dekker, New York.
  • Reinas, I., Oliveira, J., Pereira, J., Machado, F., & Poças, M. F. (2012). Migration of Two Antioxidants from Packaging into a Solid Food and into Tenax. Food Control, 28, 333-337.
  • USFDA. (2015). Guidance for Industry: Preparation of Premarket Submissions for Food Contact Substances: Chemistry Recommendations. https://www.fda.gov/regulatory - information/ search - fda - guidance-documents/ guidance – industry -preparation-premarket-submissions-food-contact substances-chemistry
  • Vera, P., Canellas, E., & Nerin, C. (2018). Identification of Non Volatile Migrant Compounds and NIAS in Polypropylene Films Used as Food Packaging Characterized by UPLC-MS/QTOF. Talanta, 188, 750-762.

Determination of antioxidant migration levels from polyethylene films into legumes

Year 2020, Volume: 24 Issue: 1, 26 - 32, 20.03.2020
https://doi.org/10.29050/harranziraat.590841

Abstract

Polyethylene packaging is a widely used packaging material in a wide range of foods such as bread, pulses, and meat products. These materials, which are produced in the form of small granules, are produced with different techniques depending on their usage area. Methods such as extrusion, blow molding and molding are the most frequently used of these production forms. As a result of some studies, it has been determined that some additives used during the production and called as masterbatch have a contact with food and they pass through food and beverages in this way. In this study, polyethylene samples containing 1000 ppm and 3000 ppm of Irganox 1010 (pentaerythritoltetrakis(3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate) and Irganox 1076 (octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate) were prepared. Then, five different legume samples (rice, cracked wheat, corn, white beans, and chickpea) were sandwiched between two circular pieces of polyethylene films, with the contact layer facing the sample. Samples were stored at two different temperatures (4 ºC and 25 ºC) for 30 days. Migration quantities were determined using GC-MS and comparative evaluations were made. Migration amounts from polyethylene samples containing 1000 ppm Irganox 1010 at 4 °C are between 364-642 ppb, while migration amounts from polyethylene samples containing 1000 ppm Irganox 1010 are between 407 and 682 ppb. In these conditions, the highest migration was 682 ppb from 3000 ppm polyethylene to cracked wheat in 30 days, while the lowest migration was 364 ppb from 1000 ppm polyethylene to white beans in 10 days. Transitions from polyethylene samples containing 1000 ppm Irganox 1010 at 25 °C are in the range of 423 - 827 ppb, and the migration amounts from polyethylene samples of 3000 ppm are in the range of 512 - 848 ppb. In these conditions, the highest migration was 848 ppb from 3000 ppm polyethylene to cracked wheat in 30 days, while the lowest migration was 423 ppb from 1000 ppm polyethylene to white beans in 10 days.

Project Number

14301

References

  • Al-Malaika, S. (2004). Perspectives in Stabilization of Polyolefins. Advances in Polymer Science, 169, 121-150.
  • Burman, L., Albertsson, A. C., & Hoglund, A. (2005). Solid – Phase Microextraction for Qualitative and Quantitative Determination of Migrated Degradation Products of Antioxidants in an Organic Aqueous Solution. Journal of Chromatography A, 1080, 107-116.
  • Chang, Y., Kang, K., Park, S. J., Choi, J. C., & Kim, M. (2019). Experimental and Theoretical Study of Polypropylene: Antioxidant Migration with Different Food Simulants and Temperatures. Journal of Food Engineering, 244, 142-149.
  • Coltro, L., Pitta, J. B., Da Costa, P. A., Perez, M. A. F., De Araújo, V. A., & Rodrigues, R. (2014). Migration of Conventional and New Plasticizers from PVC Films into Food Simulants: A Comparative Study. Food Control, 44, 118-129.
  • Dopico - Garcia, M. S., Lopez - Vilarino, J. M., & Gonzalez – Rodriguez, M. V. (2007). Antioxidant Content of and Migration from Commercial Polyethylene, Polypropylene, and Polyvinyl Chloride Packages. Journal of Agricultural and Food Chemistry, 55, 3225-3231.
  • European (EU) Commission. (2003). A Practical Guide for Users of European Directives. SANCO D3/LR D. https://www.esac.pt/noronha/manuais/ practical_guide_en_sanco_d3_ lrd_ 0 4%202003. pdf.
  • Galotto, M. J., Torres, A., Guarda, A., Moraga, N., & Romero, J. (2011). Experimental and Theoretical Study of LDPE Versus Different Concentrations of Irganox 1076 and Different Thickness. Food Research International, 44, 566–574.
  • Karaca, G., & Taşdemir, Y. (2014). Migration of PAHs in Food Industry Sludge to the Air During Removal by UV and TiO2. Science of the Total Environment, 488-489, 356-361.
  • Marcato, B., Guerro, S., Vianello, M., & Scalia, S. (2003). Migration of Antioxidant Additives from Various Polyolefinic Plastics into Oleaginous Vehicles. International Journal of Pharmaceutics, 257, 217-225.
  • McCombie, G., Hotzer, K., Daniel, J., Biedermann, M., Eicher, A., & Grob, K. (2016). Compliance Work for Polyolefins in Food Contact: Results of an Official Control Campaign, Food Control, 59, 793–800.
  • Peacock, A.J. (2000). Handbook of Polyethylene, Marcel Dekker, New York.
  • Reinas, I., Oliveira, J., Pereira, J., Machado, F., & Poças, M. F. (2012). Migration of Two Antioxidants from Packaging into a Solid Food and into Tenax. Food Control, 28, 333-337.
  • USFDA. (2015). Guidance for Industry: Preparation of Premarket Submissions for Food Contact Substances: Chemistry Recommendations. https://www.fda.gov/regulatory - information/ search - fda - guidance-documents/ guidance – industry -preparation-premarket-submissions-food-contact substances-chemistry
  • Vera, P., Canellas, E., & Nerin, C. (2018). Identification of Non Volatile Migrant Compounds and NIAS in Polypropylene Films Used as Food Packaging Characterized by UPLC-MS/QTOF. Talanta, 188, 750-762.
There are 14 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Araştırma Makaleleri
Authors

Şana Sungur 0000-0001-7370-8972

Çetin Tunur This is me 0000-0003-1799-4366

Project Number 14301
Publication Date March 20, 2020
Submission Date July 11, 2019
Published in Issue Year 2020 Volume: 24 Issue: 1

Cite

APA Sungur, Ş., & Tunur, Ç. (2020). Determination of antioxidant migration levels from polyethylene films into legumes. Harran Tarım Ve Gıda Bilimleri Dergisi, 24(1), 26-32. https://doi.org/10.29050/harranziraat.590841

Indexing and Abstracting 

13435  19617 13436 13440 13441 13442 13443

13445 13447 13449 13464 13466


10749  Harran Journal of Agricultural and Food Science is licensed under Creative Commons 4.0 International License.