Research Article
BibTex RIS Cite

Maltoz şurubu üretiminde nişasta dönüşümünün optimum reaksiyon ve proses kontrol parametrelerinin belirlenmesi

Year 2021, Volume: 25 Issue: 2, 131 - 150, 23.06.2021
https://doi.org/10.29050/harranziraat.881223

Abstract

Maltoz şurubu üretiminde kritik aşamalardan biri de nişasta dönüştürme işlemidir. Proses esnasında standart şeker spektrumunu elde etmek için iki önemli parametre reaksiyon zamanı ve enzim konsantrasyonlarıdır. Bu çalışmanın amacı maltoz şurubu üretiminde; i) Nişasta dönüşümü esnasında optimum reaksiyon ve enzim konsantrasyonunu bulmak, ii) Proses kontrol ve dinamik parametrelerinin tanımlanmasıdır. Optimum konsantrasyon ve zamanı belirlemek için farklı miktarlardaki alfa ve beta amilaz enzimleri (α-amilaz: 0.03, 0.05, 0.07 ve 0.09 ml ve β-amilaz: 0.10, 0.15, 0.20 ve 0.25 ml) kullanılmıştır. pH, briks ve şeker konsantrasyonları (dekstroz, maltoz, maltotrioz (DP3) ve yüksek şekerler (DPN) tanımlanmıştır. Bu çalışmada açıkça görülmüştür ki enzim konsantrasyonu, kullanılan enzim oranları ve reaksiyon zamanı nişastanın maltoza dönüşümünde önemli ölçüde etkilidir. Maltoz şurubunun optimum şeker değerlerine ulaşması için en ideal enzim karışım 0.20 ml β-amilaz ve 0.03 ml α-amilazdır. Maksimum proses kazanımları dekstroz, maltoz, DP3 ve DPN için 0,1 ml β-amilaz ve 0,03 ml α-amilaz, 0,25 ml β-amilaz ve 0,03 ml α-amilaz, 0,2 ml β-amilaz ve 0,03 ml α-amilazdır.

References

  • Altmann, W. (2005). Practical Process Control for Engineers and Technicians. Burlington, MA: Elsevier.
  • AOAC. (1990). Official methods of analysis (15th Edn). Association of Official Analytical Chemists. Arlington, VA, USA.
  • BeMiller, J. N., & Huber, K. C. (2007). Carbohydrates. In S. Damodaran, Parkin, K.L., Fennema, O.R. (Ed.), In Fennema’s Food Chemistry (pp. 83–151). CRC Press: Boca Raton, FL, USA.
  • Blanchard, P. H. (1992). Technology of corn wet milling and associated processes. Amsterdam: Elsevier.
  • Buckow, R., Weiss, U., Heinz, V., & Knorr, D. (2007). Stability and catalytic activity of alpha-amylase from barley malt at different pressure-temperature conditions. Biotechnology and Bioengineering, 97(1), 1-11. DOI: 10.1002/bit.21209
  • CRA. (2010). Dextrose Equivalent (Lane and Eynon). http://corn.org/publications/industry-resources/analytical-methods/analytical-methods-toc/: Corn Refiners Association.
  • Eke-Ejiofor, J. (2015). Functional Properties of Starches, Physico-Chemical And Rheological Properties of Glucose Syrup Made From Cassava And Different Potato Varieties. International Journal of Recent Scientific Research. Vol. 6, Issue, 6, pp.4400-4406.
  • Gough, C. R., Rivera-Galletti A., Cowan D. A., Cruz D. S. & Hu X. (2020). Protein and Polysaccharide-Based Fiber Materials Generated from Ionic Liquids: A Review. Molecules. 25, 3362; DOI:10.3390/molecules25153362
  • Hull, P. (2010). Glucose syrups: Technology and Applications. New York: John Wiley & Sons.
  • Johnson, R., Padmaja, G., & Moorthy, S. (2009). Comparative production of glucose and high fructose syrup from cassava and sweet potato roots by direct conversion techniques. Innovative Food Science & Emerging Technologies, 10(4), 616-620.
  • Kim, T. H., Nghiem, N. P., Taylor, F., & Hicks, K. B. (2011). Consolidated Conversion of Hulled Barley into Fermentable Sugars Using Chemical, Thermal, and Enzymatic (CTE) Treatment. Applied Biochemistry and Biotechnology, 164(4), 534-545. DOI: 10.1007/s12010-010-9155-1
  • Lin, Q. L., Xiao, H. X., Liu, G. Q., Liu, Z. H., Li, L. H., & Yu, F. X. (2013). Production of Maltose Syrup by Enzymatic Conversion of Rice Starch. Food and Bioprocess Technology, 6(1), 242-248. DOI: 10.1007/s11947-011-0681-9
  • MacGregor, A. W., Bazin, S. L., Macri, L. J., & Babb, J. V. (1999). Modelling the contribution of alpha-amylase, beta-amylase and limit dextrinase to starch degradation during mashing. Journal of Cereal Science, 29(2), 161-169. DOI: 10.1006/jcrs.1998.0233
  • Marlin, T. E. (2000). Process Control: Designing processes and control systems for dynamic performance (2 ed.). USA: McGraw Hill.
  • Norman, R. J., Masters, L., Milner, C. R., Wang, J. X., & Davies, M. J. (2001). Relative risk of conversion from normoglycaemia to impaired glucose tolerance or non-insulin dependent diabetes mellitus in polycystic ovarian syndrome. Human Reproduction, 16(9), 1995-1998.
  • Öktem, A., & Toprak A. (2013). Çukurova koşullarında bazı atdişi mısır (Zea mays L. indentata) Genotiplerinin verim ve Morfolojik Özelliklerinin Belirlenmesi. Harran Tarım ve Gıda Bilimleri Dergisi, Cilt 17, Sayı 4, 2013, 15 - 24.
  • Piddocke, M. P., Kreisz, S., Heldt-Hansen, H. P., Nielsen, K. F., & Olsson, L. (2009). Physiological characterization of brewer’s yeast in high-gravity beer fermentations with glucose or maltose syrups as adjuncts. Applied Microbiology and Biotechnology, 84, 453–464.
  • Polat A., Karaaslan, M., & Gürsöz, S. (2016). Siverek Yöresinde Yetiştirilen Kızıl Banki ve Bastık Kabarcık Üzüm Çeşitlerinin Organik Asit ve Şeker İçeriklerinin Belirlenmesi Üzerine Bir Araştırma. Harran Tarım ve Gıda Bilimleri Dergisi, 20(3): 166-174.
  • Pontoh, J., & Low, N. H. (1995). Glucose syrup production from Indonesian palm and cassava starch. Food Research International, 28(4), 379-385.
  • Smith, C. L., (1972). Digital computer process control. Scranton Intext Educational Publishers.
  • Synowiecki, J. (2007). The use of starch processing enzymes in the food industry. In J. Polaina, MacCabe, A.P. (Ed.), In Industrial Enzymes. Dordrecht, The Netherlands: Springer.
  • Talekar, S., Pandharbale, A., Ladole, M., Nadar, S., Mulla, M., Japhalekar, K., Arage, D. (2013). Carrier free co-immobilization of alpha amylase, glucoamylase and pullulanase as combined cross-linked enzyme aggregates (combi-CLEAs): A tri-enzyme biocatalyst with one pot starch hydrolytic activity. Bioresource Technology, 147, 269-275. DOI: 10.1016/j.biortech.2013.08.035
  • United State Patent Norman et.al Patent No. US 6,287,826, B1, Date. September 11,2001
  • van der Maarel, M. J., & Leemhuis, H. (2013). Starch modification with microbial alpha-glucanotransferase enzymes. Carbohydrate Polymers, 93(1), 116-121. DOI: 10.1016/j.carbpol.2012.01.065
  • Veesar, I. A., Solangi, I. B., & Memon, S. (2015). Immobilization of alpha-amylase onto a calix 4 arene derivative: Evaluation of its enzymatic activity. Bioorganic Chemistry, 60, 58-63. DOI: 10.1016/j.bioorg.2015.04.007
  • Zeeman, S. C., Kossmann, J., & Smith, A. M. (2010). Starch: its metabolism, evolution, and biotechnological modification in plants. Annual review of plant biology, 61, 209-234.
  • Ziegler, J. G., & Nichols, N. B. (1942). Optimum settings for automatic controllers. trans. ASME, 64(11).

Determination of optimum reaction and process control parameters of starch conversion in maltose syrup production

Year 2021, Volume: 25 Issue: 2, 131 - 150, 23.06.2021
https://doi.org/10.29050/harranziraat.881223

Abstract

In maltose syrup production, one of the critical processing stages is the starch conversion process. During this process, the reaction time and enzyme concentrations are two important parameters to obtain the standard sugar spectrum. The purpose of this study is; i) to find optimum reaction time and enzyme concentrations during the starch conversion process, ii) to determine process control and dynamic parameters during the starch conversion process in the maltose syrup production. The different amounts of beta and alpha-amylase enzymes (0.10, 0.15, 0.20 and 0.25 ml of β-amylase; 0.03, 0.05, 0.07 and 0.09 ml of α-amylase) were used to determine the optimum concentrations and time. pH, Brix and the concentrations of sugars (dextrose, maltose, maltotriose (DP3) and high sugars (DPN)) were determined. It was found that the enzyme concentration, ratios of the enzyme used and reaction time significantly affect the starch conversion process. The mixture containing 0.20 ml β-amylase and 0.05 ml α-amylase was determined as the optimum value (P≤0.05). It was found that the maximum process gains were obtained at 0.1 ml β-amylase and 0.03 ml α-amylase, 0.25 ml β-amylase and 0.03 ml α-amylase, 0.2 ml β-amylase and 0.03 ml α-amylase for dextrose, maltose, DP3 and DPN, respectively.

References

  • Altmann, W. (2005). Practical Process Control for Engineers and Technicians. Burlington, MA: Elsevier.
  • AOAC. (1990). Official methods of analysis (15th Edn). Association of Official Analytical Chemists. Arlington, VA, USA.
  • BeMiller, J. N., & Huber, K. C. (2007). Carbohydrates. In S. Damodaran, Parkin, K.L., Fennema, O.R. (Ed.), In Fennema’s Food Chemistry (pp. 83–151). CRC Press: Boca Raton, FL, USA.
  • Blanchard, P. H. (1992). Technology of corn wet milling and associated processes. Amsterdam: Elsevier.
  • Buckow, R., Weiss, U., Heinz, V., & Knorr, D. (2007). Stability and catalytic activity of alpha-amylase from barley malt at different pressure-temperature conditions. Biotechnology and Bioengineering, 97(1), 1-11. DOI: 10.1002/bit.21209
  • CRA. (2010). Dextrose Equivalent (Lane and Eynon). http://corn.org/publications/industry-resources/analytical-methods/analytical-methods-toc/: Corn Refiners Association.
  • Eke-Ejiofor, J. (2015). Functional Properties of Starches, Physico-Chemical And Rheological Properties of Glucose Syrup Made From Cassava And Different Potato Varieties. International Journal of Recent Scientific Research. Vol. 6, Issue, 6, pp.4400-4406.
  • Gough, C. R., Rivera-Galletti A., Cowan D. A., Cruz D. S. & Hu X. (2020). Protein and Polysaccharide-Based Fiber Materials Generated from Ionic Liquids: A Review. Molecules. 25, 3362; DOI:10.3390/molecules25153362
  • Hull, P. (2010). Glucose syrups: Technology and Applications. New York: John Wiley & Sons.
  • Johnson, R., Padmaja, G., & Moorthy, S. (2009). Comparative production of glucose and high fructose syrup from cassava and sweet potato roots by direct conversion techniques. Innovative Food Science & Emerging Technologies, 10(4), 616-620.
  • Kim, T. H., Nghiem, N. P., Taylor, F., & Hicks, K. B. (2011). Consolidated Conversion of Hulled Barley into Fermentable Sugars Using Chemical, Thermal, and Enzymatic (CTE) Treatment. Applied Biochemistry and Biotechnology, 164(4), 534-545. DOI: 10.1007/s12010-010-9155-1
  • Lin, Q. L., Xiao, H. X., Liu, G. Q., Liu, Z. H., Li, L. H., & Yu, F. X. (2013). Production of Maltose Syrup by Enzymatic Conversion of Rice Starch. Food and Bioprocess Technology, 6(1), 242-248. DOI: 10.1007/s11947-011-0681-9
  • MacGregor, A. W., Bazin, S. L., Macri, L. J., & Babb, J. V. (1999). Modelling the contribution of alpha-amylase, beta-amylase and limit dextrinase to starch degradation during mashing. Journal of Cereal Science, 29(2), 161-169. DOI: 10.1006/jcrs.1998.0233
  • Marlin, T. E. (2000). Process Control: Designing processes and control systems for dynamic performance (2 ed.). USA: McGraw Hill.
  • Norman, R. J., Masters, L., Milner, C. R., Wang, J. X., & Davies, M. J. (2001). Relative risk of conversion from normoglycaemia to impaired glucose tolerance or non-insulin dependent diabetes mellitus in polycystic ovarian syndrome. Human Reproduction, 16(9), 1995-1998.
  • Öktem, A., & Toprak A. (2013). Çukurova koşullarında bazı atdişi mısır (Zea mays L. indentata) Genotiplerinin verim ve Morfolojik Özelliklerinin Belirlenmesi. Harran Tarım ve Gıda Bilimleri Dergisi, Cilt 17, Sayı 4, 2013, 15 - 24.
  • Piddocke, M. P., Kreisz, S., Heldt-Hansen, H. P., Nielsen, K. F., & Olsson, L. (2009). Physiological characterization of brewer’s yeast in high-gravity beer fermentations with glucose or maltose syrups as adjuncts. Applied Microbiology and Biotechnology, 84, 453–464.
  • Polat A., Karaaslan, M., & Gürsöz, S. (2016). Siverek Yöresinde Yetiştirilen Kızıl Banki ve Bastık Kabarcık Üzüm Çeşitlerinin Organik Asit ve Şeker İçeriklerinin Belirlenmesi Üzerine Bir Araştırma. Harran Tarım ve Gıda Bilimleri Dergisi, 20(3): 166-174.
  • Pontoh, J., & Low, N. H. (1995). Glucose syrup production from Indonesian palm and cassava starch. Food Research International, 28(4), 379-385.
  • Smith, C. L., (1972). Digital computer process control. Scranton Intext Educational Publishers.
  • Synowiecki, J. (2007). The use of starch processing enzymes in the food industry. In J. Polaina, MacCabe, A.P. (Ed.), In Industrial Enzymes. Dordrecht, The Netherlands: Springer.
  • Talekar, S., Pandharbale, A., Ladole, M., Nadar, S., Mulla, M., Japhalekar, K., Arage, D. (2013). Carrier free co-immobilization of alpha amylase, glucoamylase and pullulanase as combined cross-linked enzyme aggregates (combi-CLEAs): A tri-enzyme biocatalyst with one pot starch hydrolytic activity. Bioresource Technology, 147, 269-275. DOI: 10.1016/j.biortech.2013.08.035
  • United State Patent Norman et.al Patent No. US 6,287,826, B1, Date. September 11,2001
  • van der Maarel, M. J., & Leemhuis, H. (2013). Starch modification with microbial alpha-glucanotransferase enzymes. Carbohydrate Polymers, 93(1), 116-121. DOI: 10.1016/j.carbpol.2012.01.065
  • Veesar, I. A., Solangi, I. B., & Memon, S. (2015). Immobilization of alpha-amylase onto a calix 4 arene derivative: Evaluation of its enzymatic activity. Bioorganic Chemistry, 60, 58-63. DOI: 10.1016/j.bioorg.2015.04.007
  • Zeeman, S. C., Kossmann, J., & Smith, A. M. (2010). Starch: its metabolism, evolution, and biotechnological modification in plants. Annual review of plant biology, 61, 209-234.
  • Ziegler, J. G., & Nichols, N. B. (1942). Optimum settings for automatic controllers. trans. ASME, 64(11).
There are 27 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Araştırma Makaleleri
Authors

Sema Nur Çinçik 0000-0003-3944-2482

Fatih Balcı 0000-0002-9651-2064

Mustafa Bayram 0000-0001-6705-5899

Publication Date June 23, 2021
Submission Date February 16, 2021
Published in Issue Year 2021 Volume: 25 Issue: 2

Cite

APA Çinçik, S. N., Balcı, F., & Bayram, M. (2021). Determination of optimum reaction and process control parameters of starch conversion in maltose syrup production. Harran Tarım Ve Gıda Bilimleri Dergisi, 25(2), 131-150. https://doi.org/10.29050/harranziraat.881223

Indexing and Abstracting 

13435  19617 13436 13440 13441 13442 13443

13445 13447 13449 13464 13466


10749  Harran Journal of Agricultural and Food Science is licensed under Creative Commons 4.0 International License.