BibTex RIS Cite

PEG/Gelatin Composite Hydrogels as a Support of Enzyme Immobilization

Year 2014, Volume: 42 Issue: 3, 343 - 350, 01.09.2014

Abstract

In the recent years composite hydrogels have gained considerable interest as a biomaterial vehicle for biomedi- cal applications. The purpose of this study is to prepare highly biocompatible Polyethylene glycol PEG /Gelatin composite hydrogels for Glucose Oxidase GOD immobilization and evaluate the enzyme activity. PEG/Gelatin composite hydrogels were prapered by one step simultaneous technique based on UV-initiated free radical pho- topolymerization. PEG/Gelatin composite hydrogels were prepared by mixing Polyethylene glycol diacrylate PEG 30% - 50% and Gelatin 22.000, 24.000, 40.000, 50.000, 87.500 MW in the precense of ethylene glycol di- methacrylate EGDMA as crosslinker and 2,2-dimethoxy-2-phenylacetophenone DMPA as photo initiator and also GOD 0.1 mg/ml for enzyme immobilization. Enzyme activity studies revealed that GOD immobilized PEG/Gelatin composite hydrogels that contain 30% PEG-DA presented a better activity, lower Km and higher Vmax than GOD immobilized composite hydogels that contain 50% PEG-DA. According to these results composite hydrogels are thought to be adapted for different enzyme systems with the selection of the suitable ratio.

References

  • 1. Sheldon, R.A., Enzyme immobilization: The quest for optimum performance, Synth. Catal., 35 (2007) 1289.
  • 2. Krajewska, B., Application of chitin and chitosan based materials for enzyme immobilizations: A review, Enz. Microbial Technol., 35 (2004) 126.
  • 3. Basri, M., Harun, A., Ahmad, M.B., Razak, C.N.A., Salleh, A.B., Immobilization of lipase on poly(N-vinyl2-pyrrolidoneco- styrene) hydrogel. DOI: 10.1002/app. 1977.J. Appl. Polym. Sci., 82 (2001) 1404.
  • 4. Brahim, S., Narinesingh, D., Guiseppi-Elie, A., Kinetics of glucose oxidase immobilized in p(HEMA)-hydrogel microspheres in a packed-bed bioreactor. DOI: 10.1016/ S1381-1177(02)00061-9, J. Mol. Catal. B. Enzym., 18 (2002) 69.
  • 5. Chauhan, G.S., Mahajan, S., Sddiqui, K.M., Gupta, R., Immobilization of lipase on hydrogels: structural aspects of polymeric matrices as determinants of enzyme activity in different physical environments, DOI: 10.1002/app. 20244. 92, J. Appl. Polym. Sci., 2004, 3135-3143.
  • 6. Gao, D., Xu, H., Philbert, M.A., Kopelman, R., Ultrafine hydrogel nanoparticles: synthetic approach and therapeutic application in living cells, Angew Chem Int Ed., 46, 2007, 2224-2227.
  • 7. Gasser, B., About composite materials and their use in bone surgery, Injury-Int J Care Injured, 31, 2000, 48- 53.
  • 8. Satish, C.S., Satish, K.P., Shivakumar, H.G., Hydrogels as controlled drug delivery systems: synthesis, crosslinking, water and drug transport mechanism, Ind J Pharm Sci., 68, 2006, 133-40.
  • 9. Hennink, W.E., Van Nostrum, C.F., Novel cross-linking methods to design hydrogels, Adv. Drug Delivery Rev., 54, 2002, 13-16.
  • 10. Padmavathi, N.C., Chatterji, P.R., Structural characteristics and swelling behavior of poly(ethylene glycol) diacrylate hydrogels, Macromolecules, 29, 1996, 1976–1979.
  • 11. Ratner, B.D., Biomaterials science: An introduction to materials in medicine, Amsterdam, Boston: Elsevier Academic Press. xii, 851 p. 2004.
  • 12. Tessmar, J.K., Gopferich, A.M., Customized PEGderived copolymers for tissue-engineering applications, Macromol Biosci., 7 (1), 2007, 23–39.
  • 13. Veronese, F.M., Mero, A., The impact of PEGylation on biological therapies, Bio Drugs., 22 (5), 2008, 315-329.
  • 14. H.G.l, “United States Patent,” 4055554, 1977.
  • 15. Sigma Technical Bulletin, No.510, Sigma Chemical CO., St. Louis, 1983.
  • 16. Cruise, G.M., Scharp, D.S., Hubbell, J.A., Biomaterials 19, 1998, 1287-1294.
  • 17. Russell, R.J., Axel, A.C., Shields, K. L., Pishko, M.V., Polymer 42, 2001, 4893-4901.
  • 18. Demirel, G., Ozcetin, G., Sahin, F., Tumturk, H., Aksoy, S., Hasirci, N., Semiinterpenetrating polymer networks (IPNs) for entrapment of glucose isomerise, React. Funct. Polymer, 66, 2006, 389–394.
  • 19. Yamak, O., Kalkan, N.A., Altinok, H., Aksoy, S., Hasirci, N., Semi-interpenetrating polymer networks (semiIPNs) for entrapment of laccase and their use in acid orange 52 decolorization, Process.Biochem., 44, 2009, 440-445.
  • 20. Fernandez, J.G., Khademhosseini, A., Micro-masonry: construction of 3D structures by microscale selfassembly, Adv Mater., 22, 2010, 2538.
  • 21. Du, Y., Ghodousi, M., Lo, E., Vidula, M.K., Emiroglu, O., Khademhosseini, A., Surface-directed assembly of cellladen microgels. Biotechnol Bioeng. 105, 2010, 655- 662.
  • 22. Metters, A., Hubbell, J., Network formation and degradation behavior of hydrogels formed by Michaeltype addition reactions, Biomacromolecules 6, 2005, 290-301.
  • 23. Park, Y., Lutolf, M.P., Hubbell, J.A., Hunziker, E.B., Wong, M., Bovine primary chondrocyte culture in synthetic matrix metalloproteinase-sensitive poly(ethylene glycol)-based hydrogels as a scaffold for cartilage repair. Tissue Eng. 10, 2004, 515-522.
  • 24. Sanborn, T.J., Messersmith, P.B., and Barron, A.E., In situ crosslinking of a biomimetic peptide-PEG hydrogel via thermally triggered activation of factor XIII. Biomaterials 23, 2002, 2703-2010.
  • 25. Ehrbar, M., Rizzi, S.C., Hlushchuk, R., Djonov, V., Zisch, A.H., Hubbell, J.A., Weber, F.E., Lutolf, M.P., Enzymatic formation of modular cell-instructive fibrin analogs for tissue engineering, Biomaterials, 28, 2007, 3856- 3866.
  • 26. Keys, K.B., Andreopoulos, F., Peppas, N.A, Poly(ethylene glycol) star polymer hydrogels. Macromolecules 31, 1998, 8149-8156.
  • 27. Peppas, N.A., Keys, K.B., Torres-Lugo, M., and Lowman, A.M., Poly(ethylene glycol)-containing hydrogels in drug delivery. J. Control. Release 62, 1999, 81-87.
  • 28. Lee, K.Y., and Mooney, D.J., Hydrogels for tissue engineering. Chem. Rev., 101, 2001, 1869-1879.

Enzim İmmobilizasyonu için PEG/Jelatin Kompozit Hidrojeller

Year 2014, Volume: 42 Issue: 3, 343 - 350, 01.09.2014

Abstract

Son yıllarda kompozit hidrojeller, biyomedikal uygulamalar için biyomalzeme aracı olarak önemli bir ilgi kazanmıştır. Bu çalışmanın amacı, glikoz oksidaz GOD immobilizasyonu ve enzim etkinliğini değerlendirmek için oldukça biyouyumlu polietilenglikol PEG /jelatin kompozit hidrojeller hazırlamaktır. PEG/jelatin kompozit hidrojeller UV başlatıcılı serbest radikal fotopolimerizasyon esasına dayalı tek basamaklı simultane tekniği ile hazırlandı. PEG/jelatin kompozit hidrojeller etilen glikol dimetakrilat EGDMA çapraz bağlayıcı maddesi, 2,2-dimetoksi-2-fenilasetofenon DMPA foto başlatıcısı ve enzim immobilizasyonu için glukoz oksidaz GOD 0.1 mg/ml varlığında %30 ve 50 polietilen glikol PEG ve jelatin 22.000, 24.000, 40.000, 50.000, 87.500 MW karıştırılarak hazırlanmıştır. Enzim aktivite çalışmaları, % 30 PEG içeren GOD immobilize PEG/jelatin kompozit hidrojellerin % 50 PEG içeren GOD immobilize PEG/jelatin kompozit hidrojellere göre daha iyi aktivite, düşük K ve daha yüksek Vsergilediğini göstermiştir. Bu sonuçlar, kompozit hidrojellerin uygun oranının seçimi ile farklı enzim sistemlerine adapte edilebileceğini düşündürmüştür. m max

References

  • 1. Sheldon, R.A., Enzyme immobilization: The quest for optimum performance, Synth. Catal., 35 (2007) 1289.
  • 2. Krajewska, B., Application of chitin and chitosan based materials for enzyme immobilizations: A review, Enz. Microbial Technol., 35 (2004) 126.
  • 3. Basri, M., Harun, A., Ahmad, M.B., Razak, C.N.A., Salleh, A.B., Immobilization of lipase on poly(N-vinyl2-pyrrolidoneco- styrene) hydrogel. DOI: 10.1002/app. 1977.J. Appl. Polym. Sci., 82 (2001) 1404.
  • 4. Brahim, S., Narinesingh, D., Guiseppi-Elie, A., Kinetics of glucose oxidase immobilized in p(HEMA)-hydrogel microspheres in a packed-bed bioreactor. DOI: 10.1016/ S1381-1177(02)00061-9, J. Mol. Catal. B. Enzym., 18 (2002) 69.
  • 5. Chauhan, G.S., Mahajan, S., Sddiqui, K.M., Gupta, R., Immobilization of lipase on hydrogels: structural aspects of polymeric matrices as determinants of enzyme activity in different physical environments, DOI: 10.1002/app. 20244. 92, J. Appl. Polym. Sci., 2004, 3135-3143.
  • 6. Gao, D., Xu, H., Philbert, M.A., Kopelman, R., Ultrafine hydrogel nanoparticles: synthetic approach and therapeutic application in living cells, Angew Chem Int Ed., 46, 2007, 2224-2227.
  • 7. Gasser, B., About composite materials and their use in bone surgery, Injury-Int J Care Injured, 31, 2000, 48- 53.
  • 8. Satish, C.S., Satish, K.P., Shivakumar, H.G., Hydrogels as controlled drug delivery systems: synthesis, crosslinking, water and drug transport mechanism, Ind J Pharm Sci., 68, 2006, 133-40.
  • 9. Hennink, W.E., Van Nostrum, C.F., Novel cross-linking methods to design hydrogels, Adv. Drug Delivery Rev., 54, 2002, 13-16.
  • 10. Padmavathi, N.C., Chatterji, P.R., Structural characteristics and swelling behavior of poly(ethylene glycol) diacrylate hydrogels, Macromolecules, 29, 1996, 1976–1979.
  • 11. Ratner, B.D., Biomaterials science: An introduction to materials in medicine, Amsterdam, Boston: Elsevier Academic Press. xii, 851 p. 2004.
  • 12. Tessmar, J.K., Gopferich, A.M., Customized PEGderived copolymers for tissue-engineering applications, Macromol Biosci., 7 (1), 2007, 23–39.
  • 13. Veronese, F.M., Mero, A., The impact of PEGylation on biological therapies, Bio Drugs., 22 (5), 2008, 315-329.
  • 14. H.G.l, “United States Patent,” 4055554, 1977.
  • 15. Sigma Technical Bulletin, No.510, Sigma Chemical CO., St. Louis, 1983.
  • 16. Cruise, G.M., Scharp, D.S., Hubbell, J.A., Biomaterials 19, 1998, 1287-1294.
  • 17. Russell, R.J., Axel, A.C., Shields, K. L., Pishko, M.V., Polymer 42, 2001, 4893-4901.
  • 18. Demirel, G., Ozcetin, G., Sahin, F., Tumturk, H., Aksoy, S., Hasirci, N., Semiinterpenetrating polymer networks (IPNs) for entrapment of glucose isomerise, React. Funct. Polymer, 66, 2006, 389–394.
  • 19. Yamak, O., Kalkan, N.A., Altinok, H., Aksoy, S., Hasirci, N., Semi-interpenetrating polymer networks (semiIPNs) for entrapment of laccase and their use in acid orange 52 decolorization, Process.Biochem., 44, 2009, 440-445.
  • 20. Fernandez, J.G., Khademhosseini, A., Micro-masonry: construction of 3D structures by microscale selfassembly, Adv Mater., 22, 2010, 2538.
  • 21. Du, Y., Ghodousi, M., Lo, E., Vidula, M.K., Emiroglu, O., Khademhosseini, A., Surface-directed assembly of cellladen microgels. Biotechnol Bioeng. 105, 2010, 655- 662.
  • 22. Metters, A., Hubbell, J., Network formation and degradation behavior of hydrogels formed by Michaeltype addition reactions, Biomacromolecules 6, 2005, 290-301.
  • 23. Park, Y., Lutolf, M.P., Hubbell, J.A., Hunziker, E.B., Wong, M., Bovine primary chondrocyte culture in synthetic matrix metalloproteinase-sensitive poly(ethylene glycol)-based hydrogels as a scaffold for cartilage repair. Tissue Eng. 10, 2004, 515-522.
  • 24. Sanborn, T.J., Messersmith, P.B., and Barron, A.E., In situ crosslinking of a biomimetic peptide-PEG hydrogel via thermally triggered activation of factor XIII. Biomaterials 23, 2002, 2703-2010.
  • 25. Ehrbar, M., Rizzi, S.C., Hlushchuk, R., Djonov, V., Zisch, A.H., Hubbell, J.A., Weber, F.E., Lutolf, M.P., Enzymatic formation of modular cell-instructive fibrin analogs for tissue engineering, Biomaterials, 28, 2007, 3856- 3866.
  • 26. Keys, K.B., Andreopoulos, F., Peppas, N.A, Poly(ethylene glycol) star polymer hydrogels. Macromolecules 31, 1998, 8149-8156.
  • 27. Peppas, N.A., Keys, K.B., Torres-Lugo, M., and Lowman, A.M., Poly(ethylene glycol)-containing hydrogels in drug delivery. J. Control. Release 62, 1999, 81-87.
  • 28. Lee, K.Y., and Mooney, D.J., Hydrogels for tissue engineering. Chem. Rev., 101, 2001, 1869-1879.
There are 28 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Fatma Ayhan This is me

Aydan Gülsu This is me

Hakan Ayhan This is me

Publication Date September 1, 2014
Published in Issue Year 2014 Volume: 42 Issue: 3

Cite

APA Ayhan, F., Gülsu, A., & Ayhan, H. (2014). PEG/Gelatin Composite Hydrogels as a Support of Enzyme Immobilization. Hacettepe Journal of Biology and Chemistry, 42(3), 343-350.
AMA Ayhan F, Gülsu A, Ayhan H. PEG/Gelatin Composite Hydrogels as a Support of Enzyme Immobilization. HJBC. September 2014;42(3):343-350.
Chicago Ayhan, Fatma, Aydan Gülsu, and Hakan Ayhan. “PEG/Gelatin Composite Hydrogels As a Support of Enzyme Immobilization”. Hacettepe Journal of Biology and Chemistry 42, no. 3 (September 2014): 343-50.
EndNote Ayhan F, Gülsu A, Ayhan H (September 1, 2014) PEG/Gelatin Composite Hydrogels as a Support of Enzyme Immobilization. Hacettepe Journal of Biology and Chemistry 42 3 343–350.
IEEE F. Ayhan, A. Gülsu, and H. Ayhan, “PEG/Gelatin Composite Hydrogels as a Support of Enzyme Immobilization”, HJBC, vol. 42, no. 3, pp. 343–350, 2014.
ISNAD Ayhan, Fatma et al. “PEG/Gelatin Composite Hydrogels As a Support of Enzyme Immobilization”. Hacettepe Journal of Biology and Chemistry 42/3 (September 2014), 343-350.
JAMA Ayhan F, Gülsu A, Ayhan H. PEG/Gelatin Composite Hydrogels as a Support of Enzyme Immobilization. HJBC. 2014;42:343–350.
MLA Ayhan, Fatma et al. “PEG/Gelatin Composite Hydrogels As a Support of Enzyme Immobilization”. Hacettepe Journal of Biology and Chemistry, vol. 42, no. 3, 2014, pp. 343-50.
Vancouver Ayhan F, Gülsu A, Ayhan H. PEG/Gelatin Composite Hydrogels as a Support of Enzyme Immobilization. HJBC. 2014;42(3):343-50.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc