Research Article
BibTex RIS Cite

Nematicidal effect of chitosan on Meloidogyne incognita in vitro and on tomato in a pot experiment

Year 2022, , 410 - 416, 23.09.2022
https://doi.org/10.31015/jaefs.2022.3.10

Abstract

The present study investigated to evaluate the potential of liquid chitosan of three concentrations (0.5, 1 and 2%) on Meloidogyne incognita (Kofoid and White, 1919) Chitwood, 1949 in vitro and on tomato under controlled conditions ((24 ± 1 °C, 60 ± 5% humidity). In vitro assay, the effect of the liquid chitosan concentrations on suppressing of hatching from eggs and second juvenile larvae (J2) mortality was determined. The reducing effect of the concentrations on the number of gall and egg mass on tomato roots and the J2 density in the soil was evaluated under controlled conditions. All concentrations suppressed hatch and increased J2 mortality more than control in vitro. The most effective concentration was found at 2% in vitro and its nematicidal effect on egg and J2 was over 70%. The results demonstrated that 0.5, 1 and 2% concentrations were significantly decreased gall/root, egg mass/root and J2 in soil compared to negative control under controlled conditions. No statistically significant difference was found between the nematicidal effects of the concentrations on the gall and egg mass (P≤0.05). It has been determined that 1 and 2% concentrations better suppress the J2 in soil than 0.5%. Although the nematicidal effect of 2% concentration was high in vitro and under controlled conditions, it was determined that it negatively affected plant biomass. Also, only 1% concentration of chitosan application controlled M. incognita on tomato by 58%. The present results show that the use of 1% liquid chitosan concentration against M. incognita will be more effective.

Thanks

Olympos Seedling Production Facility and Agricultural Engineer Tuğçe OKUMUŞ EROL are thanked for providing tomato seedlings. Thank you to Kıtosan A.Ş. for providing the main material.

References

  • Agrinos, (2014). HYT-C: Bioquitina. Retrieved from http://www.agrinos.com.mx/reporteco/upload/procesos/HYTc%20BioQuitina.pdf Accessed on October 29, 2014
  • Arslan, A. and Elekcioğlu, I.H. (2022). Biochemical and molecular identification of root-knot nematodes in greenhouse vegetable areas of Eastern Mediterranean Region (Turkey). Turkish Journal of Entomology, 46 (1): 115-127. Doi: http://dx.doi.org/10.16970/entoted.1055181
  • Asif, M., Ahmad, F., Tariq, M., Khan, A., Ansari, T., Khan, F., Siddiqui, A.M., (2017). Potential of chitosan alone and in combination with agricultural wastes against the root-knot nematode, Meloidogyne incognita infesting eggplant. Journal of Plant Protection Research, 57 (3): 288-295. Doi: https://doi.org/10.1515/jppr-2017-0041
  • Aydınlı, G. (2018). Detection of the root-knot nematode Meloidogyne luci Carneiro et al., 2014 (Tylenchida: Meloidogynidae) in vegetable fields of Samsun Province, Turkey. Turkish Journal of Entomology, 42 (3): 229-237. Doi: https://doi.org/10.16970/entoted.409941
  • Aydınlı, G., Mennan, S., Devran, Z., Širca, S., Urek, G. (2013). First report of the root-knot nematode Meloidogyne ethiopica on tomato and cucumber in Turkey. Plant Disease, 97 (9): 1262-1262. Doi: https://doi.org/10.1094/PDIS-01-13-0019-PDN
  • Barker, K.R. (1985). Nematode extraction and bioassays. An advanced treatise on Meloidogyne, 2: 19-35. Retrieved from https://agris.fao.org/agris-search/search.do?recordID=US8743641
  • Berger, L.R.R., Stamford, T.C.H.M., Stamford, N.P. (2011). Perspectivas para ouso da quitosana na agricultura. Revista Iberoamericana de Polímeros, 12 (4): 195–215. Retrieved from https://reviberpol.files.wordpress.com/2019/07/2011-ramos.pdf
  • Castaneda-Alvarez, C. and Aballay, E. (2016). Rhizobacteria with nematicide aptitude: enzymes and compounds associated. World Journal of Microbiology and Biotechnology, 32 (12): 1-7. Doi: https://doi.org/10.1007/s11274-016-2165-6
  • Castro, L., Flores, L., Uribe, L. (2011). Efecto del vermicompost y quitina sobre el control de Meloidogyne incognita en tomate a nível de invernadero. Agronomía Costarricense, 35 (2): 21–32. ISSN:0377-9424 / 2011
  • Cetintas, R. and Cakmak, B. (2016). Meloidogyne species infesting tomatoes, cucumbers and eggplants grown in Kahramanmaraş Province, Turkey. Turkish Journal of Entomology, 40 (4): 355-364. Doi: http://dx.doi.org/10.16970/ted.40839
  • Collange, B., Navarrete, M., Peyre, G., Mateille, T., Tchamitchian, M. (2011). Root-knot nematode (Meloidogyne) management in vegetable crop production: The challenge of an agronomic system analysis. Crop protection, 30 (10): 1251-1262. Doi: https://doi.org/10.1016/j.cropro.2011.04.016
  • Coolen, W.A. and D'herde, C.J. (1972). A method for the quantitative extraction of nematodes from plant tissue. Publication of the State Nematology and Entomology Research Station, Merelbeke, Belgium, 77 p.
  • De-Jin, R., Suh, J., Park, R., Kim,Y. (2005). Effect of chitin compost and broth on biological control of Meloidogyne incognita on tomato (Lycopersicon esculentum Mill.). Nematology, 7 (1): 125–132. Retrieved from https://brill.com/view/journals/nemy/7/1/article-p125_13.xml
  • El Hadrami, A., Adam, L.R., El Hadrami, I., Daayf, F. (2010). Chitosan in plant protection. Marine Drugs, 8 (4): 968-987. Doi: https://doi.org/10.3390/md8040968
  • El-Ashry, R.M., El-Saadony, M.T., El-Sobki, A.E., El-Tahan, A.M., Al-Otaibi, S., El-Shehawi, A.M., Elshaer, N. (2022). Biological silicon nanoparticles maximize the efficiency of nematicides against biotic stress induced by Meloidogyne incognita in eggplant. Saudi Journal of Biological Sciences, 29 (2): 920-932. Doi: https://doi.org/10.1016/j.sjbs.2021.10.013
  • Elkelany, U.S., El-Mougy, N.S., Abdel-Kader, M.M. (2020). Management of root-knot nematode Meloidogyne incognita of eggplant using some growth-promoting rhizobacteria and chitosan under greenhouse conditions. Egyptian Journal of Biological Pest Control, 30 (1): 1-7. Doi: https://doi.org/10.1186/s41938-020-00334-w
  • El-Sayed, S.M. and Mahdy, M.E. (2015). Effect of chitosan on root-knot nematode, Meloidogyne javanica on tomato plants. International Journal of ChemTech Research, 7 (4): 1985-1992. Retrieved from http://sphinxsai.com/2015/ch_vol7_no4/5/(1985-1992)%20V7N4.pdf
  • Fan, Z., Qin, Y., Liu, S., Xing, R., Yu, H., Li, K., Li, P. (2022). Fluoroalkenyl-Grafted Chitosan Oligosaccharide Derivative: An Exploration for Control Nematode Meloidogyne incognita. International Journal of Molecular Sciences, 23 (4): 2080. Doi: https://doi.org/10.3390/ijms23042080
  • Goverse, A. and Smant, G. (2014). The activation and suppression of plant innate immunity by parasitic nematodes. Annual review of phytopathology, 52: 243-265. Retrieved from https://www.annualreviews.org/doi/epdf/10.1146/annurev-phyto-102313-050118
  • Goy, R.C., Morais, S.T., Assis, O.B., et al. (2016). Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth. Revista Brasileira de Farmacognosia, 26 (1): 122-127. Doi: https://doi.org/10.1016/j.bjp.2015.09.010
  • Gürkan, B., Çetintaş, R., Gürkan, T. (2019). Determination of Root-Nematode species (Meloidogyne spp.) and some nematode population races in vegetable areas of Gaziantep and Osmaniye. KSU J. Agric Nat, 22 (Suppl 1): 113-124. (in Turkish with abstract in English). Doi: http://dx.doi.org/10.18016/ksutarimdoga.v22i49073.551240
  • Hashem, M., Moharam, A.M., Zaied, A.A., Saleh, F.E.M. (2010). Efficacy of essential oils in the control of cumin root rot disease caused by Fusarium spp. Crop Protection, 29 (10): 1111-1117. Doi: https://doi.org/10.1016/j.cropro.2010.04.020
  • Hirano, S., Nagamura, K., Zhang, M., Kim, S.K., Chung, B.G., Yoshikawa, M., Midorikawa, T. (1999). Chitosan staple fibers and their chemical modification with some aldehydes. Carbohydrate polymers, 38 (4): 293-298. Doi: https://doi.org/10.1016/S0144-8617(98)00126-X
  • Hussain, F., Shaukat, S.S., Abid, M., Usman, F., Akbar, M. (2013). Control of Meloidogyne javanica and Fusarium solani in chilli (Capsicum annuum L.) with the application of chitin. Pakistan Journal of Nematology, 31 (2): 165-170.
  • İmamoğlu, Ö. (2011). The use of chitosan as a biological control remedy. Turkish Bulletin of Hygiene & Experimental Biology, 68 (4): 215-222. Doi: http://dx.doi.org/10.5505/TurkHijyen.2011.55376
  • İmren, M., Özarslandan, A., Kasapoğlu, E.B., Toktay, H., Elekcioğlu, İ.H. (2014). Morphological and molecular identification of a new species Meloidogyne artiellia (Franklin) on wheat fauna in Turkey. Turkish Journal of Entomology, 38 (2): 189-196. Doi: https://doi.org/10.16970/ted.69266
  • Jaber, N., Al-Akayleh, F., Abdel-Rahem, R.A., Al-Remawi, M. (2021). Characterization ex vivo skin permeation and pharmacological studies of ibuprofen lysinate-chitosan-gold nanoparticles. Journal of Drug Delivery Science and Technology, 62: 102399. Doi: https://doi.org/10.1016/j.jddst.2021.102399
  • Jatala, P. (1986). Biological control of plant-parasitic nematodes. Annual Review Phytopathology, 24: 453–489. Retrieved from https://www.annualreviews.org/doi/pdf/10.1146/annurev.py.24.090186.002321
  • Karabörklü, S., Aydınlı, V., Dura, O. (2022). The potential of Beauveria bassiana and Metarhizium anisopliae in controlling the root-knot nematode Meloidogyne incognita in tomato and cucumber. Journal of Asia-Pacific Entomology, 25 (1): 101846. Doi: https://doi.org/10.1016/j.aspen.2021.101846
  • Khalil, M. S., and Badawy, M. E. (2012). Nematicidal activity of a biopolymer chitosan at different molecular weights against root-knot nematode, Meloidogyne incognita. Plant Protection Science, 48(4), 170-178. Doi: https://doi.org/10.17221/46/2011-PPS
  • Khan, A., Tariq, M., Ahmad, F., Mennan, S., Khan, F., Asif, M., Siddiqui, M. A. (2021). Assessment of nematicidal efficacy of chitosan in combination with botanicals against Meloidogyne incognita on carrot. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 71(4): 225-236. Doi: https://doi.org/10.1080/09064710.2021.1880620
  • Kulikov, S.N., Chirkov, S.N., Il’ina, A.V., Lopatin, S.A., Varlamov, V.P. (2006). Effect of the molecular weight of chitosan on its antiviral activity in plants. Applied Biochemistry and Microbiology, 42(2): 200-203. Doi: https://doi.org/10.1134/S0003683806020165
  • Kurtuluş, G. and Vardar, F. (2020). Properties of Chitosan, Application Areas, Effects on Plant Systems. International Journal of Advances in Engineering and Pure Sciences, 32 (3): 258-269. Doi: https://doi.org/10.7240/jeps.635430
  • Ladner, D.C., Tchounwou, P.B., Lawrence, G.W. (2008). Evaluation of the effect of Ecologic on root knot nematode, Meloidogyne incognita, and tomato plant, Lycopersicon esculentum. International Journal of Environtment Research and Public Health, 5 (2): 104–110. Doi: https://doi.org/10.3390/ijerph5020104
  • Li, Y.C., Sun, X.J., Ge, Y.H., Wang, Y. (2009). Antifungal activity of chitosan on Fusarium sulphureum in relation to dry rot of potato tuber. Agriculture Science of China, 8 (5): 597-604. Doi: https://doi.org/10.1016/S1671-2927(08)60251-5
  • Liu, T., Wang, L., Duan, Y.X., Wang, X. (2008). Nematicidal activity of culture filtrate of Beauveria bassiana against Meloidogyne hapla. World Journal of Microbiology and Biotechnology, 24 (1): 113-118. Doi: https://doi.org/10.1007/s11274-007-9446-z
  • Malerba, M. and Cerana, R. (2015). Reactive oxygen and nitrogen species in defense/stress responses activated by chitosan in sycamore cultured cells. International Journal of Molecular Sciences, 16 (2): 3019-3034. Doi: https://doi.org/10.3390/ijms16023019
  • Misiha, P.K., Aly, A.Z., Mahrous, M.E., Tohamy, M.R.A. (2013). Effect of culture fılterates of three Trichoderma specıes, Fusarium solani and Rhizoctonia solani on egg hatchıng and juvenıle mortalıty of Meloidogyne incognita ın vıtro. Zagazig Journal of Agricultural Research, 40 (3): 1-9. Retrieved from https://www.academia.edu/41815854
  • Mota, L.C. and dos Santos, M.A. (2016). Chitin and chitosan on Meloidogyne javanica management and on chitinase activity in tomato plants. Tropical Plant Pathology, 41 (2): 84-90. Doi: https://doi.org/10.1007/s40858-016-0072-x
  • Mouniga, R., Anita, B., Shanthi, A., Lakshmanan, A., Karthikeyan, G. (2022). Phenol and antioxidant enzymatic activity in root knot nematode, Meloidogyne incognita infected tomato plants treated with chitosan nanoparticles. The Pharma Innovation Journal, 11 (4): 241-245. Doi: https://doi.org/10.22271/tpi.2022.v11.i4d.11754
  • Nico, A.I., Jimenez-Diaz, R.M., Castillo, P. (2004). Control of root-knot nematodes by composed agro-industrial wastes in potting mixtures. Crop Protection, 23 (7): 581–587. Doi: https://doi.org/10.1016/j.cropro.2003.11.005
  • Nige, K.L., New, N., Chandrkrachang, S., Stewens, W.F. (2006): Chitosan as a growth stimulator in orchid tissue culture. Plant Science, 170: 1185–1190. Retrieved from https://www.academia.edu/4173475/Chitosan_as_a_growth_stimulator_in_orchid_tissue_culture
  • No, H.K., Lee, K.S., Kim, I.D., Park, M.J., Kim, S.D., Meyers, S.P. (2003). Chitosan treatment affects yield, ascorbic acid content, and hardness of soybean sprouts. Journal of Food Science, 68: 680–685. Doi: https://doi.org/10.1111/j.1365-2621.2003.tb05731.x
  • Ntalli, N.G. and Caboni, P. (2012). Botanical nematicides in the mediterranean basin. Phytochemistry Reviews, 11 (4): 351-359. Doi: https://doi.org/10.1007/s11101-012-9254-4
  • Ohta, K., Atarashi, H., Shimatani, Y., Matsumoto, S., Asao, T., Hosoki, T. (2000). Effect of chitosan with or without nitrogen treatments on seedling growth in Eustoma grandiflorum. Journal of Japanese Society Horticultural Science, 69 (1): 63–65. Doi: https://doi.org/10.2503/jjshs.69.63
  • Oka, Y. (2010). Mechanisms of nematode suppression by organic soil amendments - a review. Applied Soil Ecology, 44 (2): 101–115. Doi: https://doi.org/10.1016/j.apsoil.2009.11.003
  • Rabea, E.I., El Badawy, M.T., Rogge, T.M., Stevens, C.V., Höfte, M., Steurbaut, W. (2005). Insecticidal and fungicidal activity of new synthesized chitosan derivatives. Pest Management Science, 61 (10): 951-960. Doi: https://doi.org/10.1002/ps.1085
  • Saad, A.M., Salem, H.M., El-Tahan, A.M., El-Saadony, M.T., Alotaibi, S.S., El-Shehawi, A.M., Swelum, A.A. (2022). Biological control: An effective approach against nematodes using black pepper plants (Piper nigrum L.). Saudi Journal of Biological Sciences, 29 (4): 2047-2055. Doi: https://doi.org/10.1016/j.sjbs.2022.01.004
  • Seid, A., Fininsa, C., Mekete, T., Decraemer, W., Wesemael, W.M. (2015). Tomato (Solanum lycopersicum) and root knot nematode (Meloidogyne spp.) a century old battle. Nematology, 17 (9): 195–1000. Retrieved from https://brill.com/view/journals/nemy/17/9/article-p995_1.xml
  • Seo, D.J., Nguyen, D.M.C., Park, R.D., Jung, W.J. (2014). Chitosan-cinnamon beads enhance suppressive activity against Rhizoctonia solani and Meloidogyne incognita in vitro. Microbial Pathogenesis, 66:44–47. Doi: https://doi.org/10.1016/j.micpath.2013.12.007
  • Shahidi, F. and Abuzaytoun, R. (2005). Chitin, chitosan, and coproducts: chemistry, production, applications, and health effects. Advances in Food Nutrition Research, 49 (4): 93-135.
  • Stevens, W.F. (2005). Chitin and Chitosan: Production and application research Asian Institute of Technology 1994-2004. Journal of Metals, Materials and Minerals, 15 (1): 73-81.
  • Struszczyk, H., Orlikowski, B.L., Skrzypczak, C. (2001). Chitosan in the control of soil-borne pathogens. Chitin Enzymology, 197-205.
  • Uysal, G., Söğüt, M.A., Elekçioğlu IH (2017). Identification and distribution of root-knot nematode species (Meloidogyne spp.) in vegetable growing areas of Lakes Region in Turkey. Turkish Journal of Entomology, 41 (1): 105-122. Doi: https://doi.org/10.16970/ted.91225
Year 2022, , 410 - 416, 23.09.2022
https://doi.org/10.31015/jaefs.2022.3.10

Abstract

References

  • Agrinos, (2014). HYT-C: Bioquitina. Retrieved from http://www.agrinos.com.mx/reporteco/upload/procesos/HYTc%20BioQuitina.pdf Accessed on October 29, 2014
  • Arslan, A. and Elekcioğlu, I.H. (2022). Biochemical and molecular identification of root-knot nematodes in greenhouse vegetable areas of Eastern Mediterranean Region (Turkey). Turkish Journal of Entomology, 46 (1): 115-127. Doi: http://dx.doi.org/10.16970/entoted.1055181
  • Asif, M., Ahmad, F., Tariq, M., Khan, A., Ansari, T., Khan, F., Siddiqui, A.M., (2017). Potential of chitosan alone and in combination with agricultural wastes against the root-knot nematode, Meloidogyne incognita infesting eggplant. Journal of Plant Protection Research, 57 (3): 288-295. Doi: https://doi.org/10.1515/jppr-2017-0041
  • Aydınlı, G. (2018). Detection of the root-knot nematode Meloidogyne luci Carneiro et al., 2014 (Tylenchida: Meloidogynidae) in vegetable fields of Samsun Province, Turkey. Turkish Journal of Entomology, 42 (3): 229-237. Doi: https://doi.org/10.16970/entoted.409941
  • Aydınlı, G., Mennan, S., Devran, Z., Širca, S., Urek, G. (2013). First report of the root-knot nematode Meloidogyne ethiopica on tomato and cucumber in Turkey. Plant Disease, 97 (9): 1262-1262. Doi: https://doi.org/10.1094/PDIS-01-13-0019-PDN
  • Barker, K.R. (1985). Nematode extraction and bioassays. An advanced treatise on Meloidogyne, 2: 19-35. Retrieved from https://agris.fao.org/agris-search/search.do?recordID=US8743641
  • Berger, L.R.R., Stamford, T.C.H.M., Stamford, N.P. (2011). Perspectivas para ouso da quitosana na agricultura. Revista Iberoamericana de Polímeros, 12 (4): 195–215. Retrieved from https://reviberpol.files.wordpress.com/2019/07/2011-ramos.pdf
  • Castaneda-Alvarez, C. and Aballay, E. (2016). Rhizobacteria with nematicide aptitude: enzymes and compounds associated. World Journal of Microbiology and Biotechnology, 32 (12): 1-7. Doi: https://doi.org/10.1007/s11274-016-2165-6
  • Castro, L., Flores, L., Uribe, L. (2011). Efecto del vermicompost y quitina sobre el control de Meloidogyne incognita en tomate a nível de invernadero. Agronomía Costarricense, 35 (2): 21–32. ISSN:0377-9424 / 2011
  • Cetintas, R. and Cakmak, B. (2016). Meloidogyne species infesting tomatoes, cucumbers and eggplants grown in Kahramanmaraş Province, Turkey. Turkish Journal of Entomology, 40 (4): 355-364. Doi: http://dx.doi.org/10.16970/ted.40839
  • Collange, B., Navarrete, M., Peyre, G., Mateille, T., Tchamitchian, M. (2011). Root-knot nematode (Meloidogyne) management in vegetable crop production: The challenge of an agronomic system analysis. Crop protection, 30 (10): 1251-1262. Doi: https://doi.org/10.1016/j.cropro.2011.04.016
  • Coolen, W.A. and D'herde, C.J. (1972). A method for the quantitative extraction of nematodes from plant tissue. Publication of the State Nematology and Entomology Research Station, Merelbeke, Belgium, 77 p.
  • De-Jin, R., Suh, J., Park, R., Kim,Y. (2005). Effect of chitin compost and broth on biological control of Meloidogyne incognita on tomato (Lycopersicon esculentum Mill.). Nematology, 7 (1): 125–132. Retrieved from https://brill.com/view/journals/nemy/7/1/article-p125_13.xml
  • El Hadrami, A., Adam, L.R., El Hadrami, I., Daayf, F. (2010). Chitosan in plant protection. Marine Drugs, 8 (4): 968-987. Doi: https://doi.org/10.3390/md8040968
  • El-Ashry, R.M., El-Saadony, M.T., El-Sobki, A.E., El-Tahan, A.M., Al-Otaibi, S., El-Shehawi, A.M., Elshaer, N. (2022). Biological silicon nanoparticles maximize the efficiency of nematicides against biotic stress induced by Meloidogyne incognita in eggplant. Saudi Journal of Biological Sciences, 29 (2): 920-932. Doi: https://doi.org/10.1016/j.sjbs.2021.10.013
  • Elkelany, U.S., El-Mougy, N.S., Abdel-Kader, M.M. (2020). Management of root-knot nematode Meloidogyne incognita of eggplant using some growth-promoting rhizobacteria and chitosan under greenhouse conditions. Egyptian Journal of Biological Pest Control, 30 (1): 1-7. Doi: https://doi.org/10.1186/s41938-020-00334-w
  • El-Sayed, S.M. and Mahdy, M.E. (2015). Effect of chitosan on root-knot nematode, Meloidogyne javanica on tomato plants. International Journal of ChemTech Research, 7 (4): 1985-1992. Retrieved from http://sphinxsai.com/2015/ch_vol7_no4/5/(1985-1992)%20V7N4.pdf
  • Fan, Z., Qin, Y., Liu, S., Xing, R., Yu, H., Li, K., Li, P. (2022). Fluoroalkenyl-Grafted Chitosan Oligosaccharide Derivative: An Exploration for Control Nematode Meloidogyne incognita. International Journal of Molecular Sciences, 23 (4): 2080. Doi: https://doi.org/10.3390/ijms23042080
  • Goverse, A. and Smant, G. (2014). The activation and suppression of plant innate immunity by parasitic nematodes. Annual review of phytopathology, 52: 243-265. Retrieved from https://www.annualreviews.org/doi/epdf/10.1146/annurev-phyto-102313-050118
  • Goy, R.C., Morais, S.T., Assis, O.B., et al. (2016). Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth. Revista Brasileira de Farmacognosia, 26 (1): 122-127. Doi: https://doi.org/10.1016/j.bjp.2015.09.010
  • Gürkan, B., Çetintaş, R., Gürkan, T. (2019). Determination of Root-Nematode species (Meloidogyne spp.) and some nematode population races in vegetable areas of Gaziantep and Osmaniye. KSU J. Agric Nat, 22 (Suppl 1): 113-124. (in Turkish with abstract in English). Doi: http://dx.doi.org/10.18016/ksutarimdoga.v22i49073.551240
  • Hashem, M., Moharam, A.M., Zaied, A.A., Saleh, F.E.M. (2010). Efficacy of essential oils in the control of cumin root rot disease caused by Fusarium spp. Crop Protection, 29 (10): 1111-1117. Doi: https://doi.org/10.1016/j.cropro.2010.04.020
  • Hirano, S., Nagamura, K., Zhang, M., Kim, S.K., Chung, B.G., Yoshikawa, M., Midorikawa, T. (1999). Chitosan staple fibers and their chemical modification with some aldehydes. Carbohydrate polymers, 38 (4): 293-298. Doi: https://doi.org/10.1016/S0144-8617(98)00126-X
  • Hussain, F., Shaukat, S.S., Abid, M., Usman, F., Akbar, M. (2013). Control of Meloidogyne javanica and Fusarium solani in chilli (Capsicum annuum L.) with the application of chitin. Pakistan Journal of Nematology, 31 (2): 165-170.
  • İmamoğlu, Ö. (2011). The use of chitosan as a biological control remedy. Turkish Bulletin of Hygiene & Experimental Biology, 68 (4): 215-222. Doi: http://dx.doi.org/10.5505/TurkHijyen.2011.55376
  • İmren, M., Özarslandan, A., Kasapoğlu, E.B., Toktay, H., Elekcioğlu, İ.H. (2014). Morphological and molecular identification of a new species Meloidogyne artiellia (Franklin) on wheat fauna in Turkey. Turkish Journal of Entomology, 38 (2): 189-196. Doi: https://doi.org/10.16970/ted.69266
  • Jaber, N., Al-Akayleh, F., Abdel-Rahem, R.A., Al-Remawi, M. (2021). Characterization ex vivo skin permeation and pharmacological studies of ibuprofen lysinate-chitosan-gold nanoparticles. Journal of Drug Delivery Science and Technology, 62: 102399. Doi: https://doi.org/10.1016/j.jddst.2021.102399
  • Jatala, P. (1986). Biological control of plant-parasitic nematodes. Annual Review Phytopathology, 24: 453–489. Retrieved from https://www.annualreviews.org/doi/pdf/10.1146/annurev.py.24.090186.002321
  • Karabörklü, S., Aydınlı, V., Dura, O. (2022). The potential of Beauveria bassiana and Metarhizium anisopliae in controlling the root-knot nematode Meloidogyne incognita in tomato and cucumber. Journal of Asia-Pacific Entomology, 25 (1): 101846. Doi: https://doi.org/10.1016/j.aspen.2021.101846
  • Khalil, M. S., and Badawy, M. E. (2012). Nematicidal activity of a biopolymer chitosan at different molecular weights against root-knot nematode, Meloidogyne incognita. Plant Protection Science, 48(4), 170-178. Doi: https://doi.org/10.17221/46/2011-PPS
  • Khan, A., Tariq, M., Ahmad, F., Mennan, S., Khan, F., Asif, M., Siddiqui, M. A. (2021). Assessment of nematicidal efficacy of chitosan in combination with botanicals against Meloidogyne incognita on carrot. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 71(4): 225-236. Doi: https://doi.org/10.1080/09064710.2021.1880620
  • Kulikov, S.N., Chirkov, S.N., Il’ina, A.V., Lopatin, S.A., Varlamov, V.P. (2006). Effect of the molecular weight of chitosan on its antiviral activity in plants. Applied Biochemistry and Microbiology, 42(2): 200-203. Doi: https://doi.org/10.1134/S0003683806020165
  • Kurtuluş, G. and Vardar, F. (2020). Properties of Chitosan, Application Areas, Effects on Plant Systems. International Journal of Advances in Engineering and Pure Sciences, 32 (3): 258-269. Doi: https://doi.org/10.7240/jeps.635430
  • Ladner, D.C., Tchounwou, P.B., Lawrence, G.W. (2008). Evaluation of the effect of Ecologic on root knot nematode, Meloidogyne incognita, and tomato plant, Lycopersicon esculentum. International Journal of Environtment Research and Public Health, 5 (2): 104–110. Doi: https://doi.org/10.3390/ijerph5020104
  • Li, Y.C., Sun, X.J., Ge, Y.H., Wang, Y. (2009). Antifungal activity of chitosan on Fusarium sulphureum in relation to dry rot of potato tuber. Agriculture Science of China, 8 (5): 597-604. Doi: https://doi.org/10.1016/S1671-2927(08)60251-5
  • Liu, T., Wang, L., Duan, Y.X., Wang, X. (2008). Nematicidal activity of culture filtrate of Beauveria bassiana against Meloidogyne hapla. World Journal of Microbiology and Biotechnology, 24 (1): 113-118. Doi: https://doi.org/10.1007/s11274-007-9446-z
  • Malerba, M. and Cerana, R. (2015). Reactive oxygen and nitrogen species in defense/stress responses activated by chitosan in sycamore cultured cells. International Journal of Molecular Sciences, 16 (2): 3019-3034. Doi: https://doi.org/10.3390/ijms16023019
  • Misiha, P.K., Aly, A.Z., Mahrous, M.E., Tohamy, M.R.A. (2013). Effect of culture fılterates of three Trichoderma specıes, Fusarium solani and Rhizoctonia solani on egg hatchıng and juvenıle mortalıty of Meloidogyne incognita ın vıtro. Zagazig Journal of Agricultural Research, 40 (3): 1-9. Retrieved from https://www.academia.edu/41815854
  • Mota, L.C. and dos Santos, M.A. (2016). Chitin and chitosan on Meloidogyne javanica management and on chitinase activity in tomato plants. Tropical Plant Pathology, 41 (2): 84-90. Doi: https://doi.org/10.1007/s40858-016-0072-x
  • Mouniga, R., Anita, B., Shanthi, A., Lakshmanan, A., Karthikeyan, G. (2022). Phenol and antioxidant enzymatic activity in root knot nematode, Meloidogyne incognita infected tomato plants treated with chitosan nanoparticles. The Pharma Innovation Journal, 11 (4): 241-245. Doi: https://doi.org/10.22271/tpi.2022.v11.i4d.11754
  • Nico, A.I., Jimenez-Diaz, R.M., Castillo, P. (2004). Control of root-knot nematodes by composed agro-industrial wastes in potting mixtures. Crop Protection, 23 (7): 581–587. Doi: https://doi.org/10.1016/j.cropro.2003.11.005
  • Nige, K.L., New, N., Chandrkrachang, S., Stewens, W.F. (2006): Chitosan as a growth stimulator in orchid tissue culture. Plant Science, 170: 1185–1190. Retrieved from https://www.academia.edu/4173475/Chitosan_as_a_growth_stimulator_in_orchid_tissue_culture
  • No, H.K., Lee, K.S., Kim, I.D., Park, M.J., Kim, S.D., Meyers, S.P. (2003). Chitosan treatment affects yield, ascorbic acid content, and hardness of soybean sprouts. Journal of Food Science, 68: 680–685. Doi: https://doi.org/10.1111/j.1365-2621.2003.tb05731.x
  • Ntalli, N.G. and Caboni, P. (2012). Botanical nematicides in the mediterranean basin. Phytochemistry Reviews, 11 (4): 351-359. Doi: https://doi.org/10.1007/s11101-012-9254-4
  • Ohta, K., Atarashi, H., Shimatani, Y., Matsumoto, S., Asao, T., Hosoki, T. (2000). Effect of chitosan with or without nitrogen treatments on seedling growth in Eustoma grandiflorum. Journal of Japanese Society Horticultural Science, 69 (1): 63–65. Doi: https://doi.org/10.2503/jjshs.69.63
  • Oka, Y. (2010). Mechanisms of nematode suppression by organic soil amendments - a review. Applied Soil Ecology, 44 (2): 101–115. Doi: https://doi.org/10.1016/j.apsoil.2009.11.003
  • Rabea, E.I., El Badawy, M.T., Rogge, T.M., Stevens, C.V., Höfte, M., Steurbaut, W. (2005). Insecticidal and fungicidal activity of new synthesized chitosan derivatives. Pest Management Science, 61 (10): 951-960. Doi: https://doi.org/10.1002/ps.1085
  • Saad, A.M., Salem, H.M., El-Tahan, A.M., El-Saadony, M.T., Alotaibi, S.S., El-Shehawi, A.M., Swelum, A.A. (2022). Biological control: An effective approach against nematodes using black pepper plants (Piper nigrum L.). Saudi Journal of Biological Sciences, 29 (4): 2047-2055. Doi: https://doi.org/10.1016/j.sjbs.2022.01.004
  • Seid, A., Fininsa, C., Mekete, T., Decraemer, W., Wesemael, W.M. (2015). Tomato (Solanum lycopersicum) and root knot nematode (Meloidogyne spp.) a century old battle. Nematology, 17 (9): 195–1000. Retrieved from https://brill.com/view/journals/nemy/17/9/article-p995_1.xml
  • Seo, D.J., Nguyen, D.M.C., Park, R.D., Jung, W.J. (2014). Chitosan-cinnamon beads enhance suppressive activity against Rhizoctonia solani and Meloidogyne incognita in vitro. Microbial Pathogenesis, 66:44–47. Doi: https://doi.org/10.1016/j.micpath.2013.12.007
  • Shahidi, F. and Abuzaytoun, R. (2005). Chitin, chitosan, and coproducts: chemistry, production, applications, and health effects. Advances in Food Nutrition Research, 49 (4): 93-135.
  • Stevens, W.F. (2005). Chitin and Chitosan: Production and application research Asian Institute of Technology 1994-2004. Journal of Metals, Materials and Minerals, 15 (1): 73-81.
  • Struszczyk, H., Orlikowski, B.L., Skrzypczak, C. (2001). Chitosan in the control of soil-borne pathogens. Chitin Enzymology, 197-205.
  • Uysal, G., Söğüt, M.A., Elekçioğlu IH (2017). Identification and distribution of root-knot nematode species (Meloidogyne spp.) in vegetable growing areas of Lakes Region in Turkey. Turkish Journal of Entomology, 41 (1): 105-122. Doi: https://doi.org/10.16970/ted.91225
There are 54 citations in total.

Details

Primary Language English
Subjects Botany
Journal Section Research Articles
Authors

Fatma Gül Göze Özdemir 0000-0003-1969-4041

Hacer Çevik 0000-0002-9948-1179

Jean Claude Ndayıragıje 0000-0003-0013-9590

Tuğçe Özek 0000-0001-6529-2591

İsmail Karaca 0000-0002-0975-789X

Publication Date September 23, 2022
Submission Date July 5, 2022
Acceptance Date July 21, 2022
Published in Issue Year 2022

Cite

APA Göze Özdemir, F. G., Çevik, H., Ndayıragıje, J. C., Özek, T., et al. (2022). Nematicidal effect of chitosan on Meloidogyne incognita in vitro and on tomato in a pot experiment. International Journal of Agriculture Environment and Food Sciences, 6(3), 410-416. https://doi.org/10.31015/jaefs.2022.3.10


The International Journal of Agriculture, Environment and Food Sciences content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences. 

Web:  dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27