Research Article
PDF Zotero Mendeley EndNote BibTex Cite

Year 2021, Volume 5, Issue 2, 203 - 212, 28.06.2021
https://doi.org/10.31015/jaefs.2021.2.10

Abstract

References

  • Al Rubaye, O.M., Yetisir, H., Ulas, F., Ulas, A. (2020). Growth of pepper inbred lines as affected by rootstocks with vigorous root system under salt stress conditions. Acta Hort., 1273, 479–485.
  • Awang YB, Atherton JG and Taylor AJ (1993). Salinity effects of strawberry plants grown in rockwool I. Growth and leaf water relations. J. Hort. Sci. 68: 783-790.
  • Bethke, P.C., and Drew, M.C. (1992). Stomatal and nonstomatal components to inhibition of photosynthesis in leaves of Capsicum annuum during progressive exposure to NaCl salinity. Plant Physiol. 99, 219-226.
  • Cavusoglu, E., I. Erkel, I., Sulusoglu, M. (2009). The effect of climatic factors at different growth periods on pepino (Solanum muricatum Aiton) fruit quality and yield. Journal of Food Agriculture and Environment, 7: 551-554.
  • Chartzoulakis, K. and Loupassaki, M.H. (1997). Effects of NaCl salinity on germination, growth, gas exchange, and yield of greenhouse eggplant. Agric. Water Manage. 32: 214-225.
  • Chartzoulakis, K. and Klapaki, G. (2000). Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages. Sci. Hortic. 86: 247-260.
  • Colla, G., Rouphael, Y., Cardarelli, M., Rea, E. (2006). Effect of salinity on yield, fruit quality, leaf gas exchange, and mineral composition of grafted watermelon plants. Hort Sci., 41, 622–627
  • Colla, G., Rouphael, Y., Jawad, R., Kumara, P., Rea, E., Cardarellic, M. (2013). The effectiveness of grafting to improve NaCl and CaCl2 tolerance in cucumber. Sci. Hortic., 164, 380-391.
  • Davis, A.R., Perkins-Veazie, P., Sakata, Y., López-Galarza, S., Maroto, J.V., Lee, S.G., et al. (2008). Cucurbit Grafting. CRC. Crit. Rev. Plant Sci. 27, 50–74.
  • Dasgan, H.Y., Aktas, H., Abak, K. and Cakmak, I. (2002). Determination of screening techniques to salinity tolerance in tomato and investigation of genotypes responses. Plant Sci. 163: 695-703.
  • de Pascale, S. and Barbieri, G. (1997). Effects of salinity and top removal on growth and yield of broad bean as a green vegetable. Sci. Hortic. 71: 147-165.
  • Del Amor, F.M., Martinez, V., Cerda, A. (1999). Salinity duration and concentration affect fruit yield and quality and growth and mineral composition of melon plants grown in perlite. HortScience, 34, 1234-1237.
  • Dennis, D.J., Burge, G.K., Lill, R. (1981). Pepinos, cultural techniques. An introduction. Hort. Produce and Practice, N.Z. Min. Agr. Fish., no. 208, p. 2.
  • Dumbroff, E.B., and Cooper, A. (1974). Effects of salt stress applied in balanced nutrient solutions at several stages during growth of tomato. Bot Gaz 135:219–224.
  • Dölarslan, M., and Gül, E. (2012). Toprak bitki ilişkileri açisindan tuzluluk. Türk Bilimsel Derlemeler Dergisi 5 (2), 56–59. (in Turkish).
  • El-Zeftawi, B. M., Brohier, L., Dooley, L., Goubran, F.H., Holmes, R., Scott, B. (1988). Some maturity indices for tamarillo and pepino fruits. Journal of Horticultural Science, 53: 163-170.
  • Ercan, N. and Akilli, M. (1995). Effects of various hormones on fruit set of pepino (Solanum muricatum Ait.). Abstracts of the 1st Int. Syrup. on Solanaceae for fresh market (Malaga, Spain, 28-31 March 1995):94.
  • Flexas, J., Bota, J., Loreto, F., Cornic, G., Sharkey, T.D. (2004). Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. – Plant Biol. 6: 269-279.
  • Ghoulam, C., Foursy, A., Fares, K., (2002). Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environ. Exp. Bot 47, 39-50.
  • Greenway, H., and Munns, R. (1980). Mechanisms of salt tolerance in nonhalophytes. Annu. Rev. Plant Physiol., 31, 149-190.
  • Gong, B., Wen, D., VandenLangenberg, K., Wei, M., Yang, F., Shi, Q., Wang, X. (2013). Comparative effects of NaCl and NaHCO3 stress on photosynthetic parameters, nutrient metabolism, and the antioxidant system in tomato leaves. Sci. Hortic., 157, 1–12.
  • He, Y., Zhu, Z., Yang, J., Ni, X., Zhu, B. (2009). Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes activity. Environ. Exp. Bot. 66, 270–278.
  • Hermann, M. (1988). Beiträge zur Ökologie der Frucht und Ertragsbildung von Solanum muricatum Ait. PhD Thesis. Institut für Nutzpflanzenforschung der Technischen Universität, Berlin.
  • Hirasawa, T., Hsiao, T.C. (1999). Some characteristics of reduced leaf photosynthesis at midday in maize growing in the field. Field Crop. Res., 62, 53–62.
  • Huyskens-Keil, S., Prono-Widayat, H., Ludders, P., Schreiner, M. (2006). Postharvest quality of pepino (Solanum muricatum Ait.) fruit in controlled atmosphere storage. Journal of Food Engineering, 77: 628–634.
  • Joo, M.K., Kim, C.S., Yoon, S.T. (1990). The effect of transplanting date, fruit set and thinning method on the growth and yield of pepino (Solanum muricatum Ait.) Journal of the Korean Society for Horticultural Science 31 : 121-124 (Abstract).
  • Kaya, C., Kirnak, H., Higgs, D. (2001). The effects of supplementary potassium and phosphorus on physiological development and mineral nutrition of cucumber and pepper cultivars grown at high salinity (NaCl). J. Plant Nut., 24, 1457-1471.
  • Kaya, C., Kirnak, H., Higgs, D. (2001). Enhancement of growth and normal growth parameters by foliar application of potassium and phosphorus on tomato cultivars grown at high (NaCl) salinity. J. Plant Nut., 24, 357-367.
  • Khah, E.M., Kakava, E., Mavromatis, A., Chachalis, D. and Goulas, C. (2006). Effect of grafting on growth and yield of tomato (Lycopersicon esculentum Mill.) in greenhouse and open-field. Journal of Applied Horticulture, 8(1), 3-7.
  • Kuşvuran, Ş. (2010). Kavunlarda kuraklık ve tuzluluğa toleransın fizyolojik mekanizmaları arasındaki bağlantılar. Doktora tezi, Ç.Ü. Fen Bilimleri Enstitüsü Bahçe Bitkileri Anabilim Dalı, Adana, pp, 356. (in Turkish).
  • Lee, J.M. (1994). Cultivation of grafted vegetables I: current status, grafting methods and benefits. HortScience 29: 235–239.
  • Levitt, J. (1980). Salt and ion stress. In: Responses of plants to environmental stress. Academic Press, New York. vol. II. p. 365-488.
  • Li, H., Chang, J., Chen, H., Wang, Z., Gu, X., Wei, C., Zhang, Y., Ma, J., Yang, J., Zhang, X. (2017). Exogenous melatonin confers salt stress tolerance to watermelon by improving photosynthesis and redox homeostasis. Front Plant Sci., 8, 295.
  • Luo, W.F. (1994). New sort of vegetable Solarium muricatum and techniques for its cultivation. Chinese Vegetables 1:53-54 (Abstract).
  • Lutts, S. and Guerrier G. (1995). Peroxidase activities of two rice cultivars differing in salinity tolerance as affected by proline and NaCl, Biol. Plant. 37:577–586.
  • Lutts, S., Kinet, JM., Bouharmont J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals. Bot., 78, 389-398.
  • Maas, E.V. and Nieman, R.H. (1977). Crop salt tolerance-current assessment. J. Irr. Drainage Div. ASEC 103:115-134.
  • Maynard, D.N. (1989). Specialty vegetable production in Florida, USA. Acta Horticulturae 242:203-215.
  • Morley-Bunker, M.J.S. (1983). A new commercial crop, the pepino (Solarium muricatum, Ait.) and suggestions for further development. Annual Report of the Royal New Zealand Institute of Horticulture 11:8-19.
  • Mumtaz-Khan, M., Ruqaya, S., Al-Mas’oudi, M., Al-Said, F., Khan, I. (2013). Salinity effects on growth, electrolyte leakage, chlorophyll content and lipid peroxidation in cucumber (Cucumis sativus L.). Int. Conf. Food Agric. Sci., 55, 28-32
  • Penella, C., Nebauer, S.G., Qui˜nones, A., Bautista, A.S., López-Galarza, S., Calatayud, A. (2015). Some rootstocks improve pepper tolerance to mild salinity throughionic regulation. Plant Science 230: 12–22.
  • Penella C., Landi M., Guidi, L., G.Nebauer, S., Pellegrini, E., SanBautista, A., Remorini, D., Nali, C., López-Galarza, S., Calatayu, A. (2016). Salt-tolerant rootstock increases yield of pepper under salinity through maintenance of photosynthetic performance and sinks strength. Journal of Plant Physiology 193(1), 1-11.
  • Penella, C., Pina, A., San Bautista, A., López-Galarza, S., Calatayud, A. (2017). Chlorophyll fluorescence imaging can reflect development of vascular connection in grafting union in some Solanaceae species. Photosynthetica, 55, 671-678.
  • Perez-Lopez, U., Robredo, A., Lacuesta, M., Mena-Petite, A., Munoz-Rueda, A., (2008). The impact of salt stress on the water status of barley plants is partially mitigated by elevated CO2. Environmental and Experimental Botany, 66 (3), 463- 470.
  • Peron, J.Y., Demaure, E., Hamnetel, C. (1989). Les possibilities d’introduction et de developpement de solanacees et de cucurbitacees d’origine tropicale en France. Acta Horticulturae 242:179-186.
  • Pluda, D., Rabinovitch, H.D., Kafkafi, U. (1993). Pepino dulce (Solanum muricatum Ait.) quality characteristics respond to nitrogen nutrition and salinity. Journal of the American Society for Horticultural Science 118:86-91.
  • Pogonyi, Á., Pék, Z., Helyes, L., Lugasi, A. (2005). Effect of grafting on the tomato’s yield, quality and main fruit components in spring forcing. Acta Aliment. 34: 453–462.
  • Prohens, J., Ruiz, J. and Nuez, F. (1996). The pepino (Solanum muricatum, Solanaceae). A “new” crop with a history Econ. Bot. 50 355 368.
  • Rastgeldi, Z.H.A. (2010). Biberde farkli tuz konsantrasyonlarinin bazi fizyolojik parametreler ile mineral madde içeriği üzerine etkisi. M.Sc. thesis (Şanlıurfa: Harran Üniversitesi, Fen Bilimleri Enstitüsü), pp.67. (in Turkish).
  • Redgwell, R. J., Turner, N.A. (1986). Pepino (Solanum muricatum): Chemical composition of ripe fruit. Journal of the Science of Food and Agriculture 37:1217-1222.
  • Rodriguez-Burruezo, A., Prohens, J., Fita, A. (2011). Breeding strategies for improving the performance and fruit quality of the pepino (Solanum muricatum): A model for the enhancement of underutilized exotic fruits. Food Research International, 44: 1927–1935.
  • Rouphael, Y., Cardarelli, M., Rea, E., Colla, G. (2012). Improving melon and cucumber photosynthetic activity, mineral composition, and growth performance under salinity stress by grafting onto Cucurbita hybrid rootstocks. Photosynthetica, 50, 180–188.
  • Saeed R., Mirza, S., Ahmad, R. (2014). Electrolyte leakage and relative water content as affected by organic mulch in okra plant (Abelmoschus esculentus L. Moench) grown under salinity. Fuuast J. Biol., 4 (2), 221- 227.
  • Sarabi, B., Bolandnazar, S., Ghaderi, N., Ghashghaie, J. (2017). Genotypic differences in physiological and biochemical responses to salinity stress in melon (Cucumis melo L.) plants: Prospects for selection of salt tolerant landraces. Plant Physiology and Biochemistry 119 (2017) 294-311.
  • SAS Institute (2003). SAS for Windows 9.1. SAS Institute Inc., Cary, NC.
  • Seidel, H. (1974). Efahrungen mit dem Anbau von Solanum muricatum in Südspanien. Der Tropenlandwirt, Zeitschrift für die Landwirtschaft in den Tropen und Subtropen 75(4):24-30.
  • Sivritepe, H.O., Sivritepe, N., Eris, A. and Turhan, E. (2005). The effects of NaCl pre-treatments on salt tolerance of melons grown under longterm salinity. Sci. Hortic. 106: 568-581.
  • Trinchera, A., Pandozy, G., Rinaldi, S., Crinò, P., Temperini, O., Rea, E. (2013). Graft union formation in artichoke grafting onto wild and cultivated cardoon: An anatomical study. J. Plant Physiol., 170, 1569–1578.
  • Ulas, F., Aydın, A., Ulas, A. and Yetisir, H. (2019a). Grafting for sustainable growth performance of melon (Cucumis melo) under salt stressed hydroponic condition. European J. of Sustainable Development, 8:201-210.
  • Ulas, F., Fricke, F. and Stützel, H. (2019b). Leaf physiological and root morphological parameters of grafted tomato plants drought stress conditions. Fresenius Environmental Bulletin, 28:4A pp.3423-3434.
  • Ulas, A., Doganci, E., Ulas, F., Yetisir, H. (2019). Root-growth characteristics contributing to genotypic variation in nitrogen efficiency of bottle gourd and rootstock potential for watermelon plants, Plants, 8(3), 77.
  • Ulas, A., Aydin, A., Ulas, F., Yetisir, H., Miano, T.F. (2020). Cucurbita rootstocks improve salt tolerance of melon scions by inducing physiological, biochemical and nutritional responses. Horticulturae, 6, 66.
  • Welles, G.W.H. (1992). Experiences with growing and consumer appreciation of pepino fruits (Solahum muricatum) in the Netherlands. Acta Horticulturae 318:211-212.
  • Wignarajah, K., Jennings, D.H., Handley, J.F. (1975). The effect of salinity on growth of Phaseolus vulgaris L. I. Anatomical changes in the first trifoliate leaf. Ann. Bot. 39, 1029-1038.
  • van der Sanden, P.A.C.K. and Veen, B.W. (1992). Effects of air humidity and nutrient solution concentration on growth, water potential and stomatal conductance of cucumber seedlings. Sci. Hortic. 50: 173- 186.
  • Yalcin, H. (2010). Effect of ripening period on composition of pepino (Solanum muricatum) fruit grown in Turkey. African Journal of Biotechnology, 9 (25). 3901-3903.
  • Yamac, M. (2017). Türkiye su kabağı (Lagenaria siceraria) genetik kaynaklarından seçilmiş olan su kabağı genotiplerinin tuzlu koşullar altında karpuza anaçlık potansiyellerinin belirlenmesi. Yükseklisans tezi. Erciyes Universitesi, Fen Bilimleri Enstitüsü, Kayseri, Türkiye. (in Turkish).
  • Yarsi G and Sari N (2006). Effects of grafted seedling on nutritional status of melon growing in greenhouse. Alatarim, 5(2): 1-8. [Google Scholar]
  • Yasar, F., Ellialtioglu, S. Kusvuran, S. (2006). Ion and lipid peroxide content in sensitive and tolerant eggplant callus cultured under salt stress. Eur. J. Hortic. Sci., 71, 169.
  • Yetisir, H. and Uygur, V. (2010). Responses of grafted watermelon onto different gourd species to salinity stress. J. Plant. Nutr., 33, 315–327.
  • Zhang, R.H., Li, J., Guo, S.R., Tezuka, T. (2009). Effects of exogenous putrescine on gas-exchange characteristics and chlorophyll fluorescence of NaCl-stressed cucumber seedlings. Photosynth. Res. 100: 155-162.

Effects of grafting on growth, root morphology and leaf physiology of pepino (Solanum muricatum Ait.) as affected by salt stress under hydroponic conditions

Year 2021, Volume 5, Issue 2, 203 - 212, 28.06.2021
https://doi.org/10.31015/jaefs.2021.2.10

Abstract

In this study, grafted and ungrafted pepino (Solanum muricatum Ait.) plants were tested under different saline conditions. The nutrient solution experiment was conducted within October – November 2016, by employing the technique of Deep-Water Culture (DWC) in an entirely operated automatically climate chamber found in the Plant Physiology Laboratory of Erciyes University, Agriculture Faculty, Kayseri, Turkey. Plants were examined under three various salt levels (i.e., 1 dS m-1, 4 dS m-1 and 8 dS m-1) by growing them in a 8 liter pots loaded constantly in an aerated Hoagland solution. The study was organized with completely randomized block design through three repetitions. The climate chamber study was performed to investigate effects of salt stress on plant growth, shoot- root fresh- dry weights, photosynthesis, leaf area formation, chlorophyll content of leaf (SPAD), leaf and root electrolyte leakage, total length of root, volume of root, and diameter of root in grafted and ungrafted pepino plants. The results showed that shoot growth, root morphological and leaf physiological responses were considerably (p<0.001) influenced by various levels of salt conditions at the nutrient solution. Increased salt level of the nutrient solution decreased significantly root and shoot growth, area of leaf, photosynthetic activity of both grafted and ungrafted plants. Irrespective of being grafted, significant declines were observed in shoot fresh weight (23.6%, 52.1%), root fresh weight (24.8%, 52.8%), leaf area (21.3%, 51.9%), shoot dry weight (24.3%, 53.0%), root dry weight (15.4%, 45.1%), SPAD (5.7%, 18.7%), photosynthesis rate (24.6%, 42.1%), total root length (6.7%, 16.4%), and root volume (3.8%, 5.8%) of pepino plants under 4 dS m-1 salt applications and 8 dS m-1 salt applications, respectively. Grafting promoted growth of plant in pepino plants under both control and saline conditions, furthermore it was noticed that under saline conditions biomass production of both grafted and ungrafted ones were significantly depressed.
Grafted plants produced 54.1%, 43.0% and 9.6% higher shoot fresh weight; 52.0%, 42.0% and 12.8% higher root fresh weight; 52.5%, 40.7% and 8.7% higher leaf area; 60.0%, 46.6% and 11.1% higher shoot dry weight; 68.8%, 36.0% and 29.3% higher root dry weight; 19.9%, 9.2% and 8.2% higher SPAD; 8.0%, 5.1% and 10.8% higher photosynthesis rate; 8.6%, 3.6% and 6.6% higher total root length; 3.1%, 6.7% and 2.4% higher root volume than ungrafted plants under 1 dS m-1, 4 dS m-1 and 8 dS m-1 salt applications, correspondingly. Overall, our study showed that the effectiveness of grafting with respect to expansion of plants growth and development under salinity. Grafting was demonstrated to be an effective mean to achieve this goal.

References

  • Al Rubaye, O.M., Yetisir, H., Ulas, F., Ulas, A. (2020). Growth of pepper inbred lines as affected by rootstocks with vigorous root system under salt stress conditions. Acta Hort., 1273, 479–485.
  • Awang YB, Atherton JG and Taylor AJ (1993). Salinity effects of strawberry plants grown in rockwool I. Growth and leaf water relations. J. Hort. Sci. 68: 783-790.
  • Bethke, P.C., and Drew, M.C. (1992). Stomatal and nonstomatal components to inhibition of photosynthesis in leaves of Capsicum annuum during progressive exposure to NaCl salinity. Plant Physiol. 99, 219-226.
  • Cavusoglu, E., I. Erkel, I., Sulusoglu, M. (2009). The effect of climatic factors at different growth periods on pepino (Solanum muricatum Aiton) fruit quality and yield. Journal of Food Agriculture and Environment, 7: 551-554.
  • Chartzoulakis, K. and Loupassaki, M.H. (1997). Effects of NaCl salinity on germination, growth, gas exchange, and yield of greenhouse eggplant. Agric. Water Manage. 32: 214-225.
  • Chartzoulakis, K. and Klapaki, G. (2000). Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages. Sci. Hortic. 86: 247-260.
  • Colla, G., Rouphael, Y., Cardarelli, M., Rea, E. (2006). Effect of salinity on yield, fruit quality, leaf gas exchange, and mineral composition of grafted watermelon plants. Hort Sci., 41, 622–627
  • Colla, G., Rouphael, Y., Jawad, R., Kumara, P., Rea, E., Cardarellic, M. (2013). The effectiveness of grafting to improve NaCl and CaCl2 tolerance in cucumber. Sci. Hortic., 164, 380-391.
  • Davis, A.R., Perkins-Veazie, P., Sakata, Y., López-Galarza, S., Maroto, J.V., Lee, S.G., et al. (2008). Cucurbit Grafting. CRC. Crit. Rev. Plant Sci. 27, 50–74.
  • Dasgan, H.Y., Aktas, H., Abak, K. and Cakmak, I. (2002). Determination of screening techniques to salinity tolerance in tomato and investigation of genotypes responses. Plant Sci. 163: 695-703.
  • de Pascale, S. and Barbieri, G. (1997). Effects of salinity and top removal on growth and yield of broad bean as a green vegetable. Sci. Hortic. 71: 147-165.
  • Del Amor, F.M., Martinez, V., Cerda, A. (1999). Salinity duration and concentration affect fruit yield and quality and growth and mineral composition of melon plants grown in perlite. HortScience, 34, 1234-1237.
  • Dennis, D.J., Burge, G.K., Lill, R. (1981). Pepinos, cultural techniques. An introduction. Hort. Produce and Practice, N.Z. Min. Agr. Fish., no. 208, p. 2.
  • Dumbroff, E.B., and Cooper, A. (1974). Effects of salt stress applied in balanced nutrient solutions at several stages during growth of tomato. Bot Gaz 135:219–224.
  • Dölarslan, M., and Gül, E. (2012). Toprak bitki ilişkileri açisindan tuzluluk. Türk Bilimsel Derlemeler Dergisi 5 (2), 56–59. (in Turkish).
  • El-Zeftawi, B. M., Brohier, L., Dooley, L., Goubran, F.H., Holmes, R., Scott, B. (1988). Some maturity indices for tamarillo and pepino fruits. Journal of Horticultural Science, 53: 163-170.
  • Ercan, N. and Akilli, M. (1995). Effects of various hormones on fruit set of pepino (Solanum muricatum Ait.). Abstracts of the 1st Int. Syrup. on Solanaceae for fresh market (Malaga, Spain, 28-31 March 1995):94.
  • Flexas, J., Bota, J., Loreto, F., Cornic, G., Sharkey, T.D. (2004). Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. – Plant Biol. 6: 269-279.
  • Ghoulam, C., Foursy, A., Fares, K., (2002). Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environ. Exp. Bot 47, 39-50.
  • Greenway, H., and Munns, R. (1980). Mechanisms of salt tolerance in nonhalophytes. Annu. Rev. Plant Physiol., 31, 149-190.
  • Gong, B., Wen, D., VandenLangenberg, K., Wei, M., Yang, F., Shi, Q., Wang, X. (2013). Comparative effects of NaCl and NaHCO3 stress on photosynthetic parameters, nutrient metabolism, and the antioxidant system in tomato leaves. Sci. Hortic., 157, 1–12.
  • He, Y., Zhu, Z., Yang, J., Ni, X., Zhu, B. (2009). Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes activity. Environ. Exp. Bot. 66, 270–278.
  • Hermann, M. (1988). Beiträge zur Ökologie der Frucht und Ertragsbildung von Solanum muricatum Ait. PhD Thesis. Institut für Nutzpflanzenforschung der Technischen Universität, Berlin.
  • Hirasawa, T., Hsiao, T.C. (1999). Some characteristics of reduced leaf photosynthesis at midday in maize growing in the field. Field Crop. Res., 62, 53–62.
  • Huyskens-Keil, S., Prono-Widayat, H., Ludders, P., Schreiner, M. (2006). Postharvest quality of pepino (Solanum muricatum Ait.) fruit in controlled atmosphere storage. Journal of Food Engineering, 77: 628–634.
  • Joo, M.K., Kim, C.S., Yoon, S.T. (1990). The effect of transplanting date, fruit set and thinning method on the growth and yield of pepino (Solanum muricatum Ait.) Journal of the Korean Society for Horticultural Science 31 : 121-124 (Abstract).
  • Kaya, C., Kirnak, H., Higgs, D. (2001). The effects of supplementary potassium and phosphorus on physiological development and mineral nutrition of cucumber and pepper cultivars grown at high salinity (NaCl). J. Plant Nut., 24, 1457-1471.
  • Kaya, C., Kirnak, H., Higgs, D. (2001). Enhancement of growth and normal growth parameters by foliar application of potassium and phosphorus on tomato cultivars grown at high (NaCl) salinity. J. Plant Nut., 24, 357-367.
  • Khah, E.M., Kakava, E., Mavromatis, A., Chachalis, D. and Goulas, C. (2006). Effect of grafting on growth and yield of tomato (Lycopersicon esculentum Mill.) in greenhouse and open-field. Journal of Applied Horticulture, 8(1), 3-7.
  • Kuşvuran, Ş. (2010). Kavunlarda kuraklık ve tuzluluğa toleransın fizyolojik mekanizmaları arasındaki bağlantılar. Doktora tezi, Ç.Ü. Fen Bilimleri Enstitüsü Bahçe Bitkileri Anabilim Dalı, Adana, pp, 356. (in Turkish).
  • Lee, J.M. (1994). Cultivation of grafted vegetables I: current status, grafting methods and benefits. HortScience 29: 235–239.
  • Levitt, J. (1980). Salt and ion stress. In: Responses of plants to environmental stress. Academic Press, New York. vol. II. p. 365-488.
  • Li, H., Chang, J., Chen, H., Wang, Z., Gu, X., Wei, C., Zhang, Y., Ma, J., Yang, J., Zhang, X. (2017). Exogenous melatonin confers salt stress tolerance to watermelon by improving photosynthesis and redox homeostasis. Front Plant Sci., 8, 295.
  • Luo, W.F. (1994). New sort of vegetable Solarium muricatum and techniques for its cultivation. Chinese Vegetables 1:53-54 (Abstract).
  • Lutts, S. and Guerrier G. (1995). Peroxidase activities of two rice cultivars differing in salinity tolerance as affected by proline and NaCl, Biol. Plant. 37:577–586.
  • Lutts, S., Kinet, JM., Bouharmont J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals. Bot., 78, 389-398.
  • Maas, E.V. and Nieman, R.H. (1977). Crop salt tolerance-current assessment. J. Irr. Drainage Div. ASEC 103:115-134.
  • Maynard, D.N. (1989). Specialty vegetable production in Florida, USA. Acta Horticulturae 242:203-215.
  • Morley-Bunker, M.J.S. (1983). A new commercial crop, the pepino (Solarium muricatum, Ait.) and suggestions for further development. Annual Report of the Royal New Zealand Institute of Horticulture 11:8-19.
  • Mumtaz-Khan, M., Ruqaya, S., Al-Mas’oudi, M., Al-Said, F., Khan, I. (2013). Salinity effects on growth, electrolyte leakage, chlorophyll content and lipid peroxidation in cucumber (Cucumis sativus L.). Int. Conf. Food Agric. Sci., 55, 28-32
  • Penella, C., Nebauer, S.G., Qui˜nones, A., Bautista, A.S., López-Galarza, S., Calatayud, A. (2015). Some rootstocks improve pepper tolerance to mild salinity throughionic regulation. Plant Science 230: 12–22.
  • Penella C., Landi M., Guidi, L., G.Nebauer, S., Pellegrini, E., SanBautista, A., Remorini, D., Nali, C., López-Galarza, S., Calatayu, A. (2016). Salt-tolerant rootstock increases yield of pepper under salinity through maintenance of photosynthetic performance and sinks strength. Journal of Plant Physiology 193(1), 1-11.
  • Penella, C., Pina, A., San Bautista, A., López-Galarza, S., Calatayud, A. (2017). Chlorophyll fluorescence imaging can reflect development of vascular connection in grafting union in some Solanaceae species. Photosynthetica, 55, 671-678.
  • Perez-Lopez, U., Robredo, A., Lacuesta, M., Mena-Petite, A., Munoz-Rueda, A., (2008). The impact of salt stress on the water status of barley plants is partially mitigated by elevated CO2. Environmental and Experimental Botany, 66 (3), 463- 470.
  • Peron, J.Y., Demaure, E., Hamnetel, C. (1989). Les possibilities d’introduction et de developpement de solanacees et de cucurbitacees d’origine tropicale en France. Acta Horticulturae 242:179-186.
  • Pluda, D., Rabinovitch, H.D., Kafkafi, U. (1993). Pepino dulce (Solanum muricatum Ait.) quality characteristics respond to nitrogen nutrition and salinity. Journal of the American Society for Horticultural Science 118:86-91.
  • Pogonyi, Á., Pék, Z., Helyes, L., Lugasi, A. (2005). Effect of grafting on the tomato’s yield, quality and main fruit components in spring forcing. Acta Aliment. 34: 453–462.
  • Prohens, J., Ruiz, J. and Nuez, F. (1996). The pepino (Solanum muricatum, Solanaceae). A “new” crop with a history Econ. Bot. 50 355 368.
  • Rastgeldi, Z.H.A. (2010). Biberde farkli tuz konsantrasyonlarinin bazi fizyolojik parametreler ile mineral madde içeriği üzerine etkisi. M.Sc. thesis (Şanlıurfa: Harran Üniversitesi, Fen Bilimleri Enstitüsü), pp.67. (in Turkish).
  • Redgwell, R. J., Turner, N.A. (1986). Pepino (Solanum muricatum): Chemical composition of ripe fruit. Journal of the Science of Food and Agriculture 37:1217-1222.
  • Rodriguez-Burruezo, A., Prohens, J., Fita, A. (2011). Breeding strategies for improving the performance and fruit quality of the pepino (Solanum muricatum): A model for the enhancement of underutilized exotic fruits. Food Research International, 44: 1927–1935.
  • Rouphael, Y., Cardarelli, M., Rea, E., Colla, G. (2012). Improving melon and cucumber photosynthetic activity, mineral composition, and growth performance under salinity stress by grafting onto Cucurbita hybrid rootstocks. Photosynthetica, 50, 180–188.
  • Saeed R., Mirza, S., Ahmad, R. (2014). Electrolyte leakage and relative water content as affected by organic mulch in okra plant (Abelmoschus esculentus L. Moench) grown under salinity. Fuuast J. Biol., 4 (2), 221- 227.
  • Sarabi, B., Bolandnazar, S., Ghaderi, N., Ghashghaie, J. (2017). Genotypic differences in physiological and biochemical responses to salinity stress in melon (Cucumis melo L.) plants: Prospects for selection of salt tolerant landraces. Plant Physiology and Biochemistry 119 (2017) 294-311.
  • SAS Institute (2003). SAS for Windows 9.1. SAS Institute Inc., Cary, NC.
  • Seidel, H. (1974). Efahrungen mit dem Anbau von Solanum muricatum in Südspanien. Der Tropenlandwirt, Zeitschrift für die Landwirtschaft in den Tropen und Subtropen 75(4):24-30.
  • Sivritepe, H.O., Sivritepe, N., Eris, A. and Turhan, E. (2005). The effects of NaCl pre-treatments on salt tolerance of melons grown under longterm salinity. Sci. Hortic. 106: 568-581.
  • Trinchera, A., Pandozy, G., Rinaldi, S., Crinò, P., Temperini, O., Rea, E. (2013). Graft union formation in artichoke grafting onto wild and cultivated cardoon: An anatomical study. J. Plant Physiol., 170, 1569–1578.
  • Ulas, F., Aydın, A., Ulas, A. and Yetisir, H. (2019a). Grafting for sustainable growth performance of melon (Cucumis melo) under salt stressed hydroponic condition. European J. of Sustainable Development, 8:201-210.
  • Ulas, F., Fricke, F. and Stützel, H. (2019b). Leaf physiological and root morphological parameters of grafted tomato plants drought stress conditions. Fresenius Environmental Bulletin, 28:4A pp.3423-3434.
  • Ulas, A., Doganci, E., Ulas, F., Yetisir, H. (2019). Root-growth characteristics contributing to genotypic variation in nitrogen efficiency of bottle gourd and rootstock potential for watermelon plants, Plants, 8(3), 77.
  • Ulas, A., Aydin, A., Ulas, F., Yetisir, H., Miano, T.F. (2020). Cucurbita rootstocks improve salt tolerance of melon scions by inducing physiological, biochemical and nutritional responses. Horticulturae, 6, 66.
  • Welles, G.W.H. (1992). Experiences with growing and consumer appreciation of pepino fruits (Solahum muricatum) in the Netherlands. Acta Horticulturae 318:211-212.
  • Wignarajah, K., Jennings, D.H., Handley, J.F. (1975). The effect of salinity on growth of Phaseolus vulgaris L. I. Anatomical changes in the first trifoliate leaf. Ann. Bot. 39, 1029-1038.
  • van der Sanden, P.A.C.K. and Veen, B.W. (1992). Effects of air humidity and nutrient solution concentration on growth, water potential and stomatal conductance of cucumber seedlings. Sci. Hortic. 50: 173- 186.
  • Yalcin, H. (2010). Effect of ripening period on composition of pepino (Solanum muricatum) fruit grown in Turkey. African Journal of Biotechnology, 9 (25). 3901-3903.
  • Yamac, M. (2017). Türkiye su kabağı (Lagenaria siceraria) genetik kaynaklarından seçilmiş olan su kabağı genotiplerinin tuzlu koşullar altında karpuza anaçlık potansiyellerinin belirlenmesi. Yükseklisans tezi. Erciyes Universitesi, Fen Bilimleri Enstitüsü, Kayseri, Türkiye. (in Turkish).
  • Yarsi G and Sari N (2006). Effects of grafted seedling on nutritional status of melon growing in greenhouse. Alatarim, 5(2): 1-8. [Google Scholar]
  • Yasar, F., Ellialtioglu, S. Kusvuran, S. (2006). Ion and lipid peroxide content in sensitive and tolerant eggplant callus cultured under salt stress. Eur. J. Hortic. Sci., 71, 169.
  • Yetisir, H. and Uygur, V. (2010). Responses of grafted watermelon onto different gourd species to salinity stress. J. Plant. Nutr., 33, 315–327.
  • Zhang, R.H., Li, J., Guo, S.R., Tezuka, T. (2009). Effects of exogenous putrescine on gas-exchange characteristics and chlorophyll fluorescence of NaCl-stressed cucumber seedlings. Photosynth. Res. 100: 155-162.

Details

Primary Language English
Subjects Horticulture
Published Date June 2021
Journal Section Research Articles
Authors

Firdes ULAS (Primary Author)
ERCIYES UNIVERSITY
0000-0001-6692-8424
Türkiye

Publication Date June 28, 2021
Application Date March 13, 2021
Acceptance Date May 21, 2021
Published in Issue Year 2021, Volume 5, Issue 2

Cite

APA Ulas, F. (2021). Effects of grafting on growth, root morphology and leaf physiology of pepino (Solanum muricatum Ait.) as affected by salt stress under hydroponic conditions . International Journal of Agriculture Environment and Food Sciences , 5 (2) , 203-212 . DOI: 10.31015/jaefs.2021.2.10