Research Article
PDF Zotero Mendeley EndNote BibTex Cite

Year 2021, Volume 5, Issue 2, 221 - 228, 28.06.2021
https://doi.org/10.31015/jaefs.2021.2.12

Abstract

References

  • Alzubi, H., Yepes, L.M. and Fuchs, M. (2012). Enhanced micropropagation and establishment of grapevine rootstock genotypes. International Journal of Plant Developmental Biology, 6, 1, 9-14. Retrieved from http://www.globalsciencebooks.info/Online/GSBOnline/images/2012/IJPDB_6(1)/IJPDB_6(1)9-14o.pdf
  • Artyszak, A., Gozdowski, D. and Kucińska, K. (2015). The Effect of calcium and silicon foliar fertilization in sugar beet. Sugar Tech., 18, 1, 109–114. Doi: https://www.researchgate.net/publication/273528407
  • Asmar, S.A., Castro, E.M., Pasqual, M., Pereira, F.J. and Soares, J.D.R. (2013a). Changes in leaf anatomy and photosynthesis of micropropagated banana plantlets under different silicon sources. Scientia Horticulturae, 161, 328–332. Doi: https://dx.doi.org/10.1016/j.scienta.2013.07.021
  • Asmar, S.A., Pasqual, M., Araujo, A.G., Silva, R.A.L., Rodrigues, F.A. and Pio, L.A.S. (2013b). Morphophysiological characteristics of acclimatized ‘Grande Naine’ banana plants in response to in vitro use of silicon. Semina: Ciências Agrárias, 34, 1, 73-82. Doi:http://dx.doi.org/10.5433/1679-0359.2013v34n1p73
  • Asmar, S.A., Pasqual, M., Rodrigues, F.A., Araujo, A.G., Pio, L.A.S. and Silva, S.O. (2011). Sources of silicon in the development of micropropagated seedlings of banana ‘Maçã’. Ciência Rural, Santa Maria, 41, 7, 1127-1131. Doi: https://doi.org/10.1590/S0103-84782011005000086
  • Asmar, S.A., Soares, J.D.R., Silva, R.A.L., Pasqual, M., Pio, L.A.S. and Castro, E.M. (2015). Anatomical and structural changes in response to application of silicon (Si) in vitro during the acclimatization of banana cv. 'Grand Naine'. Australian Journal of Crop Science, 9, 12, 1236. Retrieved from http://www.cropj. com/soares_ 9_ 12_2015
  • Avestan, S., Naseri, A.L., Hassanzade, A., Sokri, S.M. and Barker, A.V. (2016). Effects of nanosilicon dioxide application on in vitro proliferation of apple rootstock. Journal of Plant Nutrition, 39, 6, 850–855. Doi: https://doi.org/10.1080/01904167.2015.1061550
  • Babaoglu, M., Gurel, E., Özcan, S. (2001). Bitki Biyoteknolojisi. I. Doku Kültürü ve Uygulamaları, SÜ Vakfı Yayınları. Selçuk Üniversitesi, Konya, 374 pages.
  • Banilas, G. and Korkas, E. (2007). Rapid micropropagation of grapevine cv. agiorgitiko through lateral bud development. e-Journal of Science and Technology, (e-JST) 31-38. Doi: https://doi.org/10.18780/e-jst.v2i3.573
  • Braga, F.T., Nunes, C.F., Favero, A.C., Pasqual, M., Carvalho, J.G. and Castro, E.M. (2009). Anatomical characteristics of the strawberry seedlings micropropagated using different sources of silicon. Pesquisa Agropecuaria Brasileira, 44, 2, 128-132. Doi: https://doi.org/10.1590/S0100-204X2009000200003
  • Camargo, M.S., Korndörfer, G.H. and Pereira, H.S. (2007). Solubility of silicon in soils: effect of lime and silicic acid applied. Braganti, 66, 4, 637–647. Doi: https://doi.org/10.1590/S0006-87052007000400014.
  • Costa, B.N.S., Neto, A.R., Chages, E.A., Chages, P.C., Pasqual, M. and Vendrame, W.A. (2021). Influence of silicon and in vitro culture systems on the micropropagation and acclimatization of “Dwarf Cavendish” banana. Acta Scientiarum. Agronomy, 43, e47490, Doi: https://doi.org/10.4025/actasciagron.v43i1. 47490
  • D’Imperio, M., Renna, M., Cardinali, A., Buttaro, D., Santamaria, P. and Serio, F. (2015). Silicon biofortification of leafy vegetables and its bioaccessibility in the edible parts. Journal of the Science of Food and Agriculture, 96, 3, 751-756. Doi: https://doi.org/10.1002/jsfa.7142
  • Diab, A.A., Khalil, S.M. and Ismail, R.M. (2011). Regeneration and micropropagation of grapevine (Vitis vinifera L.) through shoot tips and axillary buds. International Journal of Advanced Biotechnology and Research, 2, 4, 484-491. Retrieved from http://www.bipublication.com
  • Dias, G.M.G., Soares, J.D.R., Ribeiro, S.F., Martins, A.D., Pasqual, M. and Alves, E. (2017). Morphological and physiological characteristics in vitro anthurium plantlets exposed to silicon. Crop Breeding and Applied Biotechnology, 17, 1, 18-24. Doi: http://dx.doi.org/10.1590/1984-70332017v17n1a3
  • El Fadl, A. and Reda, E. (2014). Effect of silicon on somatic embryogenesıs and shoot regeneratıon of dry date palm (Phoenıx Dactylıfera L.) cv Bartamuda. Egyptian Journal of Desert Research, 64, 1, 65-82. Doi: https://dx.doi.org/10.21608/ejdr.2014.5810
  • Epstein, E. (1994). The anomaly of silicon in plant biology. Proceedings of The National Academy of Sciences, UsA 91, 11–17. Doi: https://doi.org/10.1073/pnas.91.1.11
  • Gray, D.J. and Benton, C.M. (1991). In vitro micropropagation and plant establishment of muscadine grape cultivars (Vitis rotundifolia). Plant Cell, Tissue and Organ Culture, 27, 7-14. Doi: https://doi.org/10.1007/BF00048199
  • Hartley, S.E. (2015). Round and round in cycles? silicon‐based plant defences and vole population dynamics. Functinal Ecology, 29, 2, 151–153. Doi: https://doi.org/10.1111/1365-2435.12365
  • Kadlecová, E., Baránek, M., Magnús, S. and Gazdík, F. (2020). The Effects of potassıum silicate as a component of nutrient medium for selected in vitro cultures of Prunus and Corylus genera. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 68, 5, 851-857. Doi: https://doi.org/10.11118/actaun202068050851
  • Lim, M.Y., Lee, E.J., Jana, S., Sivanesan, I. and Jeong, B.R. (2012). Effect of potassium silicate on growth and leaf epidermal characteristics of begonia and pansy grown in vitro. Korean Journal of Horticultural Science and Technology, 30, 5, 579-585. Doi: https://doi.org/10.7235/hort.2012.12062 Ma, J.F. (2004). Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition, 50, 1, 11 – 18. Doi: https://doi.org/10.1080/00380768.2004.10408447
  • Ma, J.F. and Yamaji, N. (2006). Silicon uptake and accumulation in higher plants. Trends in Plant Science 11, 8, 392–397. Doi: https://doi.org/10.1016/j.tplants.2006.06.007
  • Manivannan, A., Soundararajan, P., Cho, Y.S., Park, J.E. and Jeong, B.R. (2018). Sources of silicon influence photosystem and redox homeostasis-related proteins during the axillary shoot multiplication of Dianthus caryophyllus. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 152, 4, 704-710. Doi: https://doi.org/10.1080/11263504.2017.1320312
  • Mansuroğlu, S., Gürel, E. (2001). Mikroçoğaltım. Bitki Biyoteknolojisi I Doku Kültürü ve Uygulamaları. (Editör Babaoğlu, M., Gürel, E., Özcan, S.). S.Ü. Vakıf Yayınları, Selçuk Üniversitesi, Konya. 374 pages
  • Martins, J.P.R., Rodrigues, L.C.A., Silva, T.S., Santos, E.R., Falqueto, A.R. and Gontijo, A.B.P.L. (2019). Sources and concentrations of silicon modulate the physiological and anatomical responses of Aechmea blanchetiana (Bromeliaceae) during in vitro culture. Plant Cell, Tissue and Organ Culture, 137, 397-410. Doi: https://doi.org/10.1007/s11240-019-01579-6
  • Mese, N. and Tangolar, S. (2019). Determination of drought resistance of some American vine rootstocks using polyethylene glycol in in vitro. (YYU Journal of Agricultural Science 29, 3, 466-475. Doi: https://doi.org/10.29133/yyutbd.559174
  • Mitani, N. and Ma, J.F. (2005). Uptake system of silicon in different plant species. Journal of Experimental Botany, 56, 414, 1255-1261. Doi: https://doi.org/10.1093/jxb/eri121
  • Montovani, C., Pivetta, K.F.L., Prado, R.M., Júnior, J.P.S., Nascimento, C.S., Nascimento, C.S. and Gratão, P. L. (2020). Silicon toxicity induced by different concentrations and sources added to in vitro culture of epiphytic orchids. Scientia Horticulturae, 265, 109272. Doi: https://doi.org/10.1016/j.scienta.2020.109272
  • Mozafari, A.A., Ghadakchi Asl, A. and Ghaderi, N. (2018). Grape response to salinity stress and role of iron nanoparticle and potassium silicate to mitigate salt induced damage under in vitro conditions. Physiology and Molecular Biology of Plants, 24, 1, 25–35. Doi: https://doi.org/10.1007/s12298-017-0488-x
  • Muneer, S. and Jeong, B.R. (2015). Proteomic analysis of salt-stress responsive proteins in roots of tomato (Lycopersicon esculentum L.) plants towards silicon efficiency. Plant Growth Regul.ation, 77, 133–146. Doi: https://doi.org/10.1007/s10725-015-0045-y
  • Murashige, T. and Skoog, F. (1962). A revised medium for rapid growth bio assays with tobacco tissue cultures. Phsysiologia Plantarum, 15, 473-479. Doi: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  • Reezi, S., Babalar, M. and Kalantari. S, (2009). Silicon alleviates salt stress, decreases malondialdehyde content and affects petal color of salt stressed cut rose (Rosa X Hybrida L.) ‘Hot Lady’. African Journal of Biotechnology, 8, 1502–1508. Doi: http://doi.org/10.5897/AJB09.180
  • Rodrigues, F.A., Rezende, R.A.L.S., Soares, J.D.R., Rodrigues, V.A., Pasqua, M. and Silva, S. (2017). Application of silicon sources in yam (Dioscorea Spp.) micropropagation. Australian Journal of Crop Science, 11, 11, 1469-1473. Doi: https://doi.org/10.21475/ajcs.17.11.11.pne685
  • Sahebi, M., Hanafi, M.M. and Azizi, P. (2016). Application of silicon in plant tissue culture. In Vitro Cellular and Developmental Biology_Plant, 52, 226–232. Doi: https://doi.org/10.1007/s11627-016-9757-6
  • Sivanesan, I. and Park, S. (2014) The Role of silicon in plant tissue culture. Frontiers in Plant Science. 5, 57, 1-4. Doi: https://doi.org/10.3389/fpls.2014.00571
  • Soares, J.D.R., Pasqual, M., Araujo, A.G., Castro, E.M., Pereira, F.J. and Braga, F.T. (2012). Leaf anatomy of orchids micropropagated with different silicon concentrations. Acta Scientiarum. Agronomy, 34, 4, 413-421. Doi: http://dx.doi.org/10.4025/actasciagron.v34i4.15062
  • Soares, J.D.R., Pasqual, M., Rodrigues, F.A. Villa, F. and Araujo, .A.G. (2011). Silicon sources in the micropropagation of the Cattleya group orchid. Acta Scientiarum-agronomy, 33, 3, 503-507. Doi: http://dx.doi.org/10.4025/actasciagron.v33i3.6281
  • Soares, J.D.R., Pasqual, M., Rodrigues, F.A., Villa, F. and Carvalho, J.G. (2008). Mineral nutrition with silicon by foliar application in orchid hybrid acclimatization. Ciência e Agrotecnologia Lavras, 32, 2, 626-629. Doi: https://dx.doi.org/10.1590/S1413-70542008000200043
  • Xu, C. X., Ma, Y.P., Liu, Y.L. (2015). Effects of silicon (Si) on growth, quality and ionic homeostasis of aloe under salt stress. South African Journal Botany, 98, 26–36. Doi: https://doi.org/10.1016/ j.sajb.2015.01.008
  • Yin, L., Wang, S., Tanaka, K., Fujihara, S., Itai, A., Den, X. and Zhang, S. (2016). Silicon-mediated changes in polyamines participate in silicon-induced salt tolerance in Sorghum bicolor L. Plant, Cell and Environment, 39, 2, 245-258. Doi: https://doi.org/10.1111/pce.12521

Effect of Different Silicone Sources and Concentrations on in vitro Micro Propagation of 140 Ru Grape Rootstock

Year 2021, Volume 5, Issue 2, 221 - 228, 28.06.2021
https://doi.org/10.31015/jaefs.2021.2.12

Abstract

Silicon, which is widely used in different fields, has been used in plant production in vivo and in vitro studies in recent years. Especially in in vitro studies, it is seen that its effect on plant growth and development has been examined. In this study, the effect of three different silicon sources and their four concentrations on micro-propagation of 140 Ru grape rootstocks was investigated. In the study, as explants one-node micro cuttings of rootstock and MS (Murashige and Skoog) as the nutrient medium were used. 1 mg L-1 BA (Benzyl Adenine) at the stage of obtaining shoots from cuttings and in the rooting stage, 1 mg L-1 IBA (Indole Butyric Acid) were added to the nutrient medium. At both stages, 0 (Control), 0.5, 1.0 and 2.0 mg L-1 doses of potassium, sodium and calcium silicate were added to the nutrient medium. Explant viability and mortality rate, shooting rate, plant length, node number, shoot fresh and dry weight, chlorophyll content (SPAD), root number, root length, root fresh and dry weight were examined to determine the effect of the applications. The variance analysis of the study was carried out according to the Two-Way Completely Randomized Experimental Design. According to the results, among the silicon sources, the highest shooting rate (84.40%) was found in the medium containing sodium silicate. The highest shoot fresh and dry weight (0.178 g and 0.026 g, respectively) and root fresh and dry weight values (0.213 g and 0.023 g, respectively) were obtained from potassium silicate. While the number of roots was 2.98 in the medium containing potassium, it was determined as 2.91 in the medium containing calcium silicate. Media containing 1 mg L-1 silicate was found to be more successful than 0, 05, 2 mg L-1 concentrations. The highest values recorded at the concentration were 4.49 cm in plant length, 7.44 in node number, 0.183 g and 0.028 g in shoot fresh and dry weight, respectively, 28.37 in SPAD value and 3.27 in root number. As a result of the study, it is concluded that adding 1 mg L-1 concentration of potassium, calcium and sodium silicate to the nutrient medium can be used in future studies related with in micro propagation. 

References

  • Alzubi, H., Yepes, L.M. and Fuchs, M. (2012). Enhanced micropropagation and establishment of grapevine rootstock genotypes. International Journal of Plant Developmental Biology, 6, 1, 9-14. Retrieved from http://www.globalsciencebooks.info/Online/GSBOnline/images/2012/IJPDB_6(1)/IJPDB_6(1)9-14o.pdf
  • Artyszak, A., Gozdowski, D. and Kucińska, K. (2015). The Effect of calcium and silicon foliar fertilization in sugar beet. Sugar Tech., 18, 1, 109–114. Doi: https://www.researchgate.net/publication/273528407
  • Asmar, S.A., Castro, E.M., Pasqual, M., Pereira, F.J. and Soares, J.D.R. (2013a). Changes in leaf anatomy and photosynthesis of micropropagated banana plantlets under different silicon sources. Scientia Horticulturae, 161, 328–332. Doi: https://dx.doi.org/10.1016/j.scienta.2013.07.021
  • Asmar, S.A., Pasqual, M., Araujo, A.G., Silva, R.A.L., Rodrigues, F.A. and Pio, L.A.S. (2013b). Morphophysiological characteristics of acclimatized ‘Grande Naine’ banana plants in response to in vitro use of silicon. Semina: Ciências Agrárias, 34, 1, 73-82. Doi:http://dx.doi.org/10.5433/1679-0359.2013v34n1p73
  • Asmar, S.A., Pasqual, M., Rodrigues, F.A., Araujo, A.G., Pio, L.A.S. and Silva, S.O. (2011). Sources of silicon in the development of micropropagated seedlings of banana ‘Maçã’. Ciência Rural, Santa Maria, 41, 7, 1127-1131. Doi: https://doi.org/10.1590/S0103-84782011005000086
  • Asmar, S.A., Soares, J.D.R., Silva, R.A.L., Pasqual, M., Pio, L.A.S. and Castro, E.M. (2015). Anatomical and structural changes in response to application of silicon (Si) in vitro during the acclimatization of banana cv. 'Grand Naine'. Australian Journal of Crop Science, 9, 12, 1236. Retrieved from http://www.cropj. com/soares_ 9_ 12_2015
  • Avestan, S., Naseri, A.L., Hassanzade, A., Sokri, S.M. and Barker, A.V. (2016). Effects of nanosilicon dioxide application on in vitro proliferation of apple rootstock. Journal of Plant Nutrition, 39, 6, 850–855. Doi: https://doi.org/10.1080/01904167.2015.1061550
  • Babaoglu, M., Gurel, E., Özcan, S. (2001). Bitki Biyoteknolojisi. I. Doku Kültürü ve Uygulamaları, SÜ Vakfı Yayınları. Selçuk Üniversitesi, Konya, 374 pages.
  • Banilas, G. and Korkas, E. (2007). Rapid micropropagation of grapevine cv. agiorgitiko through lateral bud development. e-Journal of Science and Technology, (e-JST) 31-38. Doi: https://doi.org/10.18780/e-jst.v2i3.573
  • Braga, F.T., Nunes, C.F., Favero, A.C., Pasqual, M., Carvalho, J.G. and Castro, E.M. (2009). Anatomical characteristics of the strawberry seedlings micropropagated using different sources of silicon. Pesquisa Agropecuaria Brasileira, 44, 2, 128-132. Doi: https://doi.org/10.1590/S0100-204X2009000200003
  • Camargo, M.S., Korndörfer, G.H. and Pereira, H.S. (2007). Solubility of silicon in soils: effect of lime and silicic acid applied. Braganti, 66, 4, 637–647. Doi: https://doi.org/10.1590/S0006-87052007000400014.
  • Costa, B.N.S., Neto, A.R., Chages, E.A., Chages, P.C., Pasqual, M. and Vendrame, W.A. (2021). Influence of silicon and in vitro culture systems on the micropropagation and acclimatization of “Dwarf Cavendish” banana. Acta Scientiarum. Agronomy, 43, e47490, Doi: https://doi.org/10.4025/actasciagron.v43i1. 47490
  • D’Imperio, M., Renna, M., Cardinali, A., Buttaro, D., Santamaria, P. and Serio, F. (2015). Silicon biofortification of leafy vegetables and its bioaccessibility in the edible parts. Journal of the Science of Food and Agriculture, 96, 3, 751-756. Doi: https://doi.org/10.1002/jsfa.7142
  • Diab, A.A., Khalil, S.M. and Ismail, R.M. (2011). Regeneration and micropropagation of grapevine (Vitis vinifera L.) through shoot tips and axillary buds. International Journal of Advanced Biotechnology and Research, 2, 4, 484-491. Retrieved from http://www.bipublication.com
  • Dias, G.M.G., Soares, J.D.R., Ribeiro, S.F., Martins, A.D., Pasqual, M. and Alves, E. (2017). Morphological and physiological characteristics in vitro anthurium plantlets exposed to silicon. Crop Breeding and Applied Biotechnology, 17, 1, 18-24. Doi: http://dx.doi.org/10.1590/1984-70332017v17n1a3
  • El Fadl, A. and Reda, E. (2014). Effect of silicon on somatic embryogenesıs and shoot regeneratıon of dry date palm (Phoenıx Dactylıfera L.) cv Bartamuda. Egyptian Journal of Desert Research, 64, 1, 65-82. Doi: https://dx.doi.org/10.21608/ejdr.2014.5810
  • Epstein, E. (1994). The anomaly of silicon in plant biology. Proceedings of The National Academy of Sciences, UsA 91, 11–17. Doi: https://doi.org/10.1073/pnas.91.1.11
  • Gray, D.J. and Benton, C.M. (1991). In vitro micropropagation and plant establishment of muscadine grape cultivars (Vitis rotundifolia). Plant Cell, Tissue and Organ Culture, 27, 7-14. Doi: https://doi.org/10.1007/BF00048199
  • Hartley, S.E. (2015). Round and round in cycles? silicon‐based plant defences and vole population dynamics. Functinal Ecology, 29, 2, 151–153. Doi: https://doi.org/10.1111/1365-2435.12365
  • Kadlecová, E., Baránek, M., Magnús, S. and Gazdík, F. (2020). The Effects of potassıum silicate as a component of nutrient medium for selected in vitro cultures of Prunus and Corylus genera. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 68, 5, 851-857. Doi: https://doi.org/10.11118/actaun202068050851
  • Lim, M.Y., Lee, E.J., Jana, S., Sivanesan, I. and Jeong, B.R. (2012). Effect of potassium silicate on growth and leaf epidermal characteristics of begonia and pansy grown in vitro. Korean Journal of Horticultural Science and Technology, 30, 5, 579-585. Doi: https://doi.org/10.7235/hort.2012.12062 Ma, J.F. (2004). Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition, 50, 1, 11 – 18. Doi: https://doi.org/10.1080/00380768.2004.10408447
  • Ma, J.F. and Yamaji, N. (2006). Silicon uptake and accumulation in higher plants. Trends in Plant Science 11, 8, 392–397. Doi: https://doi.org/10.1016/j.tplants.2006.06.007
  • Manivannan, A., Soundararajan, P., Cho, Y.S., Park, J.E. and Jeong, B.R. (2018). Sources of silicon influence photosystem and redox homeostasis-related proteins during the axillary shoot multiplication of Dianthus caryophyllus. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 152, 4, 704-710. Doi: https://doi.org/10.1080/11263504.2017.1320312
  • Mansuroğlu, S., Gürel, E. (2001). Mikroçoğaltım. Bitki Biyoteknolojisi I Doku Kültürü ve Uygulamaları. (Editör Babaoğlu, M., Gürel, E., Özcan, S.). S.Ü. Vakıf Yayınları, Selçuk Üniversitesi, Konya. 374 pages
  • Martins, J.P.R., Rodrigues, L.C.A., Silva, T.S., Santos, E.R., Falqueto, A.R. and Gontijo, A.B.P.L. (2019). Sources and concentrations of silicon modulate the physiological and anatomical responses of Aechmea blanchetiana (Bromeliaceae) during in vitro culture. Plant Cell, Tissue and Organ Culture, 137, 397-410. Doi: https://doi.org/10.1007/s11240-019-01579-6
  • Mese, N. and Tangolar, S. (2019). Determination of drought resistance of some American vine rootstocks using polyethylene glycol in in vitro. (YYU Journal of Agricultural Science 29, 3, 466-475. Doi: https://doi.org/10.29133/yyutbd.559174
  • Mitani, N. and Ma, J.F. (2005). Uptake system of silicon in different plant species. Journal of Experimental Botany, 56, 414, 1255-1261. Doi: https://doi.org/10.1093/jxb/eri121
  • Montovani, C., Pivetta, K.F.L., Prado, R.M., Júnior, J.P.S., Nascimento, C.S., Nascimento, C.S. and Gratão, P. L. (2020). Silicon toxicity induced by different concentrations and sources added to in vitro culture of epiphytic orchids. Scientia Horticulturae, 265, 109272. Doi: https://doi.org/10.1016/j.scienta.2020.109272
  • Mozafari, A.A., Ghadakchi Asl, A. and Ghaderi, N. (2018). Grape response to salinity stress and role of iron nanoparticle and potassium silicate to mitigate salt induced damage under in vitro conditions. Physiology and Molecular Biology of Plants, 24, 1, 25–35. Doi: https://doi.org/10.1007/s12298-017-0488-x
  • Muneer, S. and Jeong, B.R. (2015). Proteomic analysis of salt-stress responsive proteins in roots of tomato (Lycopersicon esculentum L.) plants towards silicon efficiency. Plant Growth Regul.ation, 77, 133–146. Doi: https://doi.org/10.1007/s10725-015-0045-y
  • Murashige, T. and Skoog, F. (1962). A revised medium for rapid growth bio assays with tobacco tissue cultures. Phsysiologia Plantarum, 15, 473-479. Doi: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  • Reezi, S., Babalar, M. and Kalantari. S, (2009). Silicon alleviates salt stress, decreases malondialdehyde content and affects petal color of salt stressed cut rose (Rosa X Hybrida L.) ‘Hot Lady’. African Journal of Biotechnology, 8, 1502–1508. Doi: http://doi.org/10.5897/AJB09.180
  • Rodrigues, F.A., Rezende, R.A.L.S., Soares, J.D.R., Rodrigues, V.A., Pasqua, M. and Silva, S. (2017). Application of silicon sources in yam (Dioscorea Spp.) micropropagation. Australian Journal of Crop Science, 11, 11, 1469-1473. Doi: https://doi.org/10.21475/ajcs.17.11.11.pne685
  • Sahebi, M., Hanafi, M.M. and Azizi, P. (2016). Application of silicon in plant tissue culture. In Vitro Cellular and Developmental Biology_Plant, 52, 226–232. Doi: https://doi.org/10.1007/s11627-016-9757-6
  • Sivanesan, I. and Park, S. (2014) The Role of silicon in plant tissue culture. Frontiers in Plant Science. 5, 57, 1-4. Doi: https://doi.org/10.3389/fpls.2014.00571
  • Soares, J.D.R., Pasqual, M., Araujo, A.G., Castro, E.M., Pereira, F.J. and Braga, F.T. (2012). Leaf anatomy of orchids micropropagated with different silicon concentrations. Acta Scientiarum. Agronomy, 34, 4, 413-421. Doi: http://dx.doi.org/10.4025/actasciagron.v34i4.15062
  • Soares, J.D.R., Pasqual, M., Rodrigues, F.A. Villa, F. and Araujo, .A.G. (2011). Silicon sources in the micropropagation of the Cattleya group orchid. Acta Scientiarum-agronomy, 33, 3, 503-507. Doi: http://dx.doi.org/10.4025/actasciagron.v33i3.6281
  • Soares, J.D.R., Pasqual, M., Rodrigues, F.A., Villa, F. and Carvalho, J.G. (2008). Mineral nutrition with silicon by foliar application in orchid hybrid acclimatization. Ciência e Agrotecnologia Lavras, 32, 2, 626-629. Doi: https://dx.doi.org/10.1590/S1413-70542008000200043
  • Xu, C. X., Ma, Y.P., Liu, Y.L. (2015). Effects of silicon (Si) on growth, quality and ionic homeostasis of aloe under salt stress. South African Journal Botany, 98, 26–36. Doi: https://doi.org/10.1016/ j.sajb.2015.01.008
  • Yin, L., Wang, S., Tanaka, K., Fujihara, S., Itai, A., Den, X. and Zhang, S. (2016). Silicon-mediated changes in polyamines participate in silicon-induced salt tolerance in Sorghum bicolor L. Plant, Cell and Environment, 39, 2, 245-258. Doi: https://doi.org/10.1111/pce.12521

Details

Primary Language English
Subjects Horticulture
Published Date June 2021
Journal Section Research Articles
Authors

Sawsan Qasim LATEEF This is me
CUKUROVA UNIVERSITY
0000-0003-4781-2308
Türkiye


Serpil TANGOLAR (Primary Author)
ÇUKUROVA ÜNİVERSİTESİ
0000-0002-5563-1972
Türkiye

Supporting Institution Cukurova University Scientific Research Coordination Unit.
Project Number Project No: FYL-2019-11615
Thanks This study was derived from the Master Thesis of Sawsan Qasim LATEFF and supported by Cukurova University Scientific Research Coordination Unit (Project No: FYL-2019-11615). The authors would also like to thank Dr. Hatice Bilir Ekbiç for language editing and his valuable comments.
Publication Date June 28, 2021
Application Date March 19, 2021
Acceptance Date June 6, 2021
Published in Issue Year 2021, Volume 5, Issue 2

Cite

APA Lateef, S. Q. & Tangolar, S. (2021). Effect of Different Silicone Sources and Concentrations on in vitro Micro Propagation of 140 Ru Grape Rootstock . International Journal of Agriculture Environment and Food Sciences , 5 (2) , 221-228 . DOI: 10.31015/jaefs.2021.2.12