Research Article
BibTex RIS Cite
Year 2022, Volume: 6 Issue: 4, 522 - 529, 30.12.2022
https://doi.org/10.31015/jaefs.2022.4.4

Abstract

References

  • Acay, H., Baran, M. F., & Eren A. (2019). Investigation of Antimicrobial Activity of Silver Nanoparticles Produced by Green Synthesis Using Common Grape (Vitis vinifera) Leaf Extract. http://dx.doi.org/10.15666/aeer/1702_45394546
  • Adil, U., Adil, K., Baran, M. F., Keskin, C., & Atalar, M. N. (2019). Investigation of Antimicrobial Activity and Characterization, Synthesis of Silver Nanoparticles from Hypericum triquetrifolium Turra Plant. Journal of the Institute of Science and Technology, 9(3), 1467-1475. https://doi.org/10.21597/jist.533115
  • Aktepe, N., Baran, A., Nuri, A. M., Baran, M. F., Keskin, C., Düz, M. Z., . . . Kavak, D. E. (2021). Biosynthesis of Black Mulberry Leaf Extract and Silver NanoParticles (AgNPs): Characterization, Antimicrobial and Cytotoxic Activity Applications. MAS Journal of Applied Sciences, 6(3), 685-700. https://doi.org/ https://doi.org/10.52520/masjaps.120
  • Atalar, M. N., Baran, A., Baran, M. F., Keskin, C., Aktepe, N., Yavuz, Ö., & İrtegun Kandemir, S. (2021). Economic fast synthesis of olive leaf extract and silver nanoparticles and biomedical applications. Particulate Science and Technology, 1-9. https://doi.org/doi.org/10.1080/02726351.2021.1977443
  • Azhdari, S., Sarabi, R. E., Rezaeizade, N., Mosazade, F., Heidari, M., Borhani, F., . . . Khatami, M. (2020). Metallic SPIONP/AgNP synthesis using a novel natural source and their antifungal activities. RSC Advances, 10(50), 29737-29744. https://doi.org/10.1039/D0RA04071A
  • Banerjee, P., Satapathy, M., Mukhopahayay, A., & Das, P. (2014). Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Bioresources and Bioprocessing, 1(1), 1-10.
  • Baran, A., Baran, M. F., Keskin, C., Kandemir, S. I., Valiyeva, M., Mehraliyeva, S., . . . Eftekhari, A. (2021). Ecofriendly/rapid synthesis of silver nanoparticles using extract of waste parts of artichoke (Cynara scolymus L.) and evaluation of their cytotoxic and antibacterial activities. Journal of Nanomaterials, 2021. https://doi.org/10.1155/2021/2270472
  • Baran M. F. , Acay H. Antimicrobial Activity Of Silver Nanoparticles Synthesized with Extract of Tomato plant Against Bacterial and Fungal Pathogens. Middle Black Sea Journal of Health Science. 2019; 5(2): 67-73.
  • Baran, M. F., Saydut, A., & Adil, U. (2019). Gümüş nanomalzeme sentezi ve antimikrobiyal uygulamaları. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 10(2), 689-695. https://doi.org/doi.org/10.24012/dumf.518897
  • Baran, A., Baran, M. F., Keskin, C., Hatipoğlu, A., Yavuz, Ö., İrtegün Kandemir, S., Adican, M. T., Khalilov, R., Mammadova, A., Ahmadian, E., Rosić, G., Selakovic, D., & Eftekhari, A. (2022). Investigation of antimicrobial and cytotoxic properties and specification of silver nanoparticles (AgNPs) derived from Cicer arietinum L. green leaf extract. Frontiers in Bioengineering and Biotechnology, 10, 855136. https://doi.org/10.3389/fbioe.2022.855136
  • Cassini, A., Högberg, L. D., Plachouras, D., Quattrocchi, A., Hoxha, A., Simonsen, G. S., . . . Cecchini, M. (2019). Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. The Lancet infectious diseases, 19(1), 56-66.
  • Eren, A., & Baran, M. (2019). Green synthesis, characterization and antimicrobial activity of silver nanoparticles (AgNPs) from maize (Zea mays L.). Applied Ecology and Environmental Research, 17(2), 4097-4105. https://doi.org/10.15666/aeer/1702_40974105
  • Gour, A., & Jain, N. K. (2019). Advances in green synthesis of nanoparticles. Artificial cells, nanomedicine, and biotechnology, 47(1), 844-851.
  • Hatipoğlu, A. (2021). Green synthesis of silver nanoparticles using Abelmoschus esculentus leaf and antimicrobial effects on some food pathogens. Artvin Coruh University Journal of Forestry Faculty, 22(2), 239-246. https://doi.org/10.17474/artvinofd.971246
  • Hatipoğlu, A. (2021). Green synthesis of gold nanoparticles from Prunus cerasifera pissardii nigra leaf and their antimicrobial activities on some food pathogens. Progress in Nutrition, 23(3), e2021241.
  • Hatipoğlu, A. (2022). Green Synthesis of Silver Nanoparticles and Their Antimicrobial Effects on Some Food Pathogens. Süleyman Demirel University Journal of Natural and Applied Sciences, 26(1), 106-114. https://doi.org/10.19113/sdufenbed.970654
  • Isbilir, S. S., & Sagiroglu, A. (2013). Total phenolic content, antiradical and antioxidant activities of wild and cultivated Rumex acetosella L. extracts. Biological agriculture & horticulture, 29(4), 219-226. https://doi.org/10.1080/01448765.2013.827992
  • Kakoullis, L., Papachristodoulou, E., Chra, P., & Panos, G. (2021). Mechanisms of antibiotic resistance in important gram-positive and gram-negative pathogens and novel antibiotic solutions. Antibiotics, 10(4), 415. https://doi.org/doi.org/10.3390/antibiotics10040415
  • Keskin, D. & Güvensen, N. (2022). Investigation of antimicrobial properties and chemical composition of different extracts of Sweet gum leaves (Liquidambar orientalis) . International Journal of Agriculture Environment and Food Sciences , 6 (1) , 13-18 . DOI: 10.31015/jaefs.2022.1.3
  • Kumar, V., Gundampati, R. K., Singh, D. K., Bano, D., Jagannadham, M. V., & Hasan, S. H. (2016). Photoinduced green synthesis of silver nanoparticles with highly effective antibacterial and hydrogen peroxide sensing properties. Journal of Photochemistry and Photobiology B: Biology, 162, 374-385. https://doi.org/10.1016/j.jphotobiol.2016.06.037
  • Liu, R. H. (2013). Health-promoting components of fruits and vegetables in the diet. Advances in nutrition, 4(3), 384S-392S. https://doi.org/doi.10.3945/an.112.003517
  • Ma, X., Zhou, B., Budai, A., Jeng, A., Hao, X., Wei, D., . . . Rasse, D. (2016). Study of biochar properties by scanning electron microscope–energy dispersive X-ray spectroscopy (SEM-EDX). Communications in Soil Science and Plant Analysis, 47(5), 593-601. https://doi.org/10.1080/00103624.2016.1146742
  • Naikoo, M. I., Dar, M. I., Raghib, F., Jaleel, H., Ahmad, B., Raina, A., . . . Naushin, F. (2019). Role and regulation of plants phenolics in abiotic stress tolerance: An overview. Plant signaling molecules, 157-168. https://doi.org/doi.10.1016/B978-0-12-816451-8.00009-5
  • Naser, D. K., Abbas, A. K., & Aadim, K. A. (2020). Zeta potential of Ag, Cu, ZnO, CdO and Sn nanoparticles prepared by pulse laser ablation in liquid environment. Iraqi Journal of Science, 2570-2581. https://doi.org/doi.org/10.24996/ijs.2020.61.10.13
  • Parveen, K., Banse, V., & Ledwani, L. (2016). Green synthesis of nanoparticles: their advantages and disadvantages. AIP conference proceedings,
  • Sharma, S., Jaiswal, S., Duffy, B., & Jaiswal, A. K. (2019). Nanostructured materials for food applications: spectroscopy, microscopy and physical properties. Bioengineering, 6(1), 26. https://doi.org/10.3390/bioengineering6010026
  • Singh, A., Gautam, P. K., Verma, A., Singh, V., Shivapriya, P. M., Shivalkar, S., . . . Samanta, S. K. (2020). Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: A review. Biotechnology Reports, 25, e00427. https://doi.org/doi.org/10.1016/j.btre.2020.e00427
  • Singhal, M., Chatterjee, S., Kumar, A., Syed, A., Bahkali, A. H., Gupta, N., & Nimesh, S. (2021). Exploring the Antibacterial and Antibiofilm Efficacy of Silver Nanoparticles Biosynthesized Using Punica granatum Leaves. Molecules, 26(19), 5762. https://doi.org/10.3390/molecules26195762
  • Varadavenkatesan, T., Vinayagam, R., & Selvaraj, R. (2017). Structural characterization of silver nanoparticles phyto-mediated by a plant waste, seed hull of Vigna mungo and their biological applications. Journal of Molecular Structure, 1147, 629-635. https://doi.org/10.1016/j.molstruc.2017.07.002
  • Volkova, M., Atamas, A., Tsarenko, A., Rogachev, A., & Guskov, A. (2021). Cation Transporters of Candida albicans—New Targets to Fight Candidiasis? Biomolecules, 11(4), 584. https://doi.org/doi.org/10.3390/biom11040584

Synthesis, characterization and evaluation of antimicrobial activities of silver nanoparticles obtained from Rumex acetosella L. (Sorrel) plant

Year 2022, Volume: 6 Issue: 4, 522 - 529, 30.12.2022
https://doi.org/10.31015/jaefs.2022.4.4

Abstract

Rumex acetosella L. (sorrel) is a plant belonging to the Polygonaceous family and is a species that grows naturally across Turkey. In this study, the characterization of silver nanoparticles (AgNPs) obtained from the Rumex acetocella L. (RA) plant using the green synthesis method was performed and their antimicrobial activities were investigated. AgNPs were successfully synthesized in the first stage of the study using plant extract taken from plant samples collected from the natural growing environment. Characterization of synthesized AgNPs was performed using appropriate analytical methods (UV-vis, FT-IR, XRD, SEM-EDX, TEM, Zeta Potential and Zeta Sizer). According to the analysis results, it was determined that AgNPs had a maximum absorbance at 476 nm wavelength, a pentagonal, hexagonal, and spherical appearance, a size of 29.16 nm, and a zeta potential of -9.88 mV. The antimicrobial activities of AgNPs were tested using the microdilution technique, in which Minimum Inhibition Concentration (MIC) values were determined on gram-positive Staphylococcus aureus, Bacillus subtilis and gram-negative Pseudomonas aeruginosa, Escherichia coli bacteria and Candida albicans fungus. It showed a very strong antimicrobial effect on C. albicans, S. aureus and P. aeruginosa. Consequently, AgNPs had stronger antimicrobial activity at low concentrations and when compared to commercial antibiotics.

References

  • Acay, H., Baran, M. F., & Eren A. (2019). Investigation of Antimicrobial Activity of Silver Nanoparticles Produced by Green Synthesis Using Common Grape (Vitis vinifera) Leaf Extract. http://dx.doi.org/10.15666/aeer/1702_45394546
  • Adil, U., Adil, K., Baran, M. F., Keskin, C., & Atalar, M. N. (2019). Investigation of Antimicrobial Activity and Characterization, Synthesis of Silver Nanoparticles from Hypericum triquetrifolium Turra Plant. Journal of the Institute of Science and Technology, 9(3), 1467-1475. https://doi.org/10.21597/jist.533115
  • Aktepe, N., Baran, A., Nuri, A. M., Baran, M. F., Keskin, C., Düz, M. Z., . . . Kavak, D. E. (2021). Biosynthesis of Black Mulberry Leaf Extract and Silver NanoParticles (AgNPs): Characterization, Antimicrobial and Cytotoxic Activity Applications. MAS Journal of Applied Sciences, 6(3), 685-700. https://doi.org/ https://doi.org/10.52520/masjaps.120
  • Atalar, M. N., Baran, A., Baran, M. F., Keskin, C., Aktepe, N., Yavuz, Ö., & İrtegun Kandemir, S. (2021). Economic fast synthesis of olive leaf extract and silver nanoparticles and biomedical applications. Particulate Science and Technology, 1-9. https://doi.org/doi.org/10.1080/02726351.2021.1977443
  • Azhdari, S., Sarabi, R. E., Rezaeizade, N., Mosazade, F., Heidari, M., Borhani, F., . . . Khatami, M. (2020). Metallic SPIONP/AgNP synthesis using a novel natural source and their antifungal activities. RSC Advances, 10(50), 29737-29744. https://doi.org/10.1039/D0RA04071A
  • Banerjee, P., Satapathy, M., Mukhopahayay, A., & Das, P. (2014). Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Bioresources and Bioprocessing, 1(1), 1-10.
  • Baran, A., Baran, M. F., Keskin, C., Kandemir, S. I., Valiyeva, M., Mehraliyeva, S., . . . Eftekhari, A. (2021). Ecofriendly/rapid synthesis of silver nanoparticles using extract of waste parts of artichoke (Cynara scolymus L.) and evaluation of their cytotoxic and antibacterial activities. Journal of Nanomaterials, 2021. https://doi.org/10.1155/2021/2270472
  • Baran M. F. , Acay H. Antimicrobial Activity Of Silver Nanoparticles Synthesized with Extract of Tomato plant Against Bacterial and Fungal Pathogens. Middle Black Sea Journal of Health Science. 2019; 5(2): 67-73.
  • Baran, M. F., Saydut, A., & Adil, U. (2019). Gümüş nanomalzeme sentezi ve antimikrobiyal uygulamaları. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 10(2), 689-695. https://doi.org/doi.org/10.24012/dumf.518897
  • Baran, A., Baran, M. F., Keskin, C., Hatipoğlu, A., Yavuz, Ö., İrtegün Kandemir, S., Adican, M. T., Khalilov, R., Mammadova, A., Ahmadian, E., Rosić, G., Selakovic, D., & Eftekhari, A. (2022). Investigation of antimicrobial and cytotoxic properties and specification of silver nanoparticles (AgNPs) derived from Cicer arietinum L. green leaf extract. Frontiers in Bioengineering and Biotechnology, 10, 855136. https://doi.org/10.3389/fbioe.2022.855136
  • Cassini, A., Högberg, L. D., Plachouras, D., Quattrocchi, A., Hoxha, A., Simonsen, G. S., . . . Cecchini, M. (2019). Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. The Lancet infectious diseases, 19(1), 56-66.
  • Eren, A., & Baran, M. (2019). Green synthesis, characterization and antimicrobial activity of silver nanoparticles (AgNPs) from maize (Zea mays L.). Applied Ecology and Environmental Research, 17(2), 4097-4105. https://doi.org/10.15666/aeer/1702_40974105
  • Gour, A., & Jain, N. K. (2019). Advances in green synthesis of nanoparticles. Artificial cells, nanomedicine, and biotechnology, 47(1), 844-851.
  • Hatipoğlu, A. (2021). Green synthesis of silver nanoparticles using Abelmoschus esculentus leaf and antimicrobial effects on some food pathogens. Artvin Coruh University Journal of Forestry Faculty, 22(2), 239-246. https://doi.org/10.17474/artvinofd.971246
  • Hatipoğlu, A. (2021). Green synthesis of gold nanoparticles from Prunus cerasifera pissardii nigra leaf and their antimicrobial activities on some food pathogens. Progress in Nutrition, 23(3), e2021241.
  • Hatipoğlu, A. (2022). Green Synthesis of Silver Nanoparticles and Their Antimicrobial Effects on Some Food Pathogens. Süleyman Demirel University Journal of Natural and Applied Sciences, 26(1), 106-114. https://doi.org/10.19113/sdufenbed.970654
  • Isbilir, S. S., & Sagiroglu, A. (2013). Total phenolic content, antiradical and antioxidant activities of wild and cultivated Rumex acetosella L. extracts. Biological agriculture & horticulture, 29(4), 219-226. https://doi.org/10.1080/01448765.2013.827992
  • Kakoullis, L., Papachristodoulou, E., Chra, P., & Panos, G. (2021). Mechanisms of antibiotic resistance in important gram-positive and gram-negative pathogens and novel antibiotic solutions. Antibiotics, 10(4), 415. https://doi.org/doi.org/10.3390/antibiotics10040415
  • Keskin, D. & Güvensen, N. (2022). Investigation of antimicrobial properties and chemical composition of different extracts of Sweet gum leaves (Liquidambar orientalis) . International Journal of Agriculture Environment and Food Sciences , 6 (1) , 13-18 . DOI: 10.31015/jaefs.2022.1.3
  • Kumar, V., Gundampati, R. K., Singh, D. K., Bano, D., Jagannadham, M. V., & Hasan, S. H. (2016). Photoinduced green synthesis of silver nanoparticles with highly effective antibacterial and hydrogen peroxide sensing properties. Journal of Photochemistry and Photobiology B: Biology, 162, 374-385. https://doi.org/10.1016/j.jphotobiol.2016.06.037
  • Liu, R. H. (2013). Health-promoting components of fruits and vegetables in the diet. Advances in nutrition, 4(3), 384S-392S. https://doi.org/doi.10.3945/an.112.003517
  • Ma, X., Zhou, B., Budai, A., Jeng, A., Hao, X., Wei, D., . . . Rasse, D. (2016). Study of biochar properties by scanning electron microscope–energy dispersive X-ray spectroscopy (SEM-EDX). Communications in Soil Science and Plant Analysis, 47(5), 593-601. https://doi.org/10.1080/00103624.2016.1146742
  • Naikoo, M. I., Dar, M. I., Raghib, F., Jaleel, H., Ahmad, B., Raina, A., . . . Naushin, F. (2019). Role and regulation of plants phenolics in abiotic stress tolerance: An overview. Plant signaling molecules, 157-168. https://doi.org/doi.10.1016/B978-0-12-816451-8.00009-5
  • Naser, D. K., Abbas, A. K., & Aadim, K. A. (2020). Zeta potential of Ag, Cu, ZnO, CdO and Sn nanoparticles prepared by pulse laser ablation in liquid environment. Iraqi Journal of Science, 2570-2581. https://doi.org/doi.org/10.24996/ijs.2020.61.10.13
  • Parveen, K., Banse, V., & Ledwani, L. (2016). Green synthesis of nanoparticles: their advantages and disadvantages. AIP conference proceedings,
  • Sharma, S., Jaiswal, S., Duffy, B., & Jaiswal, A. K. (2019). Nanostructured materials for food applications: spectroscopy, microscopy and physical properties. Bioengineering, 6(1), 26. https://doi.org/10.3390/bioengineering6010026
  • Singh, A., Gautam, P. K., Verma, A., Singh, V., Shivapriya, P. M., Shivalkar, S., . . . Samanta, S. K. (2020). Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: A review. Biotechnology Reports, 25, e00427. https://doi.org/doi.org/10.1016/j.btre.2020.e00427
  • Singhal, M., Chatterjee, S., Kumar, A., Syed, A., Bahkali, A. H., Gupta, N., & Nimesh, S. (2021). Exploring the Antibacterial and Antibiofilm Efficacy of Silver Nanoparticles Biosynthesized Using Punica granatum Leaves. Molecules, 26(19), 5762. https://doi.org/10.3390/molecules26195762
  • Varadavenkatesan, T., Vinayagam, R., & Selvaraj, R. (2017). Structural characterization of silver nanoparticles phyto-mediated by a plant waste, seed hull of Vigna mungo and their biological applications. Journal of Molecular Structure, 1147, 629-635. https://doi.org/10.1016/j.molstruc.2017.07.002
  • Volkova, M., Atamas, A., Tsarenko, A., Rogachev, A., & Guskov, A. (2021). Cation Transporters of Candida albicans—New Targets to Fight Candidiasis? Biomolecules, 11(4), 584. https://doi.org/doi.org/10.3390/biom11040584
There are 30 citations in total.

Details

Primary Language English
Subjects Ecology
Journal Section Research Articles
Authors

Necmettin Aktepe 0000-0003-2192-9049

Hafize Bütüner 0000-0002-3868-7536

Ayşe Baran 0000-0002-2317-0489

M.firat Baran 0000-0001-8133-6670

Cumali Keskin 0000-0003-3758-0654

Publication Date December 30, 2022
Submission Date July 10, 2022
Acceptance Date August 18, 2022
Published in Issue Year 2022 Volume: 6 Issue: 4

Cite

APA Aktepe, N., Bütüner, H., Baran, A., Baran, M., et al. (2022). Synthesis, characterization and evaluation of antimicrobial activities of silver nanoparticles obtained from Rumex acetosella L. (Sorrel) plant. International Journal of Agriculture Environment and Food Sciences, 6(4), 522-529. https://doi.org/10.31015/jaefs.2022.4.4


The International Journal of Agriculture, Environment and Food Sciences content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences. 

Web:  dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27