Research Article
BibTex RIS Cite

Effects of different doses of cadmium on physiological, biochemical, and phytoextraction potential of mustard (Brassica juncea L.)

Year 2025, Volume: 9 Issue: 1, 252 - 260, 17.03.2025
https://doi.org/10.31015/2025.1.27

Abstract

This study investigated the physiological and biochemical tolerance and response, cadmium (Cd) accumulation capacity of the mustard plant (Brassica juncea L.) to different doses of Cd (0.0 (control)-, 25-, 50-, 100-, 200-, and 300 ppm) under greenhouse conditions. After harvesting the mustard plant, physiological parameters (plant length, plant fresh and dry weight, roots fresh weight and dry weight), and biochemical parameters such as chlorophyll a (Chl a), and chlorophyll b (Chl b), carotenoids, proline, malondialdehyde (MDA), antioxidant enzymes such as peroxidase (POX), and catalase (CAT) were examined. Cd content was measured in leaves and roots to determine phytoextraction capacity. Cd stress decreases plant and root fresh weight (Fwt) and dry weight (Dwt). Chl a-Chl b, and carotenoid contents 100 ppm of Cd decrease Cd doses increase p≤0.05. The osmolyte molecule proline increased to 100 ppm Cd dose and then declined to 300 ppm. Accumulation of MDA (2.9 to 33.8 nmol g-1 Fwt), H2O2 (2.9 to 30.4 µmol g-1 Fwt), and antioxidant enzymes (POX and CAT) showed an increasing trend with increasing Cd doses, p≤0.05. Cd accumulation in leaves (0.0 to 53.8. mg kg-1 ) and roots (0.0 to 67.7. mg kg-1 ) increased depending on the applied Cd concentration. The highest Cd accumulation was determined at 300 ppm Cd level. These findings suggest that mustard plants can accumulate high levels of Cd in both leaves and roots, indicating that they are hyperaccumulators. As a result, mustard plants can be utilized as phytoremediation plants in Cd-contaminated soils.

Supporting Institution

Harran University

Project Number

This research was funded by the Harran University Scientific Research Project (HUBAP), number 20132.

References

  • Aebi, H. (1984). Catalase in vitro Methods in Enzymology, 105, 121-126. Bittencourt-Oliveira, MC.
  • Ammar, W. B., Nouairi, I., Zarrouk, M., Ghorbel, M. H., & Jemal, F. (2008). Antioxidative response to cadmium in roots and leaves of tomato plants. Biologia Plantarum, 52(4), 727-731.
  • Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1.
  • Aybar, M., Saglam, B., Daghan, H., Tufekcioglu, A., Koleli, N., & Yilmaz, F. N. (2023). Phytoextraction of Heavy Metal (Cu, Zn, Pb) from Mining Area by Sunflower (Helianthus annuus). Kastamonu University Journal of Forestry Faculty, 23 (1), 75-85.
  • Baker, A. J., McGrath, S. P., Reeves, R. D., & Smith, J. A. C. (2020). Metal hyperaccumulator plants: A review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. Phytoremediation of Contaminated Soil and Water, 85-107.
  • Bortoloti, G. A., & Baron, D. (2022). Phytoremediation of toxic heavy metals by Brassica plants: A biochemical and physiological approach. Environmental Advances, 8, 100204.
  • Bruno, L., Pacenza, M., Forgione, I., Lamerton, L. R., Greco, M., Chiappetta, A., & Bitonti, M. B. (2017). In Arabidopsis thaliana cadmium impact on the growth of primary root by altering SCR expression and auxin-cytokinin cross-talk. Frontiers in Plant Science, 8, 1323.
  • Canal, S. B., & Bozkurt, M. A. (2018). Kadmiyum toksisitesine karşı demir gübrelemesi ve arıtma çamurunun marul (Lactuca Sativa L. Var. Longifolia) bitkisinin gelişimine ve antioksidatif enzim aktivitesine etkisi. Yuzuncu Yıl University Journal of Agricultural Sciences, 28(1), 19-26.
  • Cvikrová, M., Hrubcová, M., Vägner, M., Macháčková, I., & Eder, J. (1994). Phenolic acids and peroxidase activity in alfalfa ( Medicago sativa ) embryogenic cultures after ethephon treatment. Physiologia Plantarum, 91(2), 226-233.
  • Dağhan, H., Köleli, N., Uygur, V., Arslan, M., Önder, D., Göksun, V., & Ağca, N. (2012). Kadmiyum ile kirlenmiş toprakların fitoekstraksiyonla arıtımında transgenik tütün bitkisinin kullanımının araştırılması. Toprak Su Dergisi, 1(1), 1-6.
  • Daulta, R., Prakash, M., & Goyal, S. (2023). Metal content in soils of Northern India and crop response: A review. International Journal of Environmental Science and Technology, 20(4), 4521-4548.
  • Dinakar, N., Nagajyothi, P. C., Suresh, S., Udaykiran, Y., & Damodharam, T. (2008). Phytotoxicity of cadmium on protein, proline and antioxidant enzyme activities in growing Arachis hypogaea L. seedlings. Journal of Environmental Sciences, 20(2), 199-206.
  • Doe, J., Smith, A. (2023). Phytoremediation potential of Brassica juncea in cadmium-contaminated soils. Environmental Research, 200(5), 45-60
  • Dogan, M., Bolat, I., Karakas, S., Dikilitas, M., Gutiérrez-Gamboa, G., & Kaya, O. (2022). Remediation of cadmium stress in Strawberry plants using Humic Acid and Silicon Applications. Life, 12(12), 1962.
  • Doğanlar, Z. B., & Atmaca, M. (2011). Influence of Airborne Pollution on Cd, Zn, Pb, Cu, and Al Accumulation and Physiological Parameters of Plant Leaves in Antakya (Turkey). Water, Air, & Soil Pollution, 214(1-4), 509-523.
  • Ekmekçi, Y., Tanyolac, D., & Ayhan, B. (2008). Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. Journal of Plant Physiology, 165(6), 600-611.
  • Farooq, M. A., Ali, S., Hameed, A., Bharwana, S. A., Rizwan, M., Ishaque, W., Farid, M., Mahmood, K., & Iqbal, Z. (2016). Cadmium stress in cotton seedlings: Physiological, photosynthesis and oxidative damages alleviated by glycinebetaine. South African Journal of Botany, 104, 61-68.
  • Gill, S. S., Khan, N. A., & Tuteja, N. (2012). Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.). Plant Science, 182, 112-120.
  • Kacar, B., & İnal, A. (2008). Bitki Analizleri. Nobel Yayınları, Yayın No: 1241. Fen Bilimleri, 892, 892.
  • Karakas, S. (2013). Development of tomato growing in soil differing in salt levels and effects of companion plants on same physiological parameters and soil remediation. PhD, University of Harran, Sanlıurfa.
  • Karakas, S., Dıkılıtas, M., & Akkurak, H. (2021). Biochemical and DNA damage responses of hydroponically grown Elands sourfig (Carpobrotus acinaciformis L.) leaves to cadmium stress conditions. Applied Ecology and Environmental Research, 19, 2649-2666.
  • Karanlık, S., Ergün, N., & Tiryakioğlu, M. (2013). Farklı Kadmiyum Düzeylerinin Pamuk Bitkisinde (Gossipium Hirsutum L) Büyüme, Cd, Fe, Zn Konsantrasyonu ve Antioksidatif Enzim Aktiviteleri Üzerine Etkisi. Tarım Bilimleri Araştırma Dergisi, 2, 83-88.
  • Laghlimi, M., Baghdad, B., El Hadi, H., & Bouabdli, A. (2015). Phytoremediation mechanisms of heavy metal contaminated soils: A review. Open Journal of Ecology, 5(8), 375-388.
  • Lakhdar, A., Iannelli, M. A., Debez, A., Massacci, A., Jedidi, N., & Abdelly, C. (2010). Effect of municipal solid waste compost and sewage sludge use on wheat ( Triticum durum ): Growth, heavy metal accumulation, and antioxidant activity. Journal of the Science of Food and Agriculture, 90(6), 965-971. https://doi.org/10.1002/jsfa.3904
  • Liu, C. P., Shen, Z. G., & Li, X. D. (2007). Accumulation and detoxification of cadmium in Brassica pekinensis and B. chinensis. Biologia plantarum, 51(1), 116-120. https://doi.org/10.1007/s10535-007-0023-y
  • Liu, S., Ali, S., Yang, R., Tao, J., & Ren, B. (2019). A newly discovered Cd-hyperaccumulator Lantana camara L. Journal of Hazardous Materials, 371, 233-242.
  • Lu, Y., Li, X., He, M., Zhao, X., Liu, Y., Cui, Y., Pan, Y., & Tan, H. (2010). Seedlings growth and antioxidative enzymes activities in leaves under heavy metal stress differ between two desert plants: A perennial (Peganum harmala) and an annual (Halogeton glomeratus) grass. Acta Physiologiae Plantarum, 32, 583-590.
  • Maja, Mengistu & Ayano, Samuel. (2021). The Impact of Population Growth on Natural Resources and Farmers’ Capacity to Adapt to Climate Change in Low-Income Countries. Earth Systems and Environment. 5. 10.1007/s41748-021-00209-6.
  • Muradoglu, F., Gundogdu, M., Ercisli, S., Encu, T., Balta, F., Jaafar, H. Z., & Zia-Ul-Haq, M. (2015). Cadmium toxicity affects chlorophyll a and b content, antioxidant enzyme activities and mineral nutrient accumulation in strawberry. Biological Research, 48(1), 11. https://doi.org/10.1186/s40659-015-0001-3
  • Ondrasek, G., Romic, D., & Rengel, Z. (2020). Interactions of humates and chlorides with cadmium drive soil cadmium chemistry and uptake by radish cultivars. Science of The Total Environment, 702, 134887.
  • Özyürek, T. (2016). Cyclic fatigue resistance of Reciproc, WaveOne, and WaveOne Gold nickel-titanium instruments. Journal of Endodontics, 42(10), 1536-1539.
  • Peng, H., & Shahidi, F. (2021). Cannabis and Cannabis Edibles: A Review. Journal of Agricultural and Food Chemistry, 69(6), 1751-1774. https://doi.org/10.1021/acs.jafc.0c07472
  • Priya AK, Muruganandam M, Ali SS, Kornaros M. (2023). Clean-Up of Heavy Metals from Contaminated Soil by Phytoremediation: A Multidisciplinary and Eco-Friendly Approach. Toxics, 2;11(5):422. doi: 10.3390/toxics11050422. PMID: 37235237; PMCID: PMC10221411. Rahimzadeh, M. R., Rahimzadeh, M. R., Kazemi, S., & Moghadamnia, A. (2017). Cadmium toxicity and treatment: An update. Caspian Journal of Internal Medicine, 8(3), 135.
  • Shoaib, A., Javaid, A. (2021). Oxidative stress in plants exposed to heavy metals. In Organic Solutes, Oxidative Stress, and Antioxidant Enzymes Under Abiotic Stressors (pp. 133–152). CRC Press.
  • Tiryakioglu, M., Eker, S., Ozkutlu, F., Husted, S., & Cakmak, I. (2006). Antioxidant defense system and cadmium uptake in barley genotypes differing in cadmium tolerance. Journal of Trace Elements in Medicine and Biology, 20(3), 181-189.
  • Vassilev, A., Lidon, F. C., Matos, M. D. C., Ramalho, J. C., & Yordanov, I. (2002). Photosynthetıc performance and content of some nutrıents ın cadmıum- and copper-treated barley plants. Journal of Plant Nutrition, 25(11), 2343-2360. https://doi.org/10.1081/PLN-120014699
  • Velikova, V., Yordanov, I., & Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant science, 151(1), 59-66.
  • Waheed, A., Haxim, Y., Islam, W., Ahmad, M., Ali, S., Wen, X., Khan, K. A., Ghramh, H. A., Zhang, Z., & Zhang, D. (2022). Impact of Cadmium Stress on Growth and Physio-Biochemical Attributes of Eruca sativa Mill. Plants (Web), 11(21), 2981.
  • Ximénez-Embún, P., Rodríguez-Sanz, B., Madrid-Albarrán, Y., & Cámara, C. (2002). Uptake of Heavy Metals by Lupin Plants in Artificially Contaminated Sand: Preliminary Results. International Journal of Environmental Analytical Chemistry, 82(11-12), 805-813. https://doi.org/10.1080/0306731021000102275
  • Xue, Z.-C., Gao, H.-Y., & Zhang, L.-T. (2013). Effects of cadmium on growth, photosynthetic rate and chlorophyll content in leaves of soybean seedlings. Biologia Plantarum, 57(3), 587-590. https://doi.org/10.1007/s10535-013-0318-0
  • Yu, F., Liu, K., Li, M., Zhou, Z., Deng, H., & Chen, B. (2013). Effects of Cadmium on Enzymatic and Non-Enzymatic Antioxidative Defences of Rice ( Oryza Sativa L.). International Journal of Phytoremediation, 15(6), 513-521. https://doi.org/10.1080/15226514.2012.702807
Year 2025, Volume: 9 Issue: 1, 252 - 260, 17.03.2025
https://doi.org/10.31015/2025.1.27

Abstract

Project Number

This research was funded by the Harran University Scientific Research Project (HUBAP), number 20132.

References

  • Aebi, H. (1984). Catalase in vitro Methods in Enzymology, 105, 121-126. Bittencourt-Oliveira, MC.
  • Ammar, W. B., Nouairi, I., Zarrouk, M., Ghorbel, M. H., & Jemal, F. (2008). Antioxidative response to cadmium in roots and leaves of tomato plants. Biologia Plantarum, 52(4), 727-731.
  • Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1.
  • Aybar, M., Saglam, B., Daghan, H., Tufekcioglu, A., Koleli, N., & Yilmaz, F. N. (2023). Phytoextraction of Heavy Metal (Cu, Zn, Pb) from Mining Area by Sunflower (Helianthus annuus). Kastamonu University Journal of Forestry Faculty, 23 (1), 75-85.
  • Baker, A. J., McGrath, S. P., Reeves, R. D., & Smith, J. A. C. (2020). Metal hyperaccumulator plants: A review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. Phytoremediation of Contaminated Soil and Water, 85-107.
  • Bortoloti, G. A., & Baron, D. (2022). Phytoremediation of toxic heavy metals by Brassica plants: A biochemical and physiological approach. Environmental Advances, 8, 100204.
  • Bruno, L., Pacenza, M., Forgione, I., Lamerton, L. R., Greco, M., Chiappetta, A., & Bitonti, M. B. (2017). In Arabidopsis thaliana cadmium impact on the growth of primary root by altering SCR expression and auxin-cytokinin cross-talk. Frontiers in Plant Science, 8, 1323.
  • Canal, S. B., & Bozkurt, M. A. (2018). Kadmiyum toksisitesine karşı demir gübrelemesi ve arıtma çamurunun marul (Lactuca Sativa L. Var. Longifolia) bitkisinin gelişimine ve antioksidatif enzim aktivitesine etkisi. Yuzuncu Yıl University Journal of Agricultural Sciences, 28(1), 19-26.
  • Cvikrová, M., Hrubcová, M., Vägner, M., Macháčková, I., & Eder, J. (1994). Phenolic acids and peroxidase activity in alfalfa ( Medicago sativa ) embryogenic cultures after ethephon treatment. Physiologia Plantarum, 91(2), 226-233.
  • Dağhan, H., Köleli, N., Uygur, V., Arslan, M., Önder, D., Göksun, V., & Ağca, N. (2012). Kadmiyum ile kirlenmiş toprakların fitoekstraksiyonla arıtımında transgenik tütün bitkisinin kullanımının araştırılması. Toprak Su Dergisi, 1(1), 1-6.
  • Daulta, R., Prakash, M., & Goyal, S. (2023). Metal content in soils of Northern India and crop response: A review. International Journal of Environmental Science and Technology, 20(4), 4521-4548.
  • Dinakar, N., Nagajyothi, P. C., Suresh, S., Udaykiran, Y., & Damodharam, T. (2008). Phytotoxicity of cadmium on protein, proline and antioxidant enzyme activities in growing Arachis hypogaea L. seedlings. Journal of Environmental Sciences, 20(2), 199-206.
  • Doe, J., Smith, A. (2023). Phytoremediation potential of Brassica juncea in cadmium-contaminated soils. Environmental Research, 200(5), 45-60
  • Dogan, M., Bolat, I., Karakas, S., Dikilitas, M., Gutiérrez-Gamboa, G., & Kaya, O. (2022). Remediation of cadmium stress in Strawberry plants using Humic Acid and Silicon Applications. Life, 12(12), 1962.
  • Doğanlar, Z. B., & Atmaca, M. (2011). Influence of Airborne Pollution on Cd, Zn, Pb, Cu, and Al Accumulation and Physiological Parameters of Plant Leaves in Antakya (Turkey). Water, Air, & Soil Pollution, 214(1-4), 509-523.
  • Ekmekçi, Y., Tanyolac, D., & Ayhan, B. (2008). Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. Journal of Plant Physiology, 165(6), 600-611.
  • Farooq, M. A., Ali, S., Hameed, A., Bharwana, S. A., Rizwan, M., Ishaque, W., Farid, M., Mahmood, K., & Iqbal, Z. (2016). Cadmium stress in cotton seedlings: Physiological, photosynthesis and oxidative damages alleviated by glycinebetaine. South African Journal of Botany, 104, 61-68.
  • Gill, S. S., Khan, N. A., & Tuteja, N. (2012). Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.). Plant Science, 182, 112-120.
  • Kacar, B., & İnal, A. (2008). Bitki Analizleri. Nobel Yayınları, Yayın No: 1241. Fen Bilimleri, 892, 892.
  • Karakas, S. (2013). Development of tomato growing in soil differing in salt levels and effects of companion plants on same physiological parameters and soil remediation. PhD, University of Harran, Sanlıurfa.
  • Karakas, S., Dıkılıtas, M., & Akkurak, H. (2021). Biochemical and DNA damage responses of hydroponically grown Elands sourfig (Carpobrotus acinaciformis L.) leaves to cadmium stress conditions. Applied Ecology and Environmental Research, 19, 2649-2666.
  • Karanlık, S., Ergün, N., & Tiryakioğlu, M. (2013). Farklı Kadmiyum Düzeylerinin Pamuk Bitkisinde (Gossipium Hirsutum L) Büyüme, Cd, Fe, Zn Konsantrasyonu ve Antioksidatif Enzim Aktiviteleri Üzerine Etkisi. Tarım Bilimleri Araştırma Dergisi, 2, 83-88.
  • Laghlimi, M., Baghdad, B., El Hadi, H., & Bouabdli, A. (2015). Phytoremediation mechanisms of heavy metal contaminated soils: A review. Open Journal of Ecology, 5(8), 375-388.
  • Lakhdar, A., Iannelli, M. A., Debez, A., Massacci, A., Jedidi, N., & Abdelly, C. (2010). Effect of municipal solid waste compost and sewage sludge use on wheat ( Triticum durum ): Growth, heavy metal accumulation, and antioxidant activity. Journal of the Science of Food and Agriculture, 90(6), 965-971. https://doi.org/10.1002/jsfa.3904
  • Liu, C. P., Shen, Z. G., & Li, X. D. (2007). Accumulation and detoxification of cadmium in Brassica pekinensis and B. chinensis. Biologia plantarum, 51(1), 116-120. https://doi.org/10.1007/s10535-007-0023-y
  • Liu, S., Ali, S., Yang, R., Tao, J., & Ren, B. (2019). A newly discovered Cd-hyperaccumulator Lantana camara L. Journal of Hazardous Materials, 371, 233-242.
  • Lu, Y., Li, X., He, M., Zhao, X., Liu, Y., Cui, Y., Pan, Y., & Tan, H. (2010). Seedlings growth and antioxidative enzymes activities in leaves under heavy metal stress differ between two desert plants: A perennial (Peganum harmala) and an annual (Halogeton glomeratus) grass. Acta Physiologiae Plantarum, 32, 583-590.
  • Maja, Mengistu & Ayano, Samuel. (2021). The Impact of Population Growth on Natural Resources and Farmers’ Capacity to Adapt to Climate Change in Low-Income Countries. Earth Systems and Environment. 5. 10.1007/s41748-021-00209-6.
  • Muradoglu, F., Gundogdu, M., Ercisli, S., Encu, T., Balta, F., Jaafar, H. Z., & Zia-Ul-Haq, M. (2015). Cadmium toxicity affects chlorophyll a and b content, antioxidant enzyme activities and mineral nutrient accumulation in strawberry. Biological Research, 48(1), 11. https://doi.org/10.1186/s40659-015-0001-3
  • Ondrasek, G., Romic, D., & Rengel, Z. (2020). Interactions of humates and chlorides with cadmium drive soil cadmium chemistry and uptake by radish cultivars. Science of The Total Environment, 702, 134887.
  • Özyürek, T. (2016). Cyclic fatigue resistance of Reciproc, WaveOne, and WaveOne Gold nickel-titanium instruments. Journal of Endodontics, 42(10), 1536-1539.
  • Peng, H., & Shahidi, F. (2021). Cannabis and Cannabis Edibles: A Review. Journal of Agricultural and Food Chemistry, 69(6), 1751-1774. https://doi.org/10.1021/acs.jafc.0c07472
  • Priya AK, Muruganandam M, Ali SS, Kornaros M. (2023). Clean-Up of Heavy Metals from Contaminated Soil by Phytoremediation: A Multidisciplinary and Eco-Friendly Approach. Toxics, 2;11(5):422. doi: 10.3390/toxics11050422. PMID: 37235237; PMCID: PMC10221411. Rahimzadeh, M. R., Rahimzadeh, M. R., Kazemi, S., & Moghadamnia, A. (2017). Cadmium toxicity and treatment: An update. Caspian Journal of Internal Medicine, 8(3), 135.
  • Shoaib, A., Javaid, A. (2021). Oxidative stress in plants exposed to heavy metals. In Organic Solutes, Oxidative Stress, and Antioxidant Enzymes Under Abiotic Stressors (pp. 133–152). CRC Press.
  • Tiryakioglu, M., Eker, S., Ozkutlu, F., Husted, S., & Cakmak, I. (2006). Antioxidant defense system and cadmium uptake in barley genotypes differing in cadmium tolerance. Journal of Trace Elements in Medicine and Biology, 20(3), 181-189.
  • Vassilev, A., Lidon, F. C., Matos, M. D. C., Ramalho, J. C., & Yordanov, I. (2002). Photosynthetıc performance and content of some nutrıents ın cadmıum- and copper-treated barley plants. Journal of Plant Nutrition, 25(11), 2343-2360. https://doi.org/10.1081/PLN-120014699
  • Velikova, V., Yordanov, I., & Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant science, 151(1), 59-66.
  • Waheed, A., Haxim, Y., Islam, W., Ahmad, M., Ali, S., Wen, X., Khan, K. A., Ghramh, H. A., Zhang, Z., & Zhang, D. (2022). Impact of Cadmium Stress on Growth and Physio-Biochemical Attributes of Eruca sativa Mill. Plants (Web), 11(21), 2981.
  • Ximénez-Embún, P., Rodríguez-Sanz, B., Madrid-Albarrán, Y., & Cámara, C. (2002). Uptake of Heavy Metals by Lupin Plants in Artificially Contaminated Sand: Preliminary Results. International Journal of Environmental Analytical Chemistry, 82(11-12), 805-813. https://doi.org/10.1080/0306731021000102275
  • Xue, Z.-C., Gao, H.-Y., & Zhang, L.-T. (2013). Effects of cadmium on growth, photosynthetic rate and chlorophyll content in leaves of soybean seedlings. Biologia Plantarum, 57(3), 587-590. https://doi.org/10.1007/s10535-013-0318-0
  • Yu, F., Liu, K., Li, M., Zhou, Z., Deng, H., & Chen, B. (2013). Effects of Cadmium on Enzymatic and Non-Enzymatic Antioxidative Defences of Rice ( Oryza Sativa L.). International Journal of Phytoremediation, 15(6), 513-521. https://doi.org/10.1080/15226514.2012.702807
There are 41 citations in total.

Details

Primary Language English
Subjects Agricultural Biotechnology Diagnostics, Soil Sciences and Plant Nutrition (Other)
Journal Section Research Articles
Authors

Rahime Altıntas 0000-0003-1536-7801

Sema Karakaş Dikilitaş 0000-0003-1617-9407

Murat Dikilitas 0000-0002-7399-4750

Ferhat Uğurlar 0000-0002-3663-3497

Project Number This research was funded by the Harran University Scientific Research Project (HUBAP), number 20132.
Publication Date March 17, 2025
Submission Date October 10, 2024
Acceptance Date March 16, 2025
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

APA Altıntas, R., Karakaş Dikilitaş, S., Dikilitas, M., Uğurlar, F. (2025). Effects of different doses of cadmium on physiological, biochemical, and phytoextraction potential of mustard (Brassica juncea L.). International Journal of Agriculture Environment and Food Sciences, 9(1), 252-260. https://doi.org/10.31015/2025.1.27


The International Journal of Agriculture, Environment and Food Sciences content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences. 

Web:  dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27