Research Article
BibTex RIS Cite
Year 2025, Volume: 9 Issue: 1, 144 - 156, 17.03.2025
https://doi.org/10.31015/2025.1.17

Abstract

References

  • Aguilera, E., Guzmán, G. I., de Molina, M. G., Soto, D., & Infante-Amate, J. (2019). From animals to machines. The impact of mechanization on the carbon footprint of traction in Spanish agriculture: 1900–2014. Journal of cleaner production, 221, 295-305. https://doi.org/10.1016/j.jclepro.2019.02.247
  • Alamu, S. A. (2024). Clımate change-resılıence farmıng model for enhanced food securıty and sustaınable development In Sub-Saharan Afrıca. Science World Journal, 19(4), 1068-1076. Doi: 10.4314/swj.v19i4.23
  • Apergis, N., Pinar, M., & Unlu, E. (2023). How do foreign direct investment flows affect carbon emissions in BRICS countries? Revisiting the pollution haven hypothesis using bilateral FDI flows from OECD to BRICS countries. Environmental Science and Pollution Research, 30(6), 14680-14692. https://doi.org/10.1007/s11356-022-23185-4
  • Appiah, K., Du, J., & Poku, J. (2018). Causal relationship between agricultural production and carbon dioxide emissions in selected emerging economies. Environmental Science and Pollution Research, 25, 24764-24777. https://doi.org/10.1007/s11356-018-2523-z
  • Asgharipour, M. R., Mousavinik, S. M., & Enayat, F. F. (2016). Evaluation of energy input and greenhouse gases emissions from alfalfa production in the Sistan region, Iran. Energy Reports, 2, 135-140. https://doi.org/10.1016/j.egyr.2016.05.007
  • Atasel, O. Y., Guneysu, Y., & Pata, U. K. (2022). Testing the agricultural induced EKC hypothesis: fresh empirical evidence from the top ten agricultural countries. AGRIS on-line Papers in Economics and Informatics, 14(1), 19-31. Doi: 10.22004/ag.econ.320336
  • Attiaoui, I., & Boufateh, T. (2019). Impacts of climate change on cereal farming in Tunisia: a panel ARDL–PMG approach. Environmental Science and Pollution Research, 26, 13334-13345. https://doi.org/10.1007/s11356-019-04867-y
  • Baloch, M. A., Mahmood, N., & Zhang, J. W. (2019). Effect of natural resources, renewable energy and economic development on CO2 emissions in BRICS countries. Science of the Total Environment, 678, 632-638. https://doi.org/10.1016/j.scitotenv.2019.05.028
  • Bennetzen, E. H., Smith, P., & Porter, J. R. (2016). Decoupling of greenhouse gas emissions from global agricultural production: 1970–2050. Global change biology, 22(2), 763-781. https://doi.org/10.1111/gcb.13120
  • Bhatia, A., Ghosh, A., Kumar, A., & Bhattacharyya, R. (2022). Greenhouse gas emission and carbon sequestration in conservation agriculture. In Conservation Agriculture in India (pp. 223-242). Routledge. https://doi.org/10.4324/9781003292487
  • Bhattacharyya, P., Dash, P. K., & Padhy, S. R. (2021). Impact of conservation agriculture on greenhouse gas emission and its implications. Conservation Agriculture: A Sustainable Approach for Soil Health and Food Security: Conservation Agriculture for Sustainable Agriculture, 339-358. https://doi.org/10.1007/978-981-16-0827-8
  • Change, I. C. (2019). Land, Summary for policymakers. Intergovernmental Panel on Climate Change: Geneva, Switzerland.
  • Chel, A., & Kaushik, G. (2011). Renewable energy for sustainable agriculture. Agronomy for Sustainable Development, 31, 91-118. doi: 10.1051/agro/2010029
  • Chishti, M., & Sinha, A. (2022). Do the shocks in technological and financial innovation influence the environmental quality? Evidence from BRICS economies. Technology in Society, 68, 101828. https://doi.org/10.1016/j.techsoc.2021.101828
  • Cousins, B., Borras Jr, S. M., Sauer, S., & Ye, J. (2018). BRICS, middle-income countries (MICs), and global agrarian transformations: internal dynamics, regional trends, and international implications. Globalizations, 15(1), 1-11. https://doi.org/10.1080/14747731.2018.1429104
  • Çam, S. (2023). Tarımsal üretimde kullanılan kimyasal gübrelerin iklim değişikliği üzerindeki uzun dönemli etkileri: Türkiye örneği. D. Kelgökmen İliç (Ed.), İktisadi ve İdari Bilimler: Modern Değerlendirmeler ve Araştırmalar. Lyon/Fransa: Livre de Lyon (in Turkish).
  • Çam, S. (2024). The Nexus of agricultural efficiency, renewable energy consumption, and climate change in Türkiye. Alanya Akademik Bakış, 8(2), 586-599. https://doi.org/10.29023/alanyaakademik.1407903 (in Turkish).
  • Çelik, M. Y., & Ünsür, Z. (2020). Küreselleşme ve büyüme ilişkisinin Dumitrescu-Hurlin panel nedensellik testi ile belirlenmesi. İzmir İktisat Dergisi, 35(1), 201-210. https://doi.org/10.24988/ije.202035115 (in Turkish).
  • Dumitrescu, E. I. & Hurlin, C. (2012), Testing for Granger noncausality in heterogeneous panels. Economic Modelling, 29(4), 1450-1460. https://doi.org/10.1016/j.econmod.2012.02.014
  • Evrendilek, F., & Ertekin, C. (2002). Agricultural sustainability in Türkiye: integrating food, environmental and energy securities. Land Degradation ve Development, 13(1), 61-67. https://doi.org/10.1002/ldr.480
  • Fu, Q., Álvarez-Otero, S., Sial, M. S., Comite, U., Zheng, P., Samad, S., & Oláh, J. (2021). Impact of renewable energy on economic growth and CO2 emissions—evidence from BRICS countries. Processes, 9(8), 1281. https://doi.org/10.3390/pr9081281
  • Galford, G. L., Melillo, J. M., Kicklighter, D. W., Cronin, T. W., Cerri, C. E., Mustard, J. F., & Cerri, C. C. (2010). Greenhouse gas emissions from alternative futures of deforestation and agricultural management in the southern Amazon. Proceedings of the National Academy of Sciences, 107(46), 19649-19654. https://doi.org/10.1073/pnas.1000780107
  • Guan, N., Liu, L., Dong, K., Xie, M., & Du, Y. (2023). Agricultural mechanization, large-scale operation and agricultural carbon emissions. Cogent Food & Agriculture, 9(1), 2238430. https://doi.org/10.1080/23311932.2023.2238430
  • Güler, A., Kaplan, O., & Bozkaya, F. (2019). Bazı kaba yemlere ilave edilen probiyotiklerin in vitro organik madde sindirimi ve metan üretimi üzerine etkileri. Harran Üniversitesi Veteriner Fakültesi Dergisi, 8(1), 93-98 https://doi.org/10.31196/huvfd.592585 (in Turkish).
  • Gyedu, S., & Tang, H. (2024). Achieving carbon neutrality in the brics countries: the roles of ınnovation, renewable energy, economic growth and carbon taxes. https://doi.org/10.21203/rs.3.rs-3982978/v1
  • Haseeb, M., Hassan, S., & Azam, M. (2017). Rural–urban transformation, energy consumption, economic growth, and CO2 emissions using STRIPAT model for BRICS countries. Environmental Progress ve Sustainable Energy, 36(2), 523-531. https://doi.org/10.1002/ep.12461
  • He, F., Chang, K. C., Li, M., Li, X., & Li, F. (2020). Bootstrap ARDL test on the relationship among trade, FDI, and CO2 emissions: based on the experience of BRICS countries. Sustainability, 12(3), 1060. https://doi.org/10.3390/su12031060
  • Hedayetullah, M., Zaman, P., Yadav, S. K., Nayyer, M., & Sıddıquı, M. W. (2015). Climate Change and Indian Agriculture. Climate Dynamics in Horticultural Science, Volume Two: Impact, Adaptation, and Mitigation, 309. https://doi.org/10.1201/b18252
  • Hinz, R., Sulser, T. B., Hüfner, R., Mason‐D’Croz, D., Dunston, S., Nautiyal, S., ... & Schaldach, R. (2020). Agricultural development and land use change in India: A scenario analysis of trade‐offs between UN Sustainable Development Goals (SDGs). Earth's Future, 8(2), e2019EF001287. https://doi.org/10.1029/2019EF001287
  • Houghton, R. A. (1995). Land‐use change and the carbon cycle. Global Change Biology, 1(4), 275-287. https://doi.org/10.1111/j.1365-2486.1995.tb00026.x
  • Kara, F., Bas, T., TIrmandioğlu Talu, N. H., & Alola, A. A. (2021). Investigating the carbon emission aspects of agricultural land utilization in Türkiye. Integrated Environmental Assessment and Management, 18(4), 988-996. https://doi.org/10.1002/ieam.4536
  • Lambin, E. F., Turner, B. L., Geist, H. J., Agbola, S. B., Angelsen, A., Bruce, J. W., ... & Xu, J. (2001). The causes of land-use and land-cover change: moving beyond the myths. Global Environmental Change, 11(4), 261-269. https://doi.org/10.1016/S0959-3780(01)00007-3
  • Liu, D., Zhu, X., & Wang, Y. (2021). China's agricultural green total factor productivity based on carbon emission: an analysis of evolution trend and influencing factors. Journal of Cleaner Production, 278, 123692. https://doi.org/10.1016/j.jclepro.2020.123692
  • Liu, S., Jia, J., Huang, H., Chen, D., Zhong, Y., & Zhou, Y. (2023). China’s CO2 emissions: a thorough analysis of spatiotemporal characteristics and sustainable policy from the agricultural land-use perspective during 1995–2020. Land, 12(6), 1220. https://doi.org/10.3390/land12061220
  • Lu, F., Meng, J., & Cheng, B. (2024). How does improving agricultural mechanization affect the green development of agriculture? Evidence from China. Journal of Cleaner Production, 472, 143298. https://doi.org/10.1016/j.jclepro.2024.143298
  • Malgaz, M., & Atalay, A. İ. (2022). Sonbaharda dökülen ağaç yapraklarının kimyasal kompozisyonu ve metan üretim kapasiteleri. Journal of the Institute of Science and Technology, 12(3), 1871-1883. https://doi.org/10.21597/jist.1107876 (in Turkish).
  • Mandimby, A. S. (2024). Effect of renewable energi on CO2 emissions in BRICS countries. Quantitative Economics and Management Studies, 5(2), 372-386. https://doi.org/10.35877/454RI.qems2489
  • Mekouar, M. A. (2021). 15. Food and agriculture organization of the united nations (FAO). Yearbook of International Environmental Law, 32(1), 298-304. https://doi.org/10.1093/yiel/yvae031
  • Nazir, M. J., Li, G., Nazir, M. M., Zulfiqar, F., Siddique, K. H., Iqbal, B., & Du, D. (2024). Harnessing soil carbon sequestration to address climate change challenges in agriculture. Soil and Tillage Research, 237, 105959. https://doi.org/10.1016/j.still.2023.105959
  • Nnaji, K. K., & Ogboghro, V. I. (2024). Finance, economic growth, ICT, renewable energy, and environmental quality in BRICS and Non-BRICS emerging markets. https://doi.org/10.21203/rs.3.rs-4489702/v1
  • Nyambo, P., Cornelius, C., & Araya, T. (2020). Carbon dioxide fluxes and carbon stocks under conservation agricultural practices in South Africa. Agriculture, 10(9), 374. https://doi.org/10.3390/agriculture10090374
  • Ouikhalfan, M., Lakbita, O., Delhali, A., Assen, A. H., & Belmabkhout, Y. (2022). Toward net-zero emission fertilizers industry: greenhouse gas emission analyses and decarbonization solutions. Energy ve Fuels, 36(8), 4198-4223. doi: 10.1021/acs.energyfuels.2c00238
  • Ozdemir, D. (2024). Reconsidering agricultural credits and agricultural production nexus from a global perspective. Food and Energy Security, 13(1), e504. https://doi.org/10.1002/fes3.504
  • Our World in Data. (2024). Global CO₂ emissions. Retrieved December 2024, from https://ourworldindata.org/co2-emissions
  • Parajuli, R., Joshi, O., & Maraseni, T. (2019). Greenhouse gas emission from Indian agriculture: trends, mitigation and policy needs A dynamic panel data approach. Sustainability, 11(9), 2688. https://doi.org/10.3390/su11092688
  • Pathak, H., Bhatia, A., & Jain, N. (2014). Greenhouse gas emission from Indian agriculture: trends, mitigation and policy needs. Indian Agricultural Research Institute, New Delhi, 39.
  • Pesaran, M. H. (2004). General diagnostic tests for cross section dependence in panels. Cambridge Working Papers. Economics, 1240(1), 1.
  • Pesaran, M. H. (2015). Testing weak cross-sectional dependence in large panels. Econometric Reviews, 34(6-10), 1089-1117. https://doi.org/10.1080/07474938.2014.956623
  • Pesaran, M.H. (2007). A simple panel unit root test in the presence of cross section dependence. Journal of Applied Econometrics 22, 265–312. https://doi.org/10.1002/jae.951
  • Pretty, J., & Bharucha, Z. P. (2014). Sustainable intensification in agricultural systems. Annals of Botany, 114(8), 1571-1596. https://doi.org/10.1093/aob/mcu205
  • Raghutla, C., & Chittedi, K. R. (2020). Financial development, energy consumption, technology, urbanization, economic output and carbon emissions nexus in BRICS countries: an empirical analysis. Management of Environmental Quality: An International Journal, 32(2), 290-307. https://doi.org/10.1108/MEQ-02-2020-0035
  • Rahman, H. U., Zaman, U., & Górecki, J. (2021). The role of energy consumption, economic growth and globalization in environmental degradation: empirical evidence from the BRICS region. Sustainability, 13(4), 1924. https://doi.org/10.3390/su13041924
  • Rosa, L., & Gabrielli, P. (2022). Energy and food security implications of transitioning synthetic nitrogen fertilizers to net-zero emissions. Environmental Research Letters, 18(1), 014008. Doi: 10.1088/1748-9326/aca815
  • Sah, D., & Devakumar, A. S. (2018). The carbon footprint of agricultural crop cultivation in India. Carbon Management, 9(3), 213-225. https://doi.org/10.1080/17583004.2018.1457908
  • Saidmamatov, O., Tetreault, N., Bekjanov, D., Khodjaniyazov, E., Ibadullaev, E., Sobirov, Y., & Adrianto, L. R. (2023). The nexus between agriculture, water, energy and environmental degradation in central Asia—Empirical evidence using panel data models. Energies, 16(7), 3206. https://doi.org/10.3390/en16073206
  • Sezen, G., & Küçük, Ç. (2021). Microcystis viridis ve aphanizomenon gracile karışık kültürün fiğ, nohut ve arpa gelişimine etkileri. Commagene Journal of Biology, 5(2), 182-186. https://doi.org/10.31594/commagene.1031232 (in Turkish).
  • Shafiq, M. N., & Zafar, M. A. (2023). Unraveling the dynamics of BRICS: A comprehensive analysis of CO2 emissions, energy consumption, and technological innovation. iRASD Journal of Energy ve Environment, 4(2), 91-100. https://doi.org/10.52131/jee.2023.0402.0038
  • Smith, P., Bustamante, M., Ahammad, H., Clark, H., Dong, H., Elsiddig, E. A., ... & Bolwig, S. (2014). Agriculture, forestry and other land use (AFOLU). In Climate change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 811-922). Cambridge University Press.
  • Şenay, B., & Tepecik, M. (2024). Biyokömür Uygulamalarınıni(Triticum aestivum L.) çimlenme ve biyomas üzerine etkisinin belirlenmesi. Tekirdağ Ziraat Fakültesi Dergisi, 21(2), 297-308. https://doi.org/10.33462/jotaf.1190812 (in Turkish).
  • Tan, W. (2023). Estimating the multiple impacts on CO₂ emissions for BRICS and ASEAN countries. IOP Conference Series: Earth and Environmental Science, 1152(1), 012004. https://doi.org/10.1088/1755-1315/1152/1/012004
  • Tian, X., Sarkis, J., Geng, Y., Bleischwitz, R., Qian, Y., Xu, L., & Wu, R. (2020). Examining the role of BRICS countries at the global economic and environmental resources nexus. Journal of Environmental Management, 262, 110330. https://doi.org/10.1016/j.jenvman.2020.110330
  • Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the national academy of sciences, 108(50), 20260-20264. https://doi.org/10.1073/pnas.1116437108
  • Tubiello, F. N., Karl, K., Flammini, A., Gütschow, J., Obli-Layrea, G., Conchedda, G., ... & Torero, M. (2021). Pre-and post-production processes along supply chains increasingly dominate GHG emissions from agri-food systems globally and in most countries. Earth System Science Data Discussions, 2021, 1-24. https://doi.org/10.5194/essd-14-1795-2022
  • Tubiello, F. N., Salvatore, M., Rossi, S., Ferrara, A., Fitton, N., & Smith, P. (2013). The FAOSTAT database of greenhouse gas emissions from agriculture. Environmental Research Letters, 8(1), 015009. doi:10.1088/1748-9326/8/1/015009
  • Tukhtamurodov, A., Sobirov, Y., Toshalieva, S., Ibrayimova, D., & Feruz, M. (2024). Determinants of CO2 emissions in the BRICS. A dynamic panel ARDL approach. In BIO Web of Conferences (Vol. 82, p. 06002). EDP Sciences. https://doi.org/10.1051/bioconf/20248206002
  • Wang, Y., Jiang, J., Wang, D., & You, X. (2022). Can mechanization promote green agricultural production? An empirical analysis of maize production in China. Sustainability, 15(1), 1. https://doi.org/10.3390/su15010001
  • World Bank. (2024). World Development Indicators. Retrieved December 2024, from https://databank.worldbank.org/source/world-development-indicators
  • Zemanek, D., Champagne, P., & Mabee, W. (2020). Review of life-cycle greenhouse-gas emissions assessments of hydroprocessed renewable fuel (HEFA) from oilseeds. Biofuels Bioprod Biorefining 14: 935–949. https://doi.org/10.1002/bbb.2125
  • Zhang, S., Wen, X., Sun, Y., & Xiong, Y. (2024). Impact of agricultural product brands and agricultural industry agglomeration on agricultural carbon emissions. Journal of Environmental Management, 369, 122238. https://doi.org/10.1016/j.jenvman.2024.122238

The impact of agricultural activities on climate change in BRICS countries and Türkiye

Year 2025, Volume: 9 Issue: 1, 144 - 156, 17.03.2025
https://doi.org/10.31015/2025.1.17

Abstract

Agricultural activities have a significant impact on climate change due to greenhouse gases such as methane, CO2 and nitrous oxide. Agriculture in the BRICS (Brazil, Russia, India, China and South Africa) countries and Türkiye plays a crucial role in global production and contributes to feeding the population, ensuring food security and fighting hunger. Agriculture also has an important impact on environmental sustainability and climate change, as agricultural activities contribute directly to CO2 emissions. In this sense, agriculture is not only a locomotive for the economic development of the BRICS countries and Türkiye, but also important for controlling environmental degradation and ensuring sustainable growth. Therefore, the study examine the long-run effects of agricultural production, chemical fertilizers used to increase agricultural productivity, the mechanization in agriculture and the rural population on CO2 emissions for six countries including BRICS and Türkiye for the period 1961-2019 using the PMG-ARDL model. The estimated long-run coefficients show that agricultural mechanization and fertilizer use increase CO2 emissions, while agricultural production and rural population reduce emissions. It was also concluded that the expansion of agricultural land has no significant impact on CO2 emissions in the long run. The results of the Granger causality test by Dumitrescu and Hurlin (2012) also show that CO2 emissions are not Granger cause of agricultural land and agricultural production, but mechanization, fertilizer use and rural population have a causal effect on CO2 emissions. The results suggest that policy makers should adopt a balanced and environmentally friendly measures to the agricultural sector in order to ensure environmental sustainability and reduce the negative impacts of agricultural activities.

References

  • Aguilera, E., Guzmán, G. I., de Molina, M. G., Soto, D., & Infante-Amate, J. (2019). From animals to machines. The impact of mechanization on the carbon footprint of traction in Spanish agriculture: 1900–2014. Journal of cleaner production, 221, 295-305. https://doi.org/10.1016/j.jclepro.2019.02.247
  • Alamu, S. A. (2024). Clımate change-resılıence farmıng model for enhanced food securıty and sustaınable development In Sub-Saharan Afrıca. Science World Journal, 19(4), 1068-1076. Doi: 10.4314/swj.v19i4.23
  • Apergis, N., Pinar, M., & Unlu, E. (2023). How do foreign direct investment flows affect carbon emissions in BRICS countries? Revisiting the pollution haven hypothesis using bilateral FDI flows from OECD to BRICS countries. Environmental Science and Pollution Research, 30(6), 14680-14692. https://doi.org/10.1007/s11356-022-23185-4
  • Appiah, K., Du, J., & Poku, J. (2018). Causal relationship between agricultural production and carbon dioxide emissions in selected emerging economies. Environmental Science and Pollution Research, 25, 24764-24777. https://doi.org/10.1007/s11356-018-2523-z
  • Asgharipour, M. R., Mousavinik, S. M., & Enayat, F. F. (2016). Evaluation of energy input and greenhouse gases emissions from alfalfa production in the Sistan region, Iran. Energy Reports, 2, 135-140. https://doi.org/10.1016/j.egyr.2016.05.007
  • Atasel, O. Y., Guneysu, Y., & Pata, U. K. (2022). Testing the agricultural induced EKC hypothesis: fresh empirical evidence from the top ten agricultural countries. AGRIS on-line Papers in Economics and Informatics, 14(1), 19-31. Doi: 10.22004/ag.econ.320336
  • Attiaoui, I., & Boufateh, T. (2019). Impacts of climate change on cereal farming in Tunisia: a panel ARDL–PMG approach. Environmental Science and Pollution Research, 26, 13334-13345. https://doi.org/10.1007/s11356-019-04867-y
  • Baloch, M. A., Mahmood, N., & Zhang, J. W. (2019). Effect of natural resources, renewable energy and economic development on CO2 emissions in BRICS countries. Science of the Total Environment, 678, 632-638. https://doi.org/10.1016/j.scitotenv.2019.05.028
  • Bennetzen, E. H., Smith, P., & Porter, J. R. (2016). Decoupling of greenhouse gas emissions from global agricultural production: 1970–2050. Global change biology, 22(2), 763-781. https://doi.org/10.1111/gcb.13120
  • Bhatia, A., Ghosh, A., Kumar, A., & Bhattacharyya, R. (2022). Greenhouse gas emission and carbon sequestration in conservation agriculture. In Conservation Agriculture in India (pp. 223-242). Routledge. https://doi.org/10.4324/9781003292487
  • Bhattacharyya, P., Dash, P. K., & Padhy, S. R. (2021). Impact of conservation agriculture on greenhouse gas emission and its implications. Conservation Agriculture: A Sustainable Approach for Soil Health and Food Security: Conservation Agriculture for Sustainable Agriculture, 339-358. https://doi.org/10.1007/978-981-16-0827-8
  • Change, I. C. (2019). Land, Summary for policymakers. Intergovernmental Panel on Climate Change: Geneva, Switzerland.
  • Chel, A., & Kaushik, G. (2011). Renewable energy for sustainable agriculture. Agronomy for Sustainable Development, 31, 91-118. doi: 10.1051/agro/2010029
  • Chishti, M., & Sinha, A. (2022). Do the shocks in technological and financial innovation influence the environmental quality? Evidence from BRICS economies. Technology in Society, 68, 101828. https://doi.org/10.1016/j.techsoc.2021.101828
  • Cousins, B., Borras Jr, S. M., Sauer, S., & Ye, J. (2018). BRICS, middle-income countries (MICs), and global agrarian transformations: internal dynamics, regional trends, and international implications. Globalizations, 15(1), 1-11. https://doi.org/10.1080/14747731.2018.1429104
  • Çam, S. (2023). Tarımsal üretimde kullanılan kimyasal gübrelerin iklim değişikliği üzerindeki uzun dönemli etkileri: Türkiye örneği. D. Kelgökmen İliç (Ed.), İktisadi ve İdari Bilimler: Modern Değerlendirmeler ve Araştırmalar. Lyon/Fransa: Livre de Lyon (in Turkish).
  • Çam, S. (2024). The Nexus of agricultural efficiency, renewable energy consumption, and climate change in Türkiye. Alanya Akademik Bakış, 8(2), 586-599. https://doi.org/10.29023/alanyaakademik.1407903 (in Turkish).
  • Çelik, M. Y., & Ünsür, Z. (2020). Küreselleşme ve büyüme ilişkisinin Dumitrescu-Hurlin panel nedensellik testi ile belirlenmesi. İzmir İktisat Dergisi, 35(1), 201-210. https://doi.org/10.24988/ije.202035115 (in Turkish).
  • Dumitrescu, E. I. & Hurlin, C. (2012), Testing for Granger noncausality in heterogeneous panels. Economic Modelling, 29(4), 1450-1460. https://doi.org/10.1016/j.econmod.2012.02.014
  • Evrendilek, F., & Ertekin, C. (2002). Agricultural sustainability in Türkiye: integrating food, environmental and energy securities. Land Degradation ve Development, 13(1), 61-67. https://doi.org/10.1002/ldr.480
  • Fu, Q., Álvarez-Otero, S., Sial, M. S., Comite, U., Zheng, P., Samad, S., & Oláh, J. (2021). Impact of renewable energy on economic growth and CO2 emissions—evidence from BRICS countries. Processes, 9(8), 1281. https://doi.org/10.3390/pr9081281
  • Galford, G. L., Melillo, J. M., Kicklighter, D. W., Cronin, T. W., Cerri, C. E., Mustard, J. F., & Cerri, C. C. (2010). Greenhouse gas emissions from alternative futures of deforestation and agricultural management in the southern Amazon. Proceedings of the National Academy of Sciences, 107(46), 19649-19654. https://doi.org/10.1073/pnas.1000780107
  • Guan, N., Liu, L., Dong, K., Xie, M., & Du, Y. (2023). Agricultural mechanization, large-scale operation and agricultural carbon emissions. Cogent Food & Agriculture, 9(1), 2238430. https://doi.org/10.1080/23311932.2023.2238430
  • Güler, A., Kaplan, O., & Bozkaya, F. (2019). Bazı kaba yemlere ilave edilen probiyotiklerin in vitro organik madde sindirimi ve metan üretimi üzerine etkileri. Harran Üniversitesi Veteriner Fakültesi Dergisi, 8(1), 93-98 https://doi.org/10.31196/huvfd.592585 (in Turkish).
  • Gyedu, S., & Tang, H. (2024). Achieving carbon neutrality in the brics countries: the roles of ınnovation, renewable energy, economic growth and carbon taxes. https://doi.org/10.21203/rs.3.rs-3982978/v1
  • Haseeb, M., Hassan, S., & Azam, M. (2017). Rural–urban transformation, energy consumption, economic growth, and CO2 emissions using STRIPAT model for BRICS countries. Environmental Progress ve Sustainable Energy, 36(2), 523-531. https://doi.org/10.1002/ep.12461
  • He, F., Chang, K. C., Li, M., Li, X., & Li, F. (2020). Bootstrap ARDL test on the relationship among trade, FDI, and CO2 emissions: based on the experience of BRICS countries. Sustainability, 12(3), 1060. https://doi.org/10.3390/su12031060
  • Hedayetullah, M., Zaman, P., Yadav, S. K., Nayyer, M., & Sıddıquı, M. W. (2015). Climate Change and Indian Agriculture. Climate Dynamics in Horticultural Science, Volume Two: Impact, Adaptation, and Mitigation, 309. https://doi.org/10.1201/b18252
  • Hinz, R., Sulser, T. B., Hüfner, R., Mason‐D’Croz, D., Dunston, S., Nautiyal, S., ... & Schaldach, R. (2020). Agricultural development and land use change in India: A scenario analysis of trade‐offs between UN Sustainable Development Goals (SDGs). Earth's Future, 8(2), e2019EF001287. https://doi.org/10.1029/2019EF001287
  • Houghton, R. A. (1995). Land‐use change and the carbon cycle. Global Change Biology, 1(4), 275-287. https://doi.org/10.1111/j.1365-2486.1995.tb00026.x
  • Kara, F., Bas, T., TIrmandioğlu Talu, N. H., & Alola, A. A. (2021). Investigating the carbon emission aspects of agricultural land utilization in Türkiye. Integrated Environmental Assessment and Management, 18(4), 988-996. https://doi.org/10.1002/ieam.4536
  • Lambin, E. F., Turner, B. L., Geist, H. J., Agbola, S. B., Angelsen, A., Bruce, J. W., ... & Xu, J. (2001). The causes of land-use and land-cover change: moving beyond the myths. Global Environmental Change, 11(4), 261-269. https://doi.org/10.1016/S0959-3780(01)00007-3
  • Liu, D., Zhu, X., & Wang, Y. (2021). China's agricultural green total factor productivity based on carbon emission: an analysis of evolution trend and influencing factors. Journal of Cleaner Production, 278, 123692. https://doi.org/10.1016/j.jclepro.2020.123692
  • Liu, S., Jia, J., Huang, H., Chen, D., Zhong, Y., & Zhou, Y. (2023). China’s CO2 emissions: a thorough analysis of spatiotemporal characteristics and sustainable policy from the agricultural land-use perspective during 1995–2020. Land, 12(6), 1220. https://doi.org/10.3390/land12061220
  • Lu, F., Meng, J., & Cheng, B. (2024). How does improving agricultural mechanization affect the green development of agriculture? Evidence from China. Journal of Cleaner Production, 472, 143298. https://doi.org/10.1016/j.jclepro.2024.143298
  • Malgaz, M., & Atalay, A. İ. (2022). Sonbaharda dökülen ağaç yapraklarının kimyasal kompozisyonu ve metan üretim kapasiteleri. Journal of the Institute of Science and Technology, 12(3), 1871-1883. https://doi.org/10.21597/jist.1107876 (in Turkish).
  • Mandimby, A. S. (2024). Effect of renewable energi on CO2 emissions in BRICS countries. Quantitative Economics and Management Studies, 5(2), 372-386. https://doi.org/10.35877/454RI.qems2489
  • Mekouar, M. A. (2021). 15. Food and agriculture organization of the united nations (FAO). Yearbook of International Environmental Law, 32(1), 298-304. https://doi.org/10.1093/yiel/yvae031
  • Nazir, M. J., Li, G., Nazir, M. M., Zulfiqar, F., Siddique, K. H., Iqbal, B., & Du, D. (2024). Harnessing soil carbon sequestration to address climate change challenges in agriculture. Soil and Tillage Research, 237, 105959. https://doi.org/10.1016/j.still.2023.105959
  • Nnaji, K. K., & Ogboghro, V. I. (2024). Finance, economic growth, ICT, renewable energy, and environmental quality in BRICS and Non-BRICS emerging markets. https://doi.org/10.21203/rs.3.rs-4489702/v1
  • Nyambo, P., Cornelius, C., & Araya, T. (2020). Carbon dioxide fluxes and carbon stocks under conservation agricultural practices in South Africa. Agriculture, 10(9), 374. https://doi.org/10.3390/agriculture10090374
  • Ouikhalfan, M., Lakbita, O., Delhali, A., Assen, A. H., & Belmabkhout, Y. (2022). Toward net-zero emission fertilizers industry: greenhouse gas emission analyses and decarbonization solutions. Energy ve Fuels, 36(8), 4198-4223. doi: 10.1021/acs.energyfuels.2c00238
  • Ozdemir, D. (2024). Reconsidering agricultural credits and agricultural production nexus from a global perspective. Food and Energy Security, 13(1), e504. https://doi.org/10.1002/fes3.504
  • Our World in Data. (2024). Global CO₂ emissions. Retrieved December 2024, from https://ourworldindata.org/co2-emissions
  • Parajuli, R., Joshi, O., & Maraseni, T. (2019). Greenhouse gas emission from Indian agriculture: trends, mitigation and policy needs A dynamic panel data approach. Sustainability, 11(9), 2688. https://doi.org/10.3390/su11092688
  • Pathak, H., Bhatia, A., & Jain, N. (2014). Greenhouse gas emission from Indian agriculture: trends, mitigation and policy needs. Indian Agricultural Research Institute, New Delhi, 39.
  • Pesaran, M. H. (2004). General diagnostic tests for cross section dependence in panels. Cambridge Working Papers. Economics, 1240(1), 1.
  • Pesaran, M. H. (2015). Testing weak cross-sectional dependence in large panels. Econometric Reviews, 34(6-10), 1089-1117. https://doi.org/10.1080/07474938.2014.956623
  • Pesaran, M.H. (2007). A simple panel unit root test in the presence of cross section dependence. Journal of Applied Econometrics 22, 265–312. https://doi.org/10.1002/jae.951
  • Pretty, J., & Bharucha, Z. P. (2014). Sustainable intensification in agricultural systems. Annals of Botany, 114(8), 1571-1596. https://doi.org/10.1093/aob/mcu205
  • Raghutla, C., & Chittedi, K. R. (2020). Financial development, energy consumption, technology, urbanization, economic output and carbon emissions nexus in BRICS countries: an empirical analysis. Management of Environmental Quality: An International Journal, 32(2), 290-307. https://doi.org/10.1108/MEQ-02-2020-0035
  • Rahman, H. U., Zaman, U., & Górecki, J. (2021). The role of energy consumption, economic growth and globalization in environmental degradation: empirical evidence from the BRICS region. Sustainability, 13(4), 1924. https://doi.org/10.3390/su13041924
  • Rosa, L., & Gabrielli, P. (2022). Energy and food security implications of transitioning synthetic nitrogen fertilizers to net-zero emissions. Environmental Research Letters, 18(1), 014008. Doi: 10.1088/1748-9326/aca815
  • Sah, D., & Devakumar, A. S. (2018). The carbon footprint of agricultural crop cultivation in India. Carbon Management, 9(3), 213-225. https://doi.org/10.1080/17583004.2018.1457908
  • Saidmamatov, O., Tetreault, N., Bekjanov, D., Khodjaniyazov, E., Ibadullaev, E., Sobirov, Y., & Adrianto, L. R. (2023). The nexus between agriculture, water, energy and environmental degradation in central Asia—Empirical evidence using panel data models. Energies, 16(7), 3206. https://doi.org/10.3390/en16073206
  • Sezen, G., & Küçük, Ç. (2021). Microcystis viridis ve aphanizomenon gracile karışık kültürün fiğ, nohut ve arpa gelişimine etkileri. Commagene Journal of Biology, 5(2), 182-186. https://doi.org/10.31594/commagene.1031232 (in Turkish).
  • Shafiq, M. N., & Zafar, M. A. (2023). Unraveling the dynamics of BRICS: A comprehensive analysis of CO2 emissions, energy consumption, and technological innovation. iRASD Journal of Energy ve Environment, 4(2), 91-100. https://doi.org/10.52131/jee.2023.0402.0038
  • Smith, P., Bustamante, M., Ahammad, H., Clark, H., Dong, H., Elsiddig, E. A., ... & Bolwig, S. (2014). Agriculture, forestry and other land use (AFOLU). In Climate change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 811-922). Cambridge University Press.
  • Şenay, B., & Tepecik, M. (2024). Biyokömür Uygulamalarınıni(Triticum aestivum L.) çimlenme ve biyomas üzerine etkisinin belirlenmesi. Tekirdağ Ziraat Fakültesi Dergisi, 21(2), 297-308. https://doi.org/10.33462/jotaf.1190812 (in Turkish).
  • Tan, W. (2023). Estimating the multiple impacts on CO₂ emissions for BRICS and ASEAN countries. IOP Conference Series: Earth and Environmental Science, 1152(1), 012004. https://doi.org/10.1088/1755-1315/1152/1/012004
  • Tian, X., Sarkis, J., Geng, Y., Bleischwitz, R., Qian, Y., Xu, L., & Wu, R. (2020). Examining the role of BRICS countries at the global economic and environmental resources nexus. Journal of Environmental Management, 262, 110330. https://doi.org/10.1016/j.jenvman.2020.110330
  • Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the national academy of sciences, 108(50), 20260-20264. https://doi.org/10.1073/pnas.1116437108
  • Tubiello, F. N., Karl, K., Flammini, A., Gütschow, J., Obli-Layrea, G., Conchedda, G., ... & Torero, M. (2021). Pre-and post-production processes along supply chains increasingly dominate GHG emissions from agri-food systems globally and in most countries. Earth System Science Data Discussions, 2021, 1-24. https://doi.org/10.5194/essd-14-1795-2022
  • Tubiello, F. N., Salvatore, M., Rossi, S., Ferrara, A., Fitton, N., & Smith, P. (2013). The FAOSTAT database of greenhouse gas emissions from agriculture. Environmental Research Letters, 8(1), 015009. doi:10.1088/1748-9326/8/1/015009
  • Tukhtamurodov, A., Sobirov, Y., Toshalieva, S., Ibrayimova, D., & Feruz, M. (2024). Determinants of CO2 emissions in the BRICS. A dynamic panel ARDL approach. In BIO Web of Conferences (Vol. 82, p. 06002). EDP Sciences. https://doi.org/10.1051/bioconf/20248206002
  • Wang, Y., Jiang, J., Wang, D., & You, X. (2022). Can mechanization promote green agricultural production? An empirical analysis of maize production in China. Sustainability, 15(1), 1. https://doi.org/10.3390/su15010001
  • World Bank. (2024). World Development Indicators. Retrieved December 2024, from https://databank.worldbank.org/source/world-development-indicators
  • Zemanek, D., Champagne, P., & Mabee, W. (2020). Review of life-cycle greenhouse-gas emissions assessments of hydroprocessed renewable fuel (HEFA) from oilseeds. Biofuels Bioprod Biorefining 14: 935–949. https://doi.org/10.1002/bbb.2125
  • Zhang, S., Wen, X., Sun, Y., & Xiong, Y. (2024). Impact of agricultural product brands and agricultural industry agglomeration on agricultural carbon emissions. Journal of Environmental Management, 369, 122238. https://doi.org/10.1016/j.jenvman.2024.122238
There are 69 citations in total.

Details

Primary Language English
Subjects Sustainable Agricultural Development, Agricultural Policy
Journal Section Research Articles
Authors

Tugce Kaya 0000-0002-5376-6144

Publication Date March 17, 2025
Submission Date January 13, 2025
Acceptance Date March 10, 2025
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

APA Kaya, T. (2025). The impact of agricultural activities on climate change in BRICS countries and Türkiye. International Journal of Agriculture Environment and Food Sciences, 9(1), 144-156. https://doi.org/10.31015/2025.1.17


The International Journal of Agriculture, Environment and Food Sciences content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences. 

Web:  dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27