Research Article
BibTex RIS Cite

Year 2025, Volume: 9 Issue: 4, 1069 - 1079

Abstract

References

  • Arya, S. S., Venkatram, R., More, P. R., & P, P. V. (2021). The wastes of coffee bean processing for utilization in food: a review. Journal of Food Science and Technology, 59(2), 429. Springer Science+Business Media. https://doi.org/10.1007/s13197-021-05032-5
  • Amenaghawon, A. N., Anyalewechi, C. L., Okieimen, C. O., & Kusuma, H. S. (2021). Biomass pyrolysis technologies for value-added products: a state-of-the-art review. Environment, Development and Sustainability, 23(10), 14324-14378.
  • American Society for Testing and Materials - ASTM. ASTM E1756-08: standard test method for determination of total solids in biomass West Conshohocken.
  • American Society for Testing and Materials -ASTM ASTM D7348-13: Standard Test Methods for Loss on Ignition (LOI) of Solid Combustion Residues. West Conshohocken, PA.
  • ASTM, E. 1252 (2007) Standard Practice for General Techniques for Obtaining Spectra for Qualitative Analysis. American Society for Testing and Materials.
  • Atkinson, C. J. (2018). How good is the evidence that soil‐applied biochar improves water‐holding capacity?. Soil Use and Management, 34(2), 177-186. https://doi.org/10.1111/sum.12413
  • Ballesteros, L. F., Cerqueira, M. A., Teixeira, J. A., & Mussatto, S. I. (2015). Characterization of polysaccharides extracted from spent coffee grounds by alkali pretreatment. Carbohydrate Polymers, 127, 347. https://doi.org/10.1016/j.carbpol.2015.03.047
  • Barrios-Rodríguez, Y. F., Reyes, C. A. R., Campos, J. S. T., Girón-Hernández, J., & Rodríguez-Gamir, J. (2021). Infrared spectroscopy coupled with chemometrics in coffee post-harvest processes as complement to the sensory analysis. LWT, 145, 111304. https://doi.org/10.1016/j.lwt.2021.111304
  • Biederman, L. A., & Harpole, W. S. (2013). Biochar and its effects on plant productivity and nutrient cycling: a meta‐analysis. GCB bioenergy, 5(2), 202-214. https://doi.org/10.1111/gcbb.12037
  • Briandet, R., Kemsley, E. K., & Wilson, R. H. (1996). Discrimination of Arabica and Robusta in instant coffee by Fourier transform infrared spectroscopy and chemometrics. Journal of agricultural and food chemistry, 44(1), 170-174. https://doi.org/10.1021/jf950305a
  • Bomfim, A. S. C. de, Oliveira, D. M. de, Walling, E., Babin, A., Hersant, G., Vaneeckhaute, C., Dumont, M., & Rodrigue, D. (2022). Spent Coffee Grounds Characterization and Reuse in Composting and Soil Amendment. Waste, 1(1), 2. https://doi.org/10.3390/waste1010002
  • Buss, W., Graham, M. C., Shepherd, J. G., & Mašek, O. (2016). Suitability of marginal biomass-derived biochars for soil amendment. Science of the Total Environment, 547, 314-322.
  • Campos-Vega, R., Lóarca-Piña, G., Vergara‐Castañeda, H. A., & Oomah, B. D. (2015). Spent coffee grounds: A review on current research and future prospects. Trends in Food Science & Technology, 45(1), 24. Elsevier BV. https://doi.org/10.1016/j.tifs.2015.04.012
  • Chan, K. Y., & Xu, Z. (2009). Biochar: Nutrient properties and their enhancement. In J. Lehmann & S. Joseph (Eds.), Biochar for Environmental Management: Science and Technology (pp. 67–84). Earthscan.
  • Ding, Y., Liu, Y., Liu, S., Huang, X., Li, Z., Tan, X., Zeng, G., & Zhou, L. (2017). Potential Benefits of Biochar in Agricultural Soils: A Review. Pedosphere, 27(4), 645. Elsevier BV. https://doi.org/10.1016/s1002-0160(17)60375-8
  • Gámiz, B., López‐Cabeza, R., Velarde, P., Spokas, K. A., & Cox, L. (2021). Biochar changes the bioavailability and bioefficacy of the allelochemical coumarin in agricultural soils. Pest Management Science, 77(2), 834-843.
  • Glaser, B., Lehmann, J., & Zech, W. (2002). Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal–a review. Biology and fertility of soils, 35(4), 219-230. https://doi.org/10.1007/s00374-002-0466-4
  • Hale, S. E., Lehmann, J., Rutherford, D., Zimmerman, A. R., Bachmann, R. T., Shitumbanuma, V., ... & Cornelissen, G. (2012). Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars. Environmental science & technology, 46(5), 2830-2838.
  • Javaid, M. M., Mahmood, A., Alshaya, D. S., AlKahtani, M. D., Waheed, H., Wasaya, A., ... & Fiaz, S. (2022). Influence of environmental factors on seed germination and seedling characteristics of perennial ryegrass (Lolium perenne L.). Scientific reports, 12(1), 9522. https://doi.org/10.1038/s41598-022-13416-6
  • Jones, D. L., Rousk, J., Edwards-Jones, G., DeLuca, T. H., & Murphy, D. V. (2012). Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil biology and Biochemistry, 45, 113-124.
  • Kalus, K., Koziel, J. A., & Opaliński, S. (2019). A Review of Biochar Properties and Their Utilization in Crop Agriculture and Livestock Production. Applied Sciences, 9(17), 3494. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/app9173494
  • Kavitha, B., Reddy, P. V. L., Kim, B., Lee, S. S., Pandey, S. K., & Kim, K. (2018). Benefits and limitations of biochar amendment in agricultural soils: A review. Journal of Environmental Management, 227, 146. Elsevier BV. https://doi.org/10.1016/j.jenvman.2018.08.082
  • Lee, J. W., Hawkins, B., Day, D. M., & Reicosky, D. C. (2010). Sustainability: the capacity of smokeless biomass pyrolysis for energy production, global carbon capture and sequestration. Energy & environmental science, 3(11), 1695-1705. DOI: 10.1039/C004561F
  • Lee, Y.-G., Cho, E., Maskey, S., Nguyen, D., & Bae, H. (2023). Value-Added Products from Coffee Waste: A Review. Molecules, 28(8), 3562. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/molecules28083562
  • Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota–a review. Soil biology and biochemistry, 43(9), 1812-1836. doi:10.1016/j.soilbio.2011.04.022
  • Lehmann, J., & Joseph, S. (2015). Biochar for Environmental Management: Science and Technology (2nd ed.). Routledge
  • Li, L., Zhang, Y. J., Novak, A., Yang, Y., & Wang, J. (2021). Role of biochar in improving sandy soil water retention and resilience to drought. Water, 13(4), 407. https://doi.org/10.3390/w13040407
  • Lorenz, K., & Lal, R. (2014). Biochar application to soil for climate change mitigation by soil organic carbon sequestration. Journal of plant nutrition and soil science, 177(5), 651-670. https://doi.org/10.1002/jpln.201400058
  • McNutt, J., & He, Q. (2019). Spent coffee grounds: A review on current utilization. Journal of Industrial and Engineering Chemistry, 71, 78. Elsevier BV. https://doi.org/10.1016/j.jiec.2018.11.054
  • Mussatto, S. I., Machado, E. M. S., Martins, S., & Teixeira, J. A. (2011). Production, Composition, and Application of Coffee and Its Industrial Residues. Food and Bioprocess Technology, 4(5), 661. https://doi.org/10.1007/s11947-011-0565-z
  • Nocentini, M., Mastrolonardo, G., Michelozzi, M., Cencetti, G., Lenzi, A., Panettieri, M., Knicker, H., Certini, G. (2024). Effects of biochar and compost addition in potting substrates on growth and volatile compounds profile of basil (Ocimum basilicum L.). Journal of the Science of Food and Agriculture, 104(3), 1609-1620.
  • Ongen A, Ozcan HK, Elmaslar Ozbas‚ E, Aydin S, Kaya E. Thermal behavior of waste-derived fuels and determination of optimum mixture ratio for gasification. In: 3. International Conference on Civil and Environmental Engineering. 24-27; April 2018. p. 158e62. _ Izmir, Turkey.
  • Rivera, J. A., & Ortega-Jimenez, C. H. (2019). Power Generation with Biomass from Coffee: A Literature Review, Current Trend and Scope for Future Research. MATEC Web of Conferences, 293, 5002. https://doi.org/10.1051/matecconf/201929305002
  • Van Zwieten, L. L. V. Z., Kimber, S., Morris, S., Chan, K. Y., Downie, A., Rust, J., ... & Cowie, A. (2010). Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and soil, 327(1), 235-246.
  • Wu, C. S. (2015). Renewable resource-based green composites of surface-treated spent coffee grounds and polylactide: Characterisation and biodegradability. Polymer Degradation and Stability, 121, 51-59. https://doi.org/10.1016/j.polymdegradstab.2015.08.011
  • Xiong, X., Yu, I. K. M., Cao, L., Tsang, D. C. W., Zhang, S., & Ok, Y. S. (2017). A review of biochar-based catalysts for chemical synthesis, biofuel production, and pollution control. Bioresource Technology, 246, 254. Elsevier BV. https://doi.org/10.1016/j.biortech.2017.06.163
  • Yadav, S. P. S., Bhandari, S., Bhatta, D., Poudel, A., Bhattarai, S., Yadav, P., Ghimire, N. P., Paudel, P., Paudel, P., Shrestha, J., & Oli, B. (2023). Biochar application: A sustainable approach to improve soil health. Journal of Agriculture and Food Research, 11, 100498. https://doi.org/10.1016/j.jafr.2023.100498
  • Zhang, J., Kan, X., Kuang, L., & Zhang, Z. (2022). Research progress on physicochemical properties of biochar and its effect on soil improvement. Highlights in Science Engineering and Technology, 25, 416. https://doi.org/10.54097/hset.v25i.3588
  • Zhou, D., Barney, J., Ponder, M. A., & Welbaum, G. E. (2016). Germination Response of Six Sweet Basil (Ocimum basilicum) Cultivars to Temperature. Seed Technology, 37(1), 43–51. http://www.jstor.org/stable/26625371

Investigation of the Effects of Biochar, a Pyrolysis Product of Waste Filter Coffee, on Germination of Grass and Basil Plants

Year 2025, Volume: 9 Issue: 4, 1069 - 1079

Abstract

This study focuses on the production of biochar via pyrolysis for the sustainable recycling of agricultural waste and the investigation of its effects on plant germination. The plant species selected for this study were basil (Ocimum basilicum) and grass (Lolium perenne). The present study investigates the soil-improving properties of biochar derived from filter coffee waste. In the experimental process, coffee waste was subjected to pyrolysis at specific temperatures, and the resulting biochar was analysed in terms of its physical and chemical properties. The resulting biochar was then mixed with soil at varying ratios to assess its effects on the germination and growth performance of basil and grass seeds. The application of 15% biochar resulted in the highest plant height (15 cm), although the fresh weight remained below that of the control. In the case of basil, plant development was only observed in the control group, while no growth occurred in any of the biochar-amended treatments. These results indicate that the effect of coffee waste-derived biochar on plant growth may vary depending on the plant species. While biochar applications enhanced soil water retention capacity, enriched organic matter content, and supported grass growth, they appeared to inhibit basil germination. In this context, it was demonstrated that biochar could potentially contribute to both agricultural waste management and sustainable agriculture when applied under suitable conditions.

References

  • Arya, S. S., Venkatram, R., More, P. R., & P, P. V. (2021). The wastes of coffee bean processing for utilization in food: a review. Journal of Food Science and Technology, 59(2), 429. Springer Science+Business Media. https://doi.org/10.1007/s13197-021-05032-5
  • Amenaghawon, A. N., Anyalewechi, C. L., Okieimen, C. O., & Kusuma, H. S. (2021). Biomass pyrolysis technologies for value-added products: a state-of-the-art review. Environment, Development and Sustainability, 23(10), 14324-14378.
  • American Society for Testing and Materials - ASTM. ASTM E1756-08: standard test method for determination of total solids in biomass West Conshohocken.
  • American Society for Testing and Materials -ASTM ASTM D7348-13: Standard Test Methods for Loss on Ignition (LOI) of Solid Combustion Residues. West Conshohocken, PA.
  • ASTM, E. 1252 (2007) Standard Practice for General Techniques for Obtaining Spectra for Qualitative Analysis. American Society for Testing and Materials.
  • Atkinson, C. J. (2018). How good is the evidence that soil‐applied biochar improves water‐holding capacity?. Soil Use and Management, 34(2), 177-186. https://doi.org/10.1111/sum.12413
  • Ballesteros, L. F., Cerqueira, M. A., Teixeira, J. A., & Mussatto, S. I. (2015). Characterization of polysaccharides extracted from spent coffee grounds by alkali pretreatment. Carbohydrate Polymers, 127, 347. https://doi.org/10.1016/j.carbpol.2015.03.047
  • Barrios-Rodríguez, Y. F., Reyes, C. A. R., Campos, J. S. T., Girón-Hernández, J., & Rodríguez-Gamir, J. (2021). Infrared spectroscopy coupled with chemometrics in coffee post-harvest processes as complement to the sensory analysis. LWT, 145, 111304. https://doi.org/10.1016/j.lwt.2021.111304
  • Biederman, L. A., & Harpole, W. S. (2013). Biochar and its effects on plant productivity and nutrient cycling: a meta‐analysis. GCB bioenergy, 5(2), 202-214. https://doi.org/10.1111/gcbb.12037
  • Briandet, R., Kemsley, E. K., & Wilson, R. H. (1996). Discrimination of Arabica and Robusta in instant coffee by Fourier transform infrared spectroscopy and chemometrics. Journal of agricultural and food chemistry, 44(1), 170-174. https://doi.org/10.1021/jf950305a
  • Bomfim, A. S. C. de, Oliveira, D. M. de, Walling, E., Babin, A., Hersant, G., Vaneeckhaute, C., Dumont, M., & Rodrigue, D. (2022). Spent Coffee Grounds Characterization and Reuse in Composting and Soil Amendment. Waste, 1(1), 2. https://doi.org/10.3390/waste1010002
  • Buss, W., Graham, M. C., Shepherd, J. G., & Mašek, O. (2016). Suitability of marginal biomass-derived biochars for soil amendment. Science of the Total Environment, 547, 314-322.
  • Campos-Vega, R., Lóarca-Piña, G., Vergara‐Castañeda, H. A., & Oomah, B. D. (2015). Spent coffee grounds: A review on current research and future prospects. Trends in Food Science & Technology, 45(1), 24. Elsevier BV. https://doi.org/10.1016/j.tifs.2015.04.012
  • Chan, K. Y., & Xu, Z. (2009). Biochar: Nutrient properties and their enhancement. In J. Lehmann & S. Joseph (Eds.), Biochar for Environmental Management: Science and Technology (pp. 67–84). Earthscan.
  • Ding, Y., Liu, Y., Liu, S., Huang, X., Li, Z., Tan, X., Zeng, G., & Zhou, L. (2017). Potential Benefits of Biochar in Agricultural Soils: A Review. Pedosphere, 27(4), 645. Elsevier BV. https://doi.org/10.1016/s1002-0160(17)60375-8
  • Gámiz, B., López‐Cabeza, R., Velarde, P., Spokas, K. A., & Cox, L. (2021). Biochar changes the bioavailability and bioefficacy of the allelochemical coumarin in agricultural soils. Pest Management Science, 77(2), 834-843.
  • Glaser, B., Lehmann, J., & Zech, W. (2002). Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal–a review. Biology and fertility of soils, 35(4), 219-230. https://doi.org/10.1007/s00374-002-0466-4
  • Hale, S. E., Lehmann, J., Rutherford, D., Zimmerman, A. R., Bachmann, R. T., Shitumbanuma, V., ... & Cornelissen, G. (2012). Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars. Environmental science & technology, 46(5), 2830-2838.
  • Javaid, M. M., Mahmood, A., Alshaya, D. S., AlKahtani, M. D., Waheed, H., Wasaya, A., ... & Fiaz, S. (2022). Influence of environmental factors on seed germination and seedling characteristics of perennial ryegrass (Lolium perenne L.). Scientific reports, 12(1), 9522. https://doi.org/10.1038/s41598-022-13416-6
  • Jones, D. L., Rousk, J., Edwards-Jones, G., DeLuca, T. H., & Murphy, D. V. (2012). Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil biology and Biochemistry, 45, 113-124.
  • Kalus, K., Koziel, J. A., & Opaliński, S. (2019). A Review of Biochar Properties and Their Utilization in Crop Agriculture and Livestock Production. Applied Sciences, 9(17), 3494. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/app9173494
  • Kavitha, B., Reddy, P. V. L., Kim, B., Lee, S. S., Pandey, S. K., & Kim, K. (2018). Benefits and limitations of biochar amendment in agricultural soils: A review. Journal of Environmental Management, 227, 146. Elsevier BV. https://doi.org/10.1016/j.jenvman.2018.08.082
  • Lee, J. W., Hawkins, B., Day, D. M., & Reicosky, D. C. (2010). Sustainability: the capacity of smokeless biomass pyrolysis for energy production, global carbon capture and sequestration. Energy & environmental science, 3(11), 1695-1705. DOI: 10.1039/C004561F
  • Lee, Y.-G., Cho, E., Maskey, S., Nguyen, D., & Bae, H. (2023). Value-Added Products from Coffee Waste: A Review. Molecules, 28(8), 3562. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/molecules28083562
  • Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota–a review. Soil biology and biochemistry, 43(9), 1812-1836. doi:10.1016/j.soilbio.2011.04.022
  • Lehmann, J., & Joseph, S. (2015). Biochar for Environmental Management: Science and Technology (2nd ed.). Routledge
  • Li, L., Zhang, Y. J., Novak, A., Yang, Y., & Wang, J. (2021). Role of biochar in improving sandy soil water retention and resilience to drought. Water, 13(4), 407. https://doi.org/10.3390/w13040407
  • Lorenz, K., & Lal, R. (2014). Biochar application to soil for climate change mitigation by soil organic carbon sequestration. Journal of plant nutrition and soil science, 177(5), 651-670. https://doi.org/10.1002/jpln.201400058
  • McNutt, J., & He, Q. (2019). Spent coffee grounds: A review on current utilization. Journal of Industrial and Engineering Chemistry, 71, 78. Elsevier BV. https://doi.org/10.1016/j.jiec.2018.11.054
  • Mussatto, S. I., Machado, E. M. S., Martins, S., & Teixeira, J. A. (2011). Production, Composition, and Application of Coffee and Its Industrial Residues. Food and Bioprocess Technology, 4(5), 661. https://doi.org/10.1007/s11947-011-0565-z
  • Nocentini, M., Mastrolonardo, G., Michelozzi, M., Cencetti, G., Lenzi, A., Panettieri, M., Knicker, H., Certini, G. (2024). Effects of biochar and compost addition in potting substrates on growth and volatile compounds profile of basil (Ocimum basilicum L.). Journal of the Science of Food and Agriculture, 104(3), 1609-1620.
  • Ongen A, Ozcan HK, Elmaslar Ozbas‚ E, Aydin S, Kaya E. Thermal behavior of waste-derived fuels and determination of optimum mixture ratio for gasification. In: 3. International Conference on Civil and Environmental Engineering. 24-27; April 2018. p. 158e62. _ Izmir, Turkey.
  • Rivera, J. A., & Ortega-Jimenez, C. H. (2019). Power Generation with Biomass from Coffee: A Literature Review, Current Trend and Scope for Future Research. MATEC Web of Conferences, 293, 5002. https://doi.org/10.1051/matecconf/201929305002
  • Van Zwieten, L. L. V. Z., Kimber, S., Morris, S., Chan, K. Y., Downie, A., Rust, J., ... & Cowie, A. (2010). Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and soil, 327(1), 235-246.
  • Wu, C. S. (2015). Renewable resource-based green composites of surface-treated spent coffee grounds and polylactide: Characterisation and biodegradability. Polymer Degradation and Stability, 121, 51-59. https://doi.org/10.1016/j.polymdegradstab.2015.08.011
  • Xiong, X., Yu, I. K. M., Cao, L., Tsang, D. C. W., Zhang, S., & Ok, Y. S. (2017). A review of biochar-based catalysts for chemical synthesis, biofuel production, and pollution control. Bioresource Technology, 246, 254. Elsevier BV. https://doi.org/10.1016/j.biortech.2017.06.163
  • Yadav, S. P. S., Bhandari, S., Bhatta, D., Poudel, A., Bhattarai, S., Yadav, P., Ghimire, N. P., Paudel, P., Paudel, P., Shrestha, J., & Oli, B. (2023). Biochar application: A sustainable approach to improve soil health. Journal of Agriculture and Food Research, 11, 100498. https://doi.org/10.1016/j.jafr.2023.100498
  • Zhang, J., Kan, X., Kuang, L., & Zhang, Z. (2022). Research progress on physicochemical properties of biochar and its effect on soil improvement. Highlights in Science Engineering and Technology, 25, 416. https://doi.org/10.54097/hset.v25i.3588
  • Zhou, D., Barney, J., Ponder, M. A., & Welbaum, G. E. (2016). Germination Response of Six Sweet Basil (Ocimum basilicum) Cultivars to Temperature. Seed Technology, 37(1), 43–51. http://www.jstor.org/stable/26625371
There are 39 citations in total.

Details

Primary Language English
Subjects Environmentally Sustainable Engineering, Conservation and Improvement of Soil and Water Resources
Journal Section Research Article
Authors

Selda Yiğit Hunce 0000-0003-4998-893X

Şeymanur Çelebi 0000-0000-0000-0000

Emine Elmaslar Özbaş 0000-0001-9065-6684

Miraç Nur Ciner 0000-0002-9920-928X

H. Kurtuluş Özcan 0000-0002-9810-3985

Publication Date December 14, 2025
Submission Date August 4, 2025
Acceptance Date November 14, 2025
Published in Issue Year 2025 Volume: 9 Issue: 4

Cite

APA Yiğit Hunce, S., Çelebi, Ş., Elmaslar Özbaş, E., … Ciner, M. N. (n.d.). Investigation of the Effects of Biochar, a Pyrolysis Product of Waste Filter Coffee, on Germination of Grass and Basil Plants. International Journal of Agriculture Environment and Food Sciences, 9(4), 1069-1079. https://doi.org/10.31015/2025.4.10

Abstracting & Indexing Services


© International Journal of Agriculture, Environment and Food Sciences

All content published by the journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
This license allows others to share and adapt the material for non-commercial purposes, provided proper attribution is given to the original work.
Authors retain the copyright of their articles and grant the journal the right of first publication under an open-access model

Web:  dergipark.org.tr/jaefs  E-mail:  editorialoffice@jaefs.com Phone: +90 850 309 59 27