Research Article
BibTex RIS Cite
Year 2022, Volume: 8 Issue: 4, 785 - 795, 15.12.2022
https://doi.org/10.28979/jarnas.1109192

Abstract

Supporting Institution

Yok.

Project Number

Yok

References

  • Bertani, G. (1951). Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli, Journal of Bacteriology, 62, 293-300. DOI: 10.1128/jb.62.3.293-300.1951
  • Bielecki, S., & Bolek, R. (1996). Immobilization of recombinant E. coli cells with phenol-lyase activity. In: Wijffels RH, Buitelaar RM, Bucke C, Tramper J (eds) Progress in Biotechnology, vol 11. Elsevier, Amsterdam, pp 472–478.
  • Charm, S.E., & Wong, B.L. (1970). Enzyme inactivation with shearing. Biotechnology and Bioengineerig, 12, 1103 – 1109. https://doi.org/10.1002/bit.260120615
  • Çakmak, M., (2016). Citrobacter freundii (NRRL B-2643) Mikroorganizması Kullanılarak Farklı Fermantatif Şartlarda L-Dopa Ve Dopamin Üretiminin İncelenmesi, Yüksek Lisans Tezi, Fırat Üniversitesi Fen Bilimleri Enstitüsü, https://tez.yok.gov.tr/UlusalTez Merkezi
  • Demain, A.L., & Vaishnav, P. (2009). Production of recombinant proteins by microbes and higher organisms. Biotechnology Advances, 27, 297-306. DOI: 10.1016/j.biotechadv.2009.01.008
  • Elibol, M. & Ozer, D., (2000). Lipase production by immobilised Rhizopus arrhizus. Process Biochemistry, 36, 219 – 223. DOI:10.1016/S0032-9592(00)00191-6
  • Elibol, M., Ulgen, K., Kamarulzaman, K., & Mavituna, F. (1995). Effect of inoculum type on actinorhodin production by Streptomyces coelicolor. Biotechnology Letters, 17, 579–582 DOI:10.1007/BF00129381
  • Fang, H., Kang, J., & Zhang, D. (2017). Microbial production of vitamin B 12: a review and future perspectives. Microbial Cell Factories, 16(15), 1-14 https://doi.org/10.1186/s12934-017-0631-y.
  • Geckil, H., Gencer, S., & Uckun, M. (2004). Vitreoscilla hemoglobin expressing Enterobacter aerogenes and Pseudomonas aeruginosa respond differently to carbon catabolite and oxygen repression for production of L-asparaginase, an enzyme used in cancer therapy, Enzyme and Microbial Technology, 35, 182-189. DOI:10.1016/j.enzmictec.2004.04.005
  • Halkman, A.K. (2005). Anonymous, Merck Gıda Mikrobiyolojisi Uygulamaları. Ed: A. K. Halkman. Başak Matbaacılık Ltd. Şti., Ankara, 358 sayfa." adlı kitabın 03. bölümüdür.
  • Hoffman, B.B., & Lefkowitz, R.J. (1996). Catecholamines, sympathomimetic drugs, and adrenergic receptor antagonists. In: Hardman J.G., Limbird L.E., Molinoff P.B., Ruddon R.W., Goodman L.S., Gilman A., editors. Goodman & Gilman’sthe Pharmacological Basis of Therapeutics. 9th. McGraw-Hill; New York, NY, USA: 1996. pp. 199–248.
  • Kruk, Z.L., & Pycock, C.J. (1991). Dopamine. In: Neurotransmitters and drugs, Suffolk, UK: St. Edmundsbury Press, 3rd ed., 87–115.
  • Kurt, A.G., Aytan, E., Ozer, U., Ates, B., & Geckil, H. (2009). Production of L-DOPA and dopamine in bacteria bearing Vitreoscilla hemoglobin gene. Biotechnolgy Journal, 4(7), 1077-1088. DOI:10.1002/biot.200900130.
  • Lee, S.G., Hong, S.P., & Sung, M.H. (1999). Development of an enzymatic system for the production of dopamine from catechol, pyruvate, and ammonia, Enzyme and Microbial Technology, 25, 298-302. http://dx.doi.org/10.1016/S0141-0229(99)00071-X
  • Lisbon, A. (2003). Dopexamine, dobutamine and dopamine increase splanchnic blood flow: What is the evidence? CHEST, 123, 460–463. DOI: 10.1378/chest.123.5_suppl.460s
  • McDaniel, L.E., & Bailey, E.G. (1969). Effect of Shaking Speed and Type of Closure on Shake Flask Cultures, Applied Microbiology, 17, 286-290. DOI:10.1128/am.17.2.286-290.1969
  • Misu, Y., Goshima, Y., & Miyamae, T. (2002). Is DOPA a neurotransmitter? Trends in Pharmacological Science, 23(6), 262–268. DOI: 10.1016/s0165-6147(02)02013-8
  • Montgomer, E.B. (1992). Pharmacokinetics and pharmacodynamics of levodopa. Neurology, 42(1 Suppl 1), 17-22. PMID: 1549197
  • Nagatsu, T., & Sawada, M. (2009). L-dopa therapy for Parkinson's disease: Past, present, and future, Parkinsonism & Related Disorders, 15, S3-S8. DOI: 10.1016/S1353-8020(09)70004-5.
  • O'Hara, C.M., Westbrook, G.L., & Miller, J.M. (1997). Evaluation of Vitek GNI+ and Becton Dickinson Microbiology Systems Crystal E/NF identification systems for identification of members of the family Enterobacteriaceae and other gram-negative, glucose-fermenting and non-glucose-fermenting bacilli. Journal of Clinical Microbiology, 35, 3269-3273. DOI: 10.1128/jcm.35.12.3269-3273.1997
  • Prakasham, R.S., Rao, C.S., Rao, R.S., & Sarma, P.N. (2005). Alkaline protease production by an isolated Bacillus circulans under solid-state fermentation using agroindustrial waste: Process parameters optimization, Biotechnology Progress, 21, 1380-1388. DOI :10.1021/bp050095e.
  • Prudende, K.W., Katz, A., Sugrue, J.A., & Thomson, A. (1989). The effect of glucose on the expression of acloned Bacillus amyloliquefaciens α-amylase gene in strains Bacillus subtillus, Current Microbiology, 18(1), 27-31. DOI:10.1007/BF01568826
  • Raju, B.G.H., & Ayyanna, C. (1993). Bioconversion of L-tyrosine to L-DOPA Nusing Aspergillus oryzae. CBS Publishers, 106–110. DOI: 10.1007/s00726-010-0768-z.
  • Rehm, J., Reed, G., & Kennedy, J.F. (1987). Biotechnology, Vch. New York, 7a, 5-100.
  • Shuler, M.L., & Kargi, F. (2002). Bioprocess engineering Basic Concepts, Second edition, Prentice Hall New York. Pp. 46-54. ISBN 0-13-081908-5
  • Sodhi, H.K., Sharma, K., Gupta, J.K., & Soni, S.K. (2005). Production of a thermostable alpha-amylase from Bacillus sp PS-7 by solid state fermentation and its synergistic use in the hydrolysis of malt starch for alcohol production. Process Biochemistry, 40, 525-534. https://DOI 10.1016/j.procbio.2003.10.008
  • Tanyildizi, M.S., Ozer, D., & Elibol, M. (2007). Production of bacterial α-amylase by B. amyloliquefaciens under solid substrate fermentation. Biochemical Engineering Journal, 37, 294–297. https://DOI 10.1016/j.bej.2007.05.009
  • Yun, J.S., & Ryu, H.W. (2001). Lactic acid production and carbon catabolite repression from single and mixed sugars using Enterococcus faecalis RKY1. Process Biochemistry, 37, 235-240. https://doi.org/10.1016/S0032-9592(01)00205-9

Effect of Grovth Medium on L-Dopa and Dopamine Production Using Citrobacter freundii (NRRL B-2643)

Year 2022, Volume: 8 Issue: 4, 785 - 795, 15.12.2022
https://doi.org/10.28979/jarnas.1109192

Abstract

In this study, microbial production of L-Dopa and Dopamine which is an important substrance for the treatment of Parkinson's disease were investigated by using Citrobacter freundii (NRRL B-2643). The effects of carbon source (sucrose) and, salt concentrations (NaCl, CaCl2), initial pH, temperature, inoculum level and shaking speed on L-Dopa and dopamine production were investigated. The amounts of extracellular L-dopa and dopamine were determined by using HPLC. Maximum L-dopa and dopamine production, under optimized conditions (sucrose: 2.5 g/L, NaCl and CaCl2: 1.0 g/L, inoculum level: 1.0% (v/v), initial pH: 6.5, temperature: 33°C, shaking speed: 200 rpm) were found to be 458 and 592 mg/L, respectively. Although the experiments were carried out for 60 hours, but the maximum production of L-Dopa and Dopamine was realized at around the 30th hour of the experiments.

Project Number

Yok

References

  • Bertani, G. (1951). Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli, Journal of Bacteriology, 62, 293-300. DOI: 10.1128/jb.62.3.293-300.1951
  • Bielecki, S., & Bolek, R. (1996). Immobilization of recombinant E. coli cells with phenol-lyase activity. In: Wijffels RH, Buitelaar RM, Bucke C, Tramper J (eds) Progress in Biotechnology, vol 11. Elsevier, Amsterdam, pp 472–478.
  • Charm, S.E., & Wong, B.L. (1970). Enzyme inactivation with shearing. Biotechnology and Bioengineerig, 12, 1103 – 1109. https://doi.org/10.1002/bit.260120615
  • Çakmak, M., (2016). Citrobacter freundii (NRRL B-2643) Mikroorganizması Kullanılarak Farklı Fermantatif Şartlarda L-Dopa Ve Dopamin Üretiminin İncelenmesi, Yüksek Lisans Tezi, Fırat Üniversitesi Fen Bilimleri Enstitüsü, https://tez.yok.gov.tr/UlusalTez Merkezi
  • Demain, A.L., & Vaishnav, P. (2009). Production of recombinant proteins by microbes and higher organisms. Biotechnology Advances, 27, 297-306. DOI: 10.1016/j.biotechadv.2009.01.008
  • Elibol, M. & Ozer, D., (2000). Lipase production by immobilised Rhizopus arrhizus. Process Biochemistry, 36, 219 – 223. DOI:10.1016/S0032-9592(00)00191-6
  • Elibol, M., Ulgen, K., Kamarulzaman, K., & Mavituna, F. (1995). Effect of inoculum type on actinorhodin production by Streptomyces coelicolor. Biotechnology Letters, 17, 579–582 DOI:10.1007/BF00129381
  • Fang, H., Kang, J., & Zhang, D. (2017). Microbial production of vitamin B 12: a review and future perspectives. Microbial Cell Factories, 16(15), 1-14 https://doi.org/10.1186/s12934-017-0631-y.
  • Geckil, H., Gencer, S., & Uckun, M. (2004). Vitreoscilla hemoglobin expressing Enterobacter aerogenes and Pseudomonas aeruginosa respond differently to carbon catabolite and oxygen repression for production of L-asparaginase, an enzyme used in cancer therapy, Enzyme and Microbial Technology, 35, 182-189. DOI:10.1016/j.enzmictec.2004.04.005
  • Halkman, A.K. (2005). Anonymous, Merck Gıda Mikrobiyolojisi Uygulamaları. Ed: A. K. Halkman. Başak Matbaacılık Ltd. Şti., Ankara, 358 sayfa." adlı kitabın 03. bölümüdür.
  • Hoffman, B.B., & Lefkowitz, R.J. (1996). Catecholamines, sympathomimetic drugs, and adrenergic receptor antagonists. In: Hardman J.G., Limbird L.E., Molinoff P.B., Ruddon R.W., Goodman L.S., Gilman A., editors. Goodman & Gilman’sthe Pharmacological Basis of Therapeutics. 9th. McGraw-Hill; New York, NY, USA: 1996. pp. 199–248.
  • Kruk, Z.L., & Pycock, C.J. (1991). Dopamine. In: Neurotransmitters and drugs, Suffolk, UK: St. Edmundsbury Press, 3rd ed., 87–115.
  • Kurt, A.G., Aytan, E., Ozer, U., Ates, B., & Geckil, H. (2009). Production of L-DOPA and dopamine in bacteria bearing Vitreoscilla hemoglobin gene. Biotechnolgy Journal, 4(7), 1077-1088. DOI:10.1002/biot.200900130.
  • Lee, S.G., Hong, S.P., & Sung, M.H. (1999). Development of an enzymatic system for the production of dopamine from catechol, pyruvate, and ammonia, Enzyme and Microbial Technology, 25, 298-302. http://dx.doi.org/10.1016/S0141-0229(99)00071-X
  • Lisbon, A. (2003). Dopexamine, dobutamine and dopamine increase splanchnic blood flow: What is the evidence? CHEST, 123, 460–463. DOI: 10.1378/chest.123.5_suppl.460s
  • McDaniel, L.E., & Bailey, E.G. (1969). Effect of Shaking Speed and Type of Closure on Shake Flask Cultures, Applied Microbiology, 17, 286-290. DOI:10.1128/am.17.2.286-290.1969
  • Misu, Y., Goshima, Y., & Miyamae, T. (2002). Is DOPA a neurotransmitter? Trends in Pharmacological Science, 23(6), 262–268. DOI: 10.1016/s0165-6147(02)02013-8
  • Montgomer, E.B. (1992). Pharmacokinetics and pharmacodynamics of levodopa. Neurology, 42(1 Suppl 1), 17-22. PMID: 1549197
  • Nagatsu, T., & Sawada, M. (2009). L-dopa therapy for Parkinson's disease: Past, present, and future, Parkinsonism & Related Disorders, 15, S3-S8. DOI: 10.1016/S1353-8020(09)70004-5.
  • O'Hara, C.M., Westbrook, G.L., & Miller, J.M. (1997). Evaluation of Vitek GNI+ and Becton Dickinson Microbiology Systems Crystal E/NF identification systems for identification of members of the family Enterobacteriaceae and other gram-negative, glucose-fermenting and non-glucose-fermenting bacilli. Journal of Clinical Microbiology, 35, 3269-3273. DOI: 10.1128/jcm.35.12.3269-3273.1997
  • Prakasham, R.S., Rao, C.S., Rao, R.S., & Sarma, P.N. (2005). Alkaline protease production by an isolated Bacillus circulans under solid-state fermentation using agroindustrial waste: Process parameters optimization, Biotechnology Progress, 21, 1380-1388. DOI :10.1021/bp050095e.
  • Prudende, K.W., Katz, A., Sugrue, J.A., & Thomson, A. (1989). The effect of glucose on the expression of acloned Bacillus amyloliquefaciens α-amylase gene in strains Bacillus subtillus, Current Microbiology, 18(1), 27-31. DOI:10.1007/BF01568826
  • Raju, B.G.H., & Ayyanna, C. (1993). Bioconversion of L-tyrosine to L-DOPA Nusing Aspergillus oryzae. CBS Publishers, 106–110. DOI: 10.1007/s00726-010-0768-z.
  • Rehm, J., Reed, G., & Kennedy, J.F. (1987). Biotechnology, Vch. New York, 7a, 5-100.
  • Shuler, M.L., & Kargi, F. (2002). Bioprocess engineering Basic Concepts, Second edition, Prentice Hall New York. Pp. 46-54. ISBN 0-13-081908-5
  • Sodhi, H.K., Sharma, K., Gupta, J.K., & Soni, S.K. (2005). Production of a thermostable alpha-amylase from Bacillus sp PS-7 by solid state fermentation and its synergistic use in the hydrolysis of malt starch for alcohol production. Process Biochemistry, 40, 525-534. https://DOI 10.1016/j.procbio.2003.10.008
  • Tanyildizi, M.S., Ozer, D., & Elibol, M. (2007). Production of bacterial α-amylase by B. amyloliquefaciens under solid substrate fermentation. Biochemical Engineering Journal, 37, 294–297. https://DOI 10.1016/j.bej.2007.05.009
  • Yun, J.S., & Ryu, H.W. (2001). Lactic acid production and carbon catabolite repression from single and mixed sugars using Enterococcus faecalis RKY1. Process Biochemistry, 37, 235-240. https://doi.org/10.1016/S0032-9592(01)00205-9
There are 28 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Meltem Çakmak 0000-0002-6291-863X

Veyis Selen 0000-0003-0016-0840

Dursun Özer 0000-0002-7225-8903

Fikret Karataş 0000-0002-0884-027X

Sinan Saydam 0000-0003-1531-5454

Project Number Yok
Early Pub Date December 13, 2022
Publication Date December 15, 2022
Submission Date April 29, 2022
Published in Issue Year 2022 Volume: 8 Issue: 4

Cite

APA Çakmak, M., Selen, V., Özer, D., Karataş, F., et al. (2022). Effect of Grovth Medium on L-Dopa and Dopamine Production Using Citrobacter freundii (NRRL B-2643). Journal of Advanced Research in Natural and Applied Sciences, 8(4), 785-795. https://doi.org/10.28979/jarnas.1109192
AMA Çakmak M, Selen V, Özer D, Karataş F, Saydam S. Effect of Grovth Medium on L-Dopa and Dopamine Production Using Citrobacter freundii (NRRL B-2643). JARNAS. December 2022;8(4):785-795. doi:10.28979/jarnas.1109192
Chicago Çakmak, Meltem, Veyis Selen, Dursun Özer, Fikret Karataş, and Sinan Saydam. “Effect of Grovth Medium on L-Dopa and Dopamine Production Using Citrobacter Freundii (NRRL B-2643)”. Journal of Advanced Research in Natural and Applied Sciences 8, no. 4 (December 2022): 785-95. https://doi.org/10.28979/jarnas.1109192.
EndNote Çakmak M, Selen V, Özer D, Karataş F, Saydam S (December 1, 2022) Effect of Grovth Medium on L-Dopa and Dopamine Production Using Citrobacter freundii (NRRL B-2643). Journal of Advanced Research in Natural and Applied Sciences 8 4 785–795.
IEEE M. Çakmak, V. Selen, D. Özer, F. Karataş, and S. Saydam, “Effect of Grovth Medium on L-Dopa and Dopamine Production Using Citrobacter freundii (NRRL B-2643)”, JARNAS, vol. 8, no. 4, pp. 785–795, 2022, doi: 10.28979/jarnas.1109192.
ISNAD Çakmak, Meltem et al. “Effect of Grovth Medium on L-Dopa and Dopamine Production Using Citrobacter Freundii (NRRL B-2643)”. Journal of Advanced Research in Natural and Applied Sciences 8/4 (December 2022), 785-795. https://doi.org/10.28979/jarnas.1109192.
JAMA Çakmak M, Selen V, Özer D, Karataş F, Saydam S. Effect of Grovth Medium on L-Dopa and Dopamine Production Using Citrobacter freundii (NRRL B-2643). JARNAS. 2022;8:785–795.
MLA Çakmak, Meltem et al. “Effect of Grovth Medium on L-Dopa and Dopamine Production Using Citrobacter Freundii (NRRL B-2643)”. Journal of Advanced Research in Natural and Applied Sciences, vol. 8, no. 4, 2022, pp. 785-9, doi:10.28979/jarnas.1109192.
Vancouver Çakmak M, Selen V, Özer D, Karataş F, Saydam S. Effect of Grovth Medium on L-Dopa and Dopamine Production Using Citrobacter freundii (NRRL B-2643). JARNAS. 2022;8(4):785-9.


TR Dizin 20466




Academindex 30370    

SOBİAD 20460               

Scilit 30371                        

29804 As of 2024, JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).