Review
BibTex RIS Cite

Some Biological Activities of Phenolic Compounds Cinnamic Acid, Caffeic Acid and p-Coumaric Acid

Year 2021, Volume: 11 Issue: 4, 2587 - 2598, 15.12.2021
https://doi.org/10.21597/jist.885898

Abstract

Phenolic compounds are a group of secondary metabolites synthesized by plants. It is formed by adding the hydroxyl group (-OH) or groups to a benzene ring. Phenolic acids are derivatives of phenolic compounds. They are divided into hydroxybenzoic acids containing 7 carbon atoms (C6-C1) and hydroxycinnamic acids containing 9 carbon atoms (C6-C3). Hydroxycinnamic acids have been shown to have anti-bacterial, anti-fungal, anti-viral, anti-oxidant, anti-cancer, anti-inflammatory, anti-diabetic, anti-melanogenic activities. These compounds are widely available, natural, and have many biological activities, which provide advantages in terms of studying. In addition to all these, the broad-spectrum antioxidant activity of trans cinnamic acid, caffeic acid and p-coumaric acid increases their potential for use in pharmaceutical, cosmetic, cleaning and food industries. These advantages and potentials make phenolic compounds attractive to study. In this review, some studies on anti-bacterial, anti-biofilm, anti-oxidant and anti-cancer activities of trans-cinnamic acid, caffeic acid and p-coumaric acid are mentioned.

References

  • Adisakwattana S, 2017. Cinnamic acid and its derivatives: mechanisms for prevention and management of diabetes and its complications. Nutrients, 9(2), 163.
  • Alves MJ, Ferreira IC, Froufe HJ, Abreu RMV, Martins A, Pintado M, 2013. Antimicrobial activity of phenolic compounds identified in wild mushrooms, SAR analysis and docking studies. Journal of applied microbiology, 115(2), 346-357.
  • Araújo MO, Freire Pessoa HL, Lira AB, Castillo YP, de Sousa DP, 2019. Synthesis, antibacterial evaluation, and QSAR of caffeic acid derivatives. Journal of Chemistry, Article ID 3408315.
  • Bag A, Chattopadhyay RR, 2017. Synergistic antibacterial and antibiofilm efficacy of nisin in combination with p‐coumaric acid against food‐borne bacteria Bacillus cereus and Salmonella typhimurium. Letters in applied microbiology, 65(5), 366-372.
  • Barber MS, McConnell VS, DeCaux BS, 2000. Antimicrobial intermediates of the general phenylpropanoid and lignin specific pathways. Phytochemistry, 54(1), 53-56.
  • Beavis RC, Chait BT, Fales HM, 1989. Cinnamic acid derivatives as matrices for ultraviolet laser desorption mass spectrometry of proteins. Rapid Communications in Mass Spectrometry, 3(12), 432-435.
  • Bodey GP, Bolivar R, Fainstein V, Jadeja L, 1983. Infections caused by Pseudomonas aeruginosa. Reviews of Infectious Diseases, 5(2), 279-313.
  • Bouzaiene NN, Jaziri SK, Kovacic H, Chekir-Ghedira L, Ghedira K, Luis J, 2015. The effects of caffeic, coumaric and ferulic acids on proliferation, superoxide production, adhesion and migration of human tumor cells in vitro. European Journal of Pharmacology, 766, 99-105.
  • Boz H, 2015. p‐Coumaric acid in cereals: presence, antioxidant and antimicrobial effects. International Journal of Food Science & Technology, 50(11), 2323-2328.
  • Celińska-Janowicz K, Zaręba I, Lazarek U, Teul J, Tomczyk M, Pałka J, Miltyk W, 2018. Constituents of propolis: chrysin, caffeic acid, p-coumaric acid, and ferulic acid induce PRODH/POX-dependent apoptosis in human tongue squamous cell carcinoma cell (CAL-27). Frontiers in Pharmacology, 9, 336.
  • Chang ST, Chen PF, Chang SC, 2001. Antibacterial activity of leaf essential oils and their constituents from Cinnamomum osmophloeum. Journal of ethnopharmacology, 77(1), 123-127.
  • Chang WC, Hsieh CH, Hsiao MW, Lin WC, Hung YC, Ye JC, 2010. Caffeic acid induces apoptosis in human cervical cancer cells through the mitochondrial pathway. Taiwanese Journal of Obstetrics and Gynecology, 49(4), 419-424.
  • Chen JH, Ho CT, 1997. Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. Journal of Agricultural and Food Chemistry, 45(7), 2374-2378.
  • Chen X, Yu F, Li Y, Lou Z, Toure SL, Wang H, 2020. The inhibitory activity of p-coumaric acid on quorum sensing and its enhancement effect on meat preservation. CyTA-Journal of Food, 18(1), 61-67.
  • Chen YL, Huang ST, Sun FM, Chiang YL, Chiang CJ, Tsai CM, Weng CJ, 2011. Transformation of cinnamic acid from trans-to cis-form raises a notable bactericidal and synergistic activity against multiple-drug resistant Mycobacterium tuberculosis. European Journal of Pharmaceutical Sciences, 43(3), 188-194.
  • Choi KH, Nam KC, Lee SY, Cho G, Jung JS, Kim HJ, Park BJ, 2017. Antioxidant potential and antibacterial efficiency of caffeic acid-functionalized ZnO nanoparticles. Nanomaterials, 7(6), 148.
  • Chung TW, Moon SK, Chang YC, Ko JH, Lee YC, Cho G, Kim CH, 2004. Novel and therapeutic effect of caffeic acid and caffeic acid phenyl ester on hepatocarcinoma cells: complete regression of hepatoma growth and metastasis by dual mechanism. The FASEB Journal, 18(14), 1670-1681.
  • de Oliveira Niero EL, Machado-Santelli GM, 2013. Cinnamic acid induces apoptotic cell death and cytoskeleton disruption in human melanoma cells. Journal of Experimental & Clinical Cancer Research, 32(1), 1-14.
  • Dziedzic A, Kubina R, Kabała-Dzik A, Tanasiewicz M, 2017. Induction of cell cycle arrest and apoptotic response of head and neck squamous carcinoma cells (Detroit 562) by caffeic acid and caffeic acid phenethyl ester derivative. Evidence-Based Complementary and Alternative Medicine.
  • Espíndola KMM, Ferreira RG, Narvaez LEM, Silva Rosario ACR, da Silva AHM, Silva AGB, Monteiro MC, 2019. Chemical and pharmacological aspects of caffeic acid and its activity in hepatocarcinoma. Frontiers in Oncology, 9, 541.
  • Forero-Doria O, Araya-Maturana R, Barrientos-Retamal A, Morales-Quintana L, Guzmán L, 2019. N-alkylimidazolium salts functionalized with p-coumaric and cinnamic acid: a study of their antimicrobial and antibiofilm effects. Molecules, 24(19), 3484.
  • Georgiev L, Chochkova M, Totseva I, Seizova K, Marinova E, Ivanova G, Milkova T, 2013. Anti-tyrosinase, antioxidant and antimicrobial activities of hydroxycinnamoylamides. Medicinal Chemistry Research, 22(9), 4173-4182.
  • Gunia‐Krzyżak A, Słoczyńska K, Popiół J, Koczurkiewicz P, Marona H, Pękala E, 2018. Cinnamic acid derivatives in cosmetics: current use and future prospects. International Journal of Cosmetic Science, 40(4), 356-366.
  • Guzman JD, 2014. Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity. Molecules, 19(12), 19292-19349.
  • Hafizur RM, Hameed A, Shukrana M, Raza SA, Chishti S, Kabir N, Siddiqui RA, 2015. Cinnamic acid exerts anti-diabetic activity by improving glucose tolerance in vivo and by stimulating insulin secretion in vitro. Phytomedicine, 22(2), 297-300.
  • Hole AS, Grimmer S, Naterstad K, Jensen MR, Paur I, Johansen SG, Sahlstrøm S, 2009. Activation and inhibition of nuclear factor kappa B activity by cereal extracts: role of dietary phenolic acids. Journal of Agricultural and Food Chemistry, 57(20), 9481-9488.
  • Hseu YC, Korivi M, Lin FY, Li ML, Lin RW, Wu JJ, Yang HL, 2018. Trans-cinnamic acid attenuates UVA-induced photoaging through inhibition of AP-1 activation and induction of Nrf2-mediated antioxidant genes in human skin fibroblasts. Journal of Dermatological Science, 90(2), 123-134.
  • Hu X, Yang Z, Liu W, Pan Z, Zhang X, Li M, Li D, 2020. The anti-tumor effects of p-coumaric acid on melanoma A375 and B16 cells. Frontiers in Oncology, 10.
  • Isah T, 2019. Stress and defense responses in plant secondary metabolites production. Biological Research, 52.
  • Jaganathan SK, Supriyanto E, Mandal M, 2013. Events associated with apoptotic effect of p-Coumaric acid in HCT-15 colon cancer cells. World Journal of Gastroenterology: WJG, 19(43), 7726.
  • Kang NH, Mukherjee S, Yun JW, 2019. Trans-cinnamic acid stimulates white fat browning and activates brown adipocytes. Nutrients, 11(3), 577.
  • Kępa M, Miklasińska-Majdanik M, Wojtyczka RD, Idzik D, Korzeniowski K, Smoleń-Dzirba J, Wąsik TJ, 2018. Antimicrobial potential of caffeic acid against Staphylococcus aureus clinical strains. BioMed Research International.
  • Kiliç I, Yeşiloğlu Y, 2013. Spectroscopic studies on the antioxidant activity of p-coumaric acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 115, 719-724.
  • Kim G, Dasagrandhi C, Kang EH, Eom SH, Kim YM, 2018. In vitro antibacterial and early stage biofilm inhibitory potential of an edible chitosan and its phenolic conjugates against Pseudomonas aeruginosa and Listeria monocytogenes. 3 Biotech, 8(10), 1-8.
  • Konishi Y, Kobayashi S, Shimizu M, 2003. Transepithelial transport of p-coumaric acid and gallic acid in Caco-2 cell monolayers. Bioscience, Biotechnology, and Biochemistry, 67(11), 2317-2324.
  • Kot B, Wicha J, Piechota M, Wolska K, Gruzewska A, 2015. Antibiofilm activity of trans-cinnamaldehyde, p-coumaric, and ferulic acids on uropathogenic Escherichia coli. Turkish Journal of Medical Sciences, 45(4), 919-924.
  • Letsididi KS, Lou Z, Letsididi R, Mohammed K, Maguy BL, 2018. Antimicrobial and antibiofilm effects of trans-cinnamic acid nanoemulsion and its potential application on lettuce. Lwt, 94, 25-32.
  • Liu L, Hudgins WR, Shack S, Yin MQ, Samid D, 1995. Cinnamic acid: a natural product with potential use in cancer intervention. International Journal of Cancer, 62(3), 345-350.
  • Lou Z, Wang H, Rao S, Sun J, Ma C, Li J, 2012. p-Coumaric acid kills bacteria through dual damage mechanisms. Food Control, 25(2), 550-554.
  • Luís Â, Silva F, Sousa S, Duarte AP, Domingues F, 2014. Antistaphylococcal and biofilm inhibitory activities of gallic, caffeic, and chlorogenic acids. Biofouling, 30(1), 69-79.
  • Matejczyk M, Świsłocka R, Golonko A, Lewandowski W, Hawrylik E, 2018. Cytotoxic, genotoxic and antimicrobial activity of caffeic and rosmarinic acids and their lithium, sodium and potassium salts as potential anticancer compounds. Advances in Medical Sciences, 63(1), 14-21.
  • Matejczyk M, Swislocka R, Kalinowska M, Widerskp G, Lewandowsk W, Jablonska-Trypuo A, Rosochacki SJ, 2017. In vıtro evaluatıon of bıologıcal actıvıty of cınnamıc, caffeıc, ferulıc and chlorogenıc acıds wıth use of escherıchıa colı k-12 reca: gfp bıosensor straın. Acta Poloniae Pharmaceutica, 74(3), 801-808.
  • Miller MB, Bassler BL, 2001. Quorum sensing in bacteria. Annual Reviews in Microbiology, 55(1), 165-199.
  • Min J, Shen H, Xi W, Wang Q, Yin L, Zhang Y, Wang ZN, 2018. Synergistic anticancer activity of combined use of caffeic acid with paclitaxel enhances apoptosis of non-small-cell lung cancer H1299 cells in vivo and in vitro. Cellular Physiology and Biochemistry, 48(4), 1433-1442.
  • Olasupo NA, Fitzgerald DJ, Gasson MJ, Narbad A, 2003. Activity of natural antimicrobial compounds against Escherichia coli and Salmonella enterica serovar Typhimurium. Letters in Applied Microbiology, 37(6), 448-451.
  • Olthof MR, Hollman PC, Katan MB, 2001. Chlorogenic acid and caffeic acid are absorbed in humans. The Journal of Nutrition, 131(1), 66-71.
  • Parkar SG, Stevenson DE, Skinner MA, 2008. The potential influence of fruit polyphenols on colonic microflora and human gut health. International Journal of Food Microbiology, 124(3), 295-298.
  • Patra K, Bose S, Sarkar S, Rakshit J, Jana S, Mukherjee A, .Bhattacharjee S, 2012. Amelioration of cyclophosphamide induced myelosuppression and oxidative stress by cinnamic acid. Chemico-Biological Interactions, 195(3), 231-239.
  • Perry CS, Liu X, Lund LG, Whitman CP, Kehrer JP, 1995. Differential toxicities of cyclophosphamide and its glutathione metabolites to A549 cells. Toxicology In Vitro, 9(1), 21-26.
  • Prasad NR, Karthikeyan A, Karthikeyan S, Reddy BV, 2011. Inhibitory effect of caffeic acid on cancer cell proliferation by oxidative mechanism in human HT-1080 fibrosarcoma cell line. Molecular and Cellular Biochemistry, 349(1), 11-19.
  • Rajkumari J, Borkotoky S, Murali A, Suchiang K, Mohanty SK, Busi S, 2018. Cinnamic acid attenuates quorum sensing associated virulence factors and biofilm formation in Pseudomonas aeruginosa PAO1. Biotechnology Letters, 40(7), 1087-1100.
  • Rastogi N, Domadia P, Shetty S, Dasgupta D, 2008. Screening of natural phenolic compounds for potential to inhibit bacterial cell division protein FtsZ.
  • Rosendahl AH, Perks CM, Zeng L, Markkula A, Simonsson M, Rose C, Jernström H, 2015. Caffeine and caffeic acid inhibit growth and modify estrogen receptor and insulin-like growth factor I receptor levels in human breast cancer. Clinical Cancer Research, 21(8), 1877-1887.
  • Scherer R, Godoy HT, 2009. Antioxidant activity index (AAI) by the 2, 2-diphenyl-1-picrylhydrazyl method. Food Chemistry, 112(3), 654-658.
  • Schmidt E, Bail S, Friedl SM, Jirovetz L, Buchbauer G, Wanner J, Geissler M, 2010. Antimicrobial activities of single aroma compounds. Natural product communications, 5(9), 1365-1368.
  • Schultheiss N, Roe M, Boerrigter SX, 2011. Cocrystals of nutraceutical p-coumaric acid with caffeine and theophylline: polymorphism and solid-state stability explored in detail using their crystal graphs. CrystEngComm, 13(2), 611-619.
  • Shailasree S, Venkataramana M, Niranjana SR, Prakash HS, 2015. Cytotoxic effect of p-coumaric acid on neuroblastoma, N2a cell via generation of reactive oxygen species leading to dysfunction of mitochondria inducing apoptosis and autophagy. Molecular Neurobiology, 51(1), 119-130.
  • Sharma SH, Rajamanickam V, Nagarajan S, 2018. Antiproliferative effect of p-Coumaric acid targets UPR activation by downregulating Grp78 in colon cancer. Chemico-Biological Interactions, 291, 16-28.
  • Shen Y, Song X, Li L, Sun J, Jaiswal Y, Huang J, Guan Y, 2019. Protective effects of p-coumaric acid against oxidant and hyperlipidemia-an in vitro and in vivo evaluation. Biomedicine & Pharmacotherapy, 111, 579-587.
  • Soliman MM, Attia HF, El-Shazly SA, Saleh OM, 2012. Biomedical effects of cinnamon extract on obesity and diabetes relevance in Wistar rats. American Journal of Biochemistry and Molecular Biology, 2(3), 133-135.
  • Topcu Ş, Çölgeçen H, 2015. Bitki sekonder metabolitlerinin biyoreaktörlerde üretilmesi. Türk Bilimsel Derlemeler Dergisi, 8(2), 09-29.
  • Tuncel G, Nergiz C, 1993. Antimicrobial effect of some olive phenols in a laboratory medium. Letters in Applied Microbiology, 17(6), 300-302. Wen A, Delaquis P, Stanich K, Toivonen P, 2003. Antilisterial activity of selected phenolic acids. Food Microbiology, 20(3), 305-311.
  • Yilmaz S, Sova M, Ergün S, 2018. Antimicrobial activity of trans‐cinnamic acid and commonly used antibiotics against important fish pathogens and nonpathogenic isolates. Journal of Applied Microbiology, 125(6), 1714-1727.
  • Zang LY, Cosma G, Gardner H, Shi X, Castranova V, Vallyathan V, 2000. Effect of antioxidant protection by p-coumaric acid on low-density lipoprotein cholesterol oxidation. American Journal of Physiology-Cell Physiology, 279(4), 954-960.
  • Zaynab M, Fatima M, Abbas S, Sharif Y, Umair M, Zafar MH, Bahadar K, 2018. Role of secondary metabolites in plant defense against pathogens. Microbial Pathogenesis, 124, 198-202.
  • Zhang Y, Wei J, Qiu Y, Niu C, Song Z, Yuan Y, Yue T, 2019. Structure-Dependent Inhibition of Stenotrophomonas maltophilia by Polyphenol and Its Impact on Cell Membrane. Frontiers in Microbiology, 10, 2646.
  • Zhu B, Shang B, Li Y, Zhen Y, 2016. Inhibition of histone deacetylases by trans-cinnamic acid and its antitumor effect against colon cancer xenografts in athymic mice. Molecular Medicine Reports, 13(5), 4159-4166.

Fenolik Bileşiklerden Sinnamik Asit, Kafeik Asit ve p-kumarik Asit’in Bazı Biyolojik Aktiviteleri

Year 2021, Volume: 11 Issue: 4, 2587 - 2598, 15.12.2021
https://doi.org/10.21597/jist.885898

Abstract

Fenolik bileşikler, bitkiler tarafından sentezlenen sekonder metabolitlerin bir grubudur. Bir benzen halkasına hidroksil grubu (-OH) veya grupları eklenmesi ile oluşur. Fenolik asitler, fenolik bileşiklerin bir türevidir. 7 karbon atomu (C6-C1) içeren hidroksibenzoik asitler ve 9 karbon atomu (C6-C3) içeren hidroksisinnamik asitler olmak üzere ikiye ayrılırlar. Hidroksisinnamik asitlerin, yapılan birçok çalışma ile antibakteriyel, anti-fungal, anti-viral, anti-oksidan, anti-kanser, anti-enflamatuar, anti-diyabetik, anti-melanojenik gibi aktiviteleri olduğu gösterilmiştir. Bu bileşiklerin bitkilerde yaygın olarak bulunması, doğal olması, birçok biyolojik aktivitelerinin bulunması çalışılması açısından avantaj sağlamaktadır. Tüm bunların yanı sıra, trans sinnamik asit, kafeik asit ve p-kumarik asitin geniş spektrumlu antioksidan aktivitesi, ilaç, kozmetik, temizlik, gıda sektörlerinde kullanılabilme potansiyelini arttırmaktadır. Bu avantajları ve potansiyelleri fenolik bileşikleri çalışılması için cezbedici hale getirmektedir. Bu derleme çalışmasında, trans-sinnamik asit, kafeik asit ve pkumarik asitin anti-bakteriyel, anti-biyofilm, anti-oksidan, anti-kanser gibi aktiviteleri üzerine yapılan bazı araştırmalardan bahsedilmiştir.

References

  • Adisakwattana S, 2017. Cinnamic acid and its derivatives: mechanisms for prevention and management of diabetes and its complications. Nutrients, 9(2), 163.
  • Alves MJ, Ferreira IC, Froufe HJ, Abreu RMV, Martins A, Pintado M, 2013. Antimicrobial activity of phenolic compounds identified in wild mushrooms, SAR analysis and docking studies. Journal of applied microbiology, 115(2), 346-357.
  • Araújo MO, Freire Pessoa HL, Lira AB, Castillo YP, de Sousa DP, 2019. Synthesis, antibacterial evaluation, and QSAR of caffeic acid derivatives. Journal of Chemistry, Article ID 3408315.
  • Bag A, Chattopadhyay RR, 2017. Synergistic antibacterial and antibiofilm efficacy of nisin in combination with p‐coumaric acid against food‐borne bacteria Bacillus cereus and Salmonella typhimurium. Letters in applied microbiology, 65(5), 366-372.
  • Barber MS, McConnell VS, DeCaux BS, 2000. Antimicrobial intermediates of the general phenylpropanoid and lignin specific pathways. Phytochemistry, 54(1), 53-56.
  • Beavis RC, Chait BT, Fales HM, 1989. Cinnamic acid derivatives as matrices for ultraviolet laser desorption mass spectrometry of proteins. Rapid Communications in Mass Spectrometry, 3(12), 432-435.
  • Bodey GP, Bolivar R, Fainstein V, Jadeja L, 1983. Infections caused by Pseudomonas aeruginosa. Reviews of Infectious Diseases, 5(2), 279-313.
  • Bouzaiene NN, Jaziri SK, Kovacic H, Chekir-Ghedira L, Ghedira K, Luis J, 2015. The effects of caffeic, coumaric and ferulic acids on proliferation, superoxide production, adhesion and migration of human tumor cells in vitro. European Journal of Pharmacology, 766, 99-105.
  • Boz H, 2015. p‐Coumaric acid in cereals: presence, antioxidant and antimicrobial effects. International Journal of Food Science & Technology, 50(11), 2323-2328.
  • Celińska-Janowicz K, Zaręba I, Lazarek U, Teul J, Tomczyk M, Pałka J, Miltyk W, 2018. Constituents of propolis: chrysin, caffeic acid, p-coumaric acid, and ferulic acid induce PRODH/POX-dependent apoptosis in human tongue squamous cell carcinoma cell (CAL-27). Frontiers in Pharmacology, 9, 336.
  • Chang ST, Chen PF, Chang SC, 2001. Antibacterial activity of leaf essential oils and their constituents from Cinnamomum osmophloeum. Journal of ethnopharmacology, 77(1), 123-127.
  • Chang WC, Hsieh CH, Hsiao MW, Lin WC, Hung YC, Ye JC, 2010. Caffeic acid induces apoptosis in human cervical cancer cells through the mitochondrial pathway. Taiwanese Journal of Obstetrics and Gynecology, 49(4), 419-424.
  • Chen JH, Ho CT, 1997. Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. Journal of Agricultural and Food Chemistry, 45(7), 2374-2378.
  • Chen X, Yu F, Li Y, Lou Z, Toure SL, Wang H, 2020. The inhibitory activity of p-coumaric acid on quorum sensing and its enhancement effect on meat preservation. CyTA-Journal of Food, 18(1), 61-67.
  • Chen YL, Huang ST, Sun FM, Chiang YL, Chiang CJ, Tsai CM, Weng CJ, 2011. Transformation of cinnamic acid from trans-to cis-form raises a notable bactericidal and synergistic activity against multiple-drug resistant Mycobacterium tuberculosis. European Journal of Pharmaceutical Sciences, 43(3), 188-194.
  • Choi KH, Nam KC, Lee SY, Cho G, Jung JS, Kim HJ, Park BJ, 2017. Antioxidant potential and antibacterial efficiency of caffeic acid-functionalized ZnO nanoparticles. Nanomaterials, 7(6), 148.
  • Chung TW, Moon SK, Chang YC, Ko JH, Lee YC, Cho G, Kim CH, 2004. Novel and therapeutic effect of caffeic acid and caffeic acid phenyl ester on hepatocarcinoma cells: complete regression of hepatoma growth and metastasis by dual mechanism. The FASEB Journal, 18(14), 1670-1681.
  • de Oliveira Niero EL, Machado-Santelli GM, 2013. Cinnamic acid induces apoptotic cell death and cytoskeleton disruption in human melanoma cells. Journal of Experimental & Clinical Cancer Research, 32(1), 1-14.
  • Dziedzic A, Kubina R, Kabała-Dzik A, Tanasiewicz M, 2017. Induction of cell cycle arrest and apoptotic response of head and neck squamous carcinoma cells (Detroit 562) by caffeic acid and caffeic acid phenethyl ester derivative. Evidence-Based Complementary and Alternative Medicine.
  • Espíndola KMM, Ferreira RG, Narvaez LEM, Silva Rosario ACR, da Silva AHM, Silva AGB, Monteiro MC, 2019. Chemical and pharmacological aspects of caffeic acid and its activity in hepatocarcinoma. Frontiers in Oncology, 9, 541.
  • Forero-Doria O, Araya-Maturana R, Barrientos-Retamal A, Morales-Quintana L, Guzmán L, 2019. N-alkylimidazolium salts functionalized with p-coumaric and cinnamic acid: a study of their antimicrobial and antibiofilm effects. Molecules, 24(19), 3484.
  • Georgiev L, Chochkova M, Totseva I, Seizova K, Marinova E, Ivanova G, Milkova T, 2013. Anti-tyrosinase, antioxidant and antimicrobial activities of hydroxycinnamoylamides. Medicinal Chemistry Research, 22(9), 4173-4182.
  • Gunia‐Krzyżak A, Słoczyńska K, Popiół J, Koczurkiewicz P, Marona H, Pękala E, 2018. Cinnamic acid derivatives in cosmetics: current use and future prospects. International Journal of Cosmetic Science, 40(4), 356-366.
  • Guzman JD, 2014. Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity. Molecules, 19(12), 19292-19349.
  • Hafizur RM, Hameed A, Shukrana M, Raza SA, Chishti S, Kabir N, Siddiqui RA, 2015. Cinnamic acid exerts anti-diabetic activity by improving glucose tolerance in vivo and by stimulating insulin secretion in vitro. Phytomedicine, 22(2), 297-300.
  • Hole AS, Grimmer S, Naterstad K, Jensen MR, Paur I, Johansen SG, Sahlstrøm S, 2009. Activation and inhibition of nuclear factor kappa B activity by cereal extracts: role of dietary phenolic acids. Journal of Agricultural and Food Chemistry, 57(20), 9481-9488.
  • Hseu YC, Korivi M, Lin FY, Li ML, Lin RW, Wu JJ, Yang HL, 2018. Trans-cinnamic acid attenuates UVA-induced photoaging through inhibition of AP-1 activation and induction of Nrf2-mediated antioxidant genes in human skin fibroblasts. Journal of Dermatological Science, 90(2), 123-134.
  • Hu X, Yang Z, Liu W, Pan Z, Zhang X, Li M, Li D, 2020. The anti-tumor effects of p-coumaric acid on melanoma A375 and B16 cells. Frontiers in Oncology, 10.
  • Isah T, 2019. Stress and defense responses in plant secondary metabolites production. Biological Research, 52.
  • Jaganathan SK, Supriyanto E, Mandal M, 2013. Events associated with apoptotic effect of p-Coumaric acid in HCT-15 colon cancer cells. World Journal of Gastroenterology: WJG, 19(43), 7726.
  • Kang NH, Mukherjee S, Yun JW, 2019. Trans-cinnamic acid stimulates white fat browning and activates brown adipocytes. Nutrients, 11(3), 577.
  • Kępa M, Miklasińska-Majdanik M, Wojtyczka RD, Idzik D, Korzeniowski K, Smoleń-Dzirba J, Wąsik TJ, 2018. Antimicrobial potential of caffeic acid against Staphylococcus aureus clinical strains. BioMed Research International.
  • Kiliç I, Yeşiloğlu Y, 2013. Spectroscopic studies on the antioxidant activity of p-coumaric acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 115, 719-724.
  • Kim G, Dasagrandhi C, Kang EH, Eom SH, Kim YM, 2018. In vitro antibacterial and early stage biofilm inhibitory potential of an edible chitosan and its phenolic conjugates against Pseudomonas aeruginosa and Listeria monocytogenes. 3 Biotech, 8(10), 1-8.
  • Konishi Y, Kobayashi S, Shimizu M, 2003. Transepithelial transport of p-coumaric acid and gallic acid in Caco-2 cell monolayers. Bioscience, Biotechnology, and Biochemistry, 67(11), 2317-2324.
  • Kot B, Wicha J, Piechota M, Wolska K, Gruzewska A, 2015. Antibiofilm activity of trans-cinnamaldehyde, p-coumaric, and ferulic acids on uropathogenic Escherichia coli. Turkish Journal of Medical Sciences, 45(4), 919-924.
  • Letsididi KS, Lou Z, Letsididi R, Mohammed K, Maguy BL, 2018. Antimicrobial and antibiofilm effects of trans-cinnamic acid nanoemulsion and its potential application on lettuce. Lwt, 94, 25-32.
  • Liu L, Hudgins WR, Shack S, Yin MQ, Samid D, 1995. Cinnamic acid: a natural product with potential use in cancer intervention. International Journal of Cancer, 62(3), 345-350.
  • Lou Z, Wang H, Rao S, Sun J, Ma C, Li J, 2012. p-Coumaric acid kills bacteria through dual damage mechanisms. Food Control, 25(2), 550-554.
  • Luís Â, Silva F, Sousa S, Duarte AP, Domingues F, 2014. Antistaphylococcal and biofilm inhibitory activities of gallic, caffeic, and chlorogenic acids. Biofouling, 30(1), 69-79.
  • Matejczyk M, Świsłocka R, Golonko A, Lewandowski W, Hawrylik E, 2018. Cytotoxic, genotoxic and antimicrobial activity of caffeic and rosmarinic acids and their lithium, sodium and potassium salts as potential anticancer compounds. Advances in Medical Sciences, 63(1), 14-21.
  • Matejczyk M, Swislocka R, Kalinowska M, Widerskp G, Lewandowsk W, Jablonska-Trypuo A, Rosochacki SJ, 2017. In vıtro evaluatıon of bıologıcal actıvıty of cınnamıc, caffeıc, ferulıc and chlorogenıc acıds wıth use of escherıchıa colı k-12 reca: gfp bıosensor straın. Acta Poloniae Pharmaceutica, 74(3), 801-808.
  • Miller MB, Bassler BL, 2001. Quorum sensing in bacteria. Annual Reviews in Microbiology, 55(1), 165-199.
  • Min J, Shen H, Xi W, Wang Q, Yin L, Zhang Y, Wang ZN, 2018. Synergistic anticancer activity of combined use of caffeic acid with paclitaxel enhances apoptosis of non-small-cell lung cancer H1299 cells in vivo and in vitro. Cellular Physiology and Biochemistry, 48(4), 1433-1442.
  • Olasupo NA, Fitzgerald DJ, Gasson MJ, Narbad A, 2003. Activity of natural antimicrobial compounds against Escherichia coli and Salmonella enterica serovar Typhimurium. Letters in Applied Microbiology, 37(6), 448-451.
  • Olthof MR, Hollman PC, Katan MB, 2001. Chlorogenic acid and caffeic acid are absorbed in humans. The Journal of Nutrition, 131(1), 66-71.
  • Parkar SG, Stevenson DE, Skinner MA, 2008. The potential influence of fruit polyphenols on colonic microflora and human gut health. International Journal of Food Microbiology, 124(3), 295-298.
  • Patra K, Bose S, Sarkar S, Rakshit J, Jana S, Mukherjee A, .Bhattacharjee S, 2012. Amelioration of cyclophosphamide induced myelosuppression and oxidative stress by cinnamic acid. Chemico-Biological Interactions, 195(3), 231-239.
  • Perry CS, Liu X, Lund LG, Whitman CP, Kehrer JP, 1995. Differential toxicities of cyclophosphamide and its glutathione metabolites to A549 cells. Toxicology In Vitro, 9(1), 21-26.
  • Prasad NR, Karthikeyan A, Karthikeyan S, Reddy BV, 2011. Inhibitory effect of caffeic acid on cancer cell proliferation by oxidative mechanism in human HT-1080 fibrosarcoma cell line. Molecular and Cellular Biochemistry, 349(1), 11-19.
  • Rajkumari J, Borkotoky S, Murali A, Suchiang K, Mohanty SK, Busi S, 2018. Cinnamic acid attenuates quorum sensing associated virulence factors and biofilm formation in Pseudomonas aeruginosa PAO1. Biotechnology Letters, 40(7), 1087-1100.
  • Rastogi N, Domadia P, Shetty S, Dasgupta D, 2008. Screening of natural phenolic compounds for potential to inhibit bacterial cell division protein FtsZ.
  • Rosendahl AH, Perks CM, Zeng L, Markkula A, Simonsson M, Rose C, Jernström H, 2015. Caffeine and caffeic acid inhibit growth and modify estrogen receptor and insulin-like growth factor I receptor levels in human breast cancer. Clinical Cancer Research, 21(8), 1877-1887.
  • Scherer R, Godoy HT, 2009. Antioxidant activity index (AAI) by the 2, 2-diphenyl-1-picrylhydrazyl method. Food Chemistry, 112(3), 654-658.
  • Schmidt E, Bail S, Friedl SM, Jirovetz L, Buchbauer G, Wanner J, Geissler M, 2010. Antimicrobial activities of single aroma compounds. Natural product communications, 5(9), 1365-1368.
  • Schultheiss N, Roe M, Boerrigter SX, 2011. Cocrystals of nutraceutical p-coumaric acid with caffeine and theophylline: polymorphism and solid-state stability explored in detail using their crystal graphs. CrystEngComm, 13(2), 611-619.
  • Shailasree S, Venkataramana M, Niranjana SR, Prakash HS, 2015. Cytotoxic effect of p-coumaric acid on neuroblastoma, N2a cell via generation of reactive oxygen species leading to dysfunction of mitochondria inducing apoptosis and autophagy. Molecular Neurobiology, 51(1), 119-130.
  • Sharma SH, Rajamanickam V, Nagarajan S, 2018. Antiproliferative effect of p-Coumaric acid targets UPR activation by downregulating Grp78 in colon cancer. Chemico-Biological Interactions, 291, 16-28.
  • Shen Y, Song X, Li L, Sun J, Jaiswal Y, Huang J, Guan Y, 2019. Protective effects of p-coumaric acid against oxidant and hyperlipidemia-an in vitro and in vivo evaluation. Biomedicine & Pharmacotherapy, 111, 579-587.
  • Soliman MM, Attia HF, El-Shazly SA, Saleh OM, 2012. Biomedical effects of cinnamon extract on obesity and diabetes relevance in Wistar rats. American Journal of Biochemistry and Molecular Biology, 2(3), 133-135.
  • Topcu Ş, Çölgeçen H, 2015. Bitki sekonder metabolitlerinin biyoreaktörlerde üretilmesi. Türk Bilimsel Derlemeler Dergisi, 8(2), 09-29.
  • Tuncel G, Nergiz C, 1993. Antimicrobial effect of some olive phenols in a laboratory medium. Letters in Applied Microbiology, 17(6), 300-302. Wen A, Delaquis P, Stanich K, Toivonen P, 2003. Antilisterial activity of selected phenolic acids. Food Microbiology, 20(3), 305-311.
  • Yilmaz S, Sova M, Ergün S, 2018. Antimicrobial activity of trans‐cinnamic acid and commonly used antibiotics against important fish pathogens and nonpathogenic isolates. Journal of Applied Microbiology, 125(6), 1714-1727.
  • Zang LY, Cosma G, Gardner H, Shi X, Castranova V, Vallyathan V, 2000. Effect of antioxidant protection by p-coumaric acid on low-density lipoprotein cholesterol oxidation. American Journal of Physiology-Cell Physiology, 279(4), 954-960.
  • Zaynab M, Fatima M, Abbas S, Sharif Y, Umair M, Zafar MH, Bahadar K, 2018. Role of secondary metabolites in plant defense against pathogens. Microbial Pathogenesis, 124, 198-202.
  • Zhang Y, Wei J, Qiu Y, Niu C, Song Z, Yuan Y, Yue T, 2019. Structure-Dependent Inhibition of Stenotrophomonas maltophilia by Polyphenol and Its Impact on Cell Membrane. Frontiers in Microbiology, 10, 2646.
  • Zhu B, Shang B, Li Y, Zhen Y, 2016. Inhibition of histone deacetylases by trans-cinnamic acid and its antitumor effect against colon cancer xenografts in athymic mice. Molecular Medicine Reports, 13(5), 4159-4166.
There are 67 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology
Journal Section Biyoloji / Biology
Authors

Kadriye Aslıhan Onat 0000-0002-5893-5728

Merve Sezer This is me 0000-0003-0947-2912

Bekir Çöl 0000-0001-8997-4116

Publication Date December 15, 2021
Submission Date February 24, 2021
Acceptance Date August 20, 2021
Published in Issue Year 2021 Volume: 11 Issue: 4

Cite

APA Onat, K. A., Sezer, M., & Çöl, B. (2021). Fenolik Bileşiklerden Sinnamik Asit, Kafeik Asit ve p-kumarik Asit’in Bazı Biyolojik Aktiviteleri. Journal of the Institute of Science and Technology, 11(4), 2587-2598. https://doi.org/10.21597/jist.885898
AMA Onat KA, Sezer M, Çöl B. Fenolik Bileşiklerden Sinnamik Asit, Kafeik Asit ve p-kumarik Asit’in Bazı Biyolojik Aktiviteleri. J. Inst. Sci. and Tech. December 2021;11(4):2587-2598. doi:10.21597/jist.885898
Chicago Onat, Kadriye Aslıhan, Merve Sezer, and Bekir Çöl. “Fenolik Bileşiklerden Sinnamik Asit, Kafeik Asit Ve P-Kumarik Asit’in Bazı Biyolojik Aktiviteleri”. Journal of the Institute of Science and Technology 11, no. 4 (December 2021): 2587-98. https://doi.org/10.21597/jist.885898.
EndNote Onat KA, Sezer M, Çöl B (December 1, 2021) Fenolik Bileşiklerden Sinnamik Asit, Kafeik Asit ve p-kumarik Asit’in Bazı Biyolojik Aktiviteleri. Journal of the Institute of Science and Technology 11 4 2587–2598.
IEEE K. A. Onat, M. Sezer, and B. Çöl, “Fenolik Bileşiklerden Sinnamik Asit, Kafeik Asit ve p-kumarik Asit’in Bazı Biyolojik Aktiviteleri”, J. Inst. Sci. and Tech., vol. 11, no. 4, pp. 2587–2598, 2021, doi: 10.21597/jist.885898.
ISNAD Onat, Kadriye Aslıhan et al. “Fenolik Bileşiklerden Sinnamik Asit, Kafeik Asit Ve P-Kumarik Asit’in Bazı Biyolojik Aktiviteleri”. Journal of the Institute of Science and Technology 11/4 (December 2021), 2587-2598. https://doi.org/10.21597/jist.885898.
JAMA Onat KA, Sezer M, Çöl B. Fenolik Bileşiklerden Sinnamik Asit, Kafeik Asit ve p-kumarik Asit’in Bazı Biyolojik Aktiviteleri. J. Inst. Sci. and Tech. 2021;11:2587–2598.
MLA Onat, Kadriye Aslıhan et al. “Fenolik Bileşiklerden Sinnamik Asit, Kafeik Asit Ve P-Kumarik Asit’in Bazı Biyolojik Aktiviteleri”. Journal of the Institute of Science and Technology, vol. 11, no. 4, 2021, pp. 2587-98, doi:10.21597/jist.885898.
Vancouver Onat KA, Sezer M, Çöl B. Fenolik Bileşiklerden Sinnamik Asit, Kafeik Asit ve p-kumarik Asit’in Bazı Biyolojik Aktiviteleri. J. Inst. Sci. and Tech. 2021;11(4):2587-98.