Research Article
BibTex RIS Cite

Sınıf Öğretmeni Adaylarının Erken Cebire Yönelik Farkındalıklarının İncelenmesi

Year 2018, Volume: 14 Issue: 1, 35 - 53, 20.04.2018
https://doi.org/10.17860/mersinefd.290580

Abstract

Sınıf öğretmeni adaylarının erken cebire yönelik farkındalıklarının
incelenmesinin amaçlandığı bu araştırmada betimsel tarama modeli
kullanılmıştır. Araştırma verileri Erken Cebir Farkındalık Ölçeği aracılığıyla
toplanmıştır. Ölçek 2015-2016 eğitim öğretim yılı bahar yarıyılında farklı
üniversitelerin eğitim fakülteleri sınıf öğretmenliği bölümünde öğrenim
görmekte olan 559 sınıf öğretmeni adayına uygulanmıştır. Araştırmada elde
edilen nicel veriler SPSS programı ile analiz edilmiştir.
Bu kapsamda iki grubun ortalamalarının
karşılaştırılmasında nonparametrik testlerden Mann-Whitney U testi ve ikiden
fazla grubun ortalamalarının karşılaştırılmasında Kruskal-Wallis H testi
uygulanmıştır.
Nitel
verilerin analizinde ise içerik analizi tekniğinden faydalanılmıştır. Araştırma
bulgularına göre cinsiyet, sınıf düzeyi ve ortaöğretimden mezun olunan alan
değişkenlerinin sınıf öğretmeni adaylarının erken cebire yönelik
farkındalıklarında istatistiksel olarak anlamlı bir etkisinin olmadığı,
öğretimi tercih edilen dersler ve cebirsel biliş farkındalığı değişkenlerinin ise
etkili olduğu görülmüştür. Cebire geçiş ifadesi, öğretmen adaylarına ağırlıklı
olarak dört işlem becerilerini çağrıştırmaktadır. Öğretmen adayları dört işlem
veya aritmetik işlem yapma becerisini erken cebirle eş tutmaktadır.

References

  • Bahr, D. L., & De Garcia, L. A. (2010). Elementary Mathematics is Anything but Elementary: Content and Methods From a Developmental Perspective. Belmont. CA: Wadsworth Cengage Learning.
  • Blanton, M., & Kaput, J. (2004). Elementary Grades Students’ Capacity for Functional Thinking. In M. J. Hoynes, & A. B. Fuglestad (Eds.), Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education (pp. 135-142). Bergen, Norway: International Group for the Psychology of Mathematics Educational.
  • Boulton Lewis, G. M., Cooper, T. J., Athew, B., Pillay, H., Wilss, L., & Mutch, S. (1997). The transition from arithmetic to algebra: A cognitive perspective. International Group for the Psychology of Mathematics Education, 21 (2), 185-192.
  • Cai, J., & Knuth, E. (2011). Early Algebraization. A Global Dialogue From Multiple Perspectives. Berlin: Springer.
  • Carraher, D. W., Schliemann, A. D., & Schwartz, J. L. (2008). Early Algebra is not The Same as Algebra Early. In J. Kaput, D. Carraher, & M. Blanton (Eds.), Algebra in The Early Grades (pp. 235-272). Mahwah, NJ: Erlbaum.
  • Carpenter T. P., Franke M. L., & Levi L. (2003). Thinking Mathematically: Integrating Aritmetic & Algebra. Portsmouth, NH: Heineman.
  • Carpenter,T. P., Levi, L., Franke, M. L., & Zeringue, J. K. (2005) Algebra in elementary school: Developing relational thinking. ZDM-The International Journal on Mathematics Education 37 (1), 53-59.
  • Çepni, S. (2012). Araştırma ve Proje Çalışmalarına Giriş. Trabzon: Celepler Matbaacılık.
  • Driscoll, M. (1999) Fostering algebraic thinking: A guide for teachers grades 6-10. Portsmouth, NH: Heinemann.
  • Ellis, A. B. (2011). Algebra in The Middle School: Developing Functional Relationships Through Quantitative Reasoning. In J. Cai, & E. Knuth (Eds.), Early Algebraization: A Global Dialogue From Multiple Perspectives (pp. 215-238). Heidelberg: Springer.
  • Fraenkel, J. R., & Wallen, N. E. (2006). How to Design and Evaluate Research in Education. New York: McGraw-Hill International Edition.
  • Herbert, K., & Brown, R. (1997). Patterns as tools for algebraic reasoning. Teaching Children Mathematics, 3, 340-344.
  • Hersovics, N., & Linchevski, L. (1994). A Cognative gap between arithmetic and algebra. Educational Studies in Mathematics. 27 (1), 59-78.
  • Hohensee, C. (2015). Preparing elementary prospective teachers to teach early algebra. Journal of Mathematics Teacher Education, 1-27. doi:10.1007/s10857-015-9324-9
  • Kamol, N. (2005). A framework for characterizing lower secondary school students’ algebraic thinking (Doctoral dissertation). Srinakharinwirot University, Bangkok.
  • Kaput, J. J. (2008). What is Algebra? What is Algebraic Reasoning? In J. J. Kaput, D. W. Carraher, & M. L. Blanton (Eds.), Algebra in The Early Grades (pp. 5-17). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Karasar, N. (2012). Bilimsel Araştırma Yöntemi. Ankara: Nobel Yayın Dağıtım.
  • Kieran, C. (1981). Concepts associated with the equality symbol. Educational Studies in Mathematics, 12 (3), 317-326.
  • Kieran, C. (1991). A Procedural-structural perspective on algebra research. In F. Furinghetti (Ed.). Proceedings of The Fifteenth International Conference for The Psychology of Mathematics Education (pp. 245-253). Genoa, Italy.
  • Kieran, C. (1992). The Learning and Teaching of School Algebra. In D. A. Grouws (Ed.). Handbook of Research on Mathematics Teaching and Learning (pp. 390‐419). New York: Macmillan.
  • Kieran, C. (2007). Learning and Teaching Algebra at The Middle School Through College Levels: Building Meaning for Symbols and Their Manipulation. In F. K. Lester (Ed.), Second Handbook of Research on Mathematics Teaching and Learning, (pp. 707-762). Charlotte, NC: Information Age Publishing.
  • Kieran, C., Boileau, A., & Garançon, M. (1996). Introducing Algebra by Means of a Technology-Supported, Functional Approach. In N. Bednarz, C. Kieran, & L. Lee (Eds.), Approaches to Algebra: Perspectives for Research and Teaching (pp. 257-294). Dordrecht: Kluwer.
  • Kieran, C., & Chalouh, L. (1993). Prealgebra: The transition from arithmetic to algebra. In P. S. Wilson (Ed.), Research ideas for the classroom: Middle grades mathematics (pp. 119-139). New York: Macmillan.
  • Lee, L. (1996). An Initiation into Algebraic Culture Through Generalization Activities. In N. Bednarz, C. Kieran, & L. Lee (Eds.), Approaches to Algebra: Perspectives for Research and Teaching (pp. 87-106). London: Kluwer Academic Publishers.
  • Lott, J. W. (2000). Algebra? A gate? A barrier? A mystery! Mathematics Education Dialogues 3 (2), 1-12.
  • National Council of Teachers of Mathematics. (2000). Principles and Standards for School Mathematics. Reston, VA: NCTM.
  • National Council of Teachers of Mathematics. (2009). Guiding principles for mathematics curriculum and assessment. http://scimath.unl.edu/MIM/coursematerials/files/TEAC %20801/2.%20Handouts/01.%20NCTM%20Guiding%20Principles%20for%20Math%20Curriculum%20and%20Assesment.pdf (Erişim Tarihi: 14 Kasım 2016).
  • Smith, E. (2003). Stasis and Change: Integrating Pattern, Functions, and Algebra Throughout the K-12 Curriculum. In J. Kilpatrick, W. G.Martin, & D. Schifter (Eds.), A Research Companion to Principles and Standards for School Mathematics (pp. 136-150). Reston, VA: NCTM.
  • Stephens, A. C. (2006). Equivalence and relational thinking: Preservice elementary teachers’ awareness of opportunities and misconceptions. Journal of Mathematics Teacher Education, 9, 249-278.
  • Tabach, M., & Friedlander, A. (2008). The Role of Context in Learning Beginnig Algebra. In C. Greenes, & R. Rubenstein (Eds.), Algebra and Algebraic Thinking in School Mathematics (pp. 223-232). Reston: NCTM.
  • Turgut, S. (2016). Sınıf öğretmenlerinin erken cebir düşüncelerinin geliştirilmesine yönelik bir eylem araştırması. Yayınlanmamış doktora tezi. Kütahya: Dumlupınar Üniversitesi Eğitim Bilimleri Enstitüsü.
  • Van Amerom, B. (2002). Reinvention of early algebra: Developmental research on the transition from arithmetic to algebra. Unpublished doctoral dissertation. The Netherlands: University of Utrecht.
  • Vance, J. (1998). Number operations from on algebraic perspective. Teaching Children Mathemetics, 4, 282‐285.
  • Van De Walle, J. A., Karp, K. S., & Bay-Williams, J. M. (2013). İlkokul ve Ortaokul Matematiği Gelişimsel Yaklaşımla Öğretim. (Çev. S. Durmuş). Ankara: Nobel Akademi Yayıncılık.
  • Warren, E., & Cooper, T. (2005). Introducing functional thinking in year 2: A case study of early algebra teaching. Contemporary Issues in Early Childhood, 6 (2), 150-162.
  • Warren, E., & Cooper, T. (2006). Using repeating patterns to explore functional thinking. Australian Primary Mathematics Classroom, 11 (1), 9-14.
  • Warren, E. A., Cooper, T. J., & Lamb, J. T. (2006). Investigating functional thinking in the elementary classroom: Foundations of early algebraic reasoning. Journal of Mathematical Behavior, 25, 208-223.
  • Williams, A. M., & Cooper, T. J., (2001). Moving From Arithmetic to Algebra Under The Time Pressures of Real Classrooms. In H. Chick, K. Stacey, J. Vincent, & J. Vincent (Eds.), Proceedings of the 12th ICMI Study Conference: The Future of the Teaching and Learning of Algebra (pp. 665-662). Melbourne: University of Melbourne.
  • Yıldırım, A. ve Şimşek, H. (2011). Sosyal Bilimlerde Nitel Araştırma Yöntemleri. Ankara: Seçkin Yayıncılık.
Year 2018, Volume: 14 Issue: 1, 35 - 53, 20.04.2018
https://doi.org/10.17860/mersinefd.290580

Abstract

References

  • Bahr, D. L., & De Garcia, L. A. (2010). Elementary Mathematics is Anything but Elementary: Content and Methods From a Developmental Perspective. Belmont. CA: Wadsworth Cengage Learning.
  • Blanton, M., & Kaput, J. (2004). Elementary Grades Students’ Capacity for Functional Thinking. In M. J. Hoynes, & A. B. Fuglestad (Eds.), Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education (pp. 135-142). Bergen, Norway: International Group for the Psychology of Mathematics Educational.
  • Boulton Lewis, G. M., Cooper, T. J., Athew, B., Pillay, H., Wilss, L., & Mutch, S. (1997). The transition from arithmetic to algebra: A cognitive perspective. International Group for the Psychology of Mathematics Education, 21 (2), 185-192.
  • Cai, J., & Knuth, E. (2011). Early Algebraization. A Global Dialogue From Multiple Perspectives. Berlin: Springer.
  • Carraher, D. W., Schliemann, A. D., & Schwartz, J. L. (2008). Early Algebra is not The Same as Algebra Early. In J. Kaput, D. Carraher, & M. Blanton (Eds.), Algebra in The Early Grades (pp. 235-272). Mahwah, NJ: Erlbaum.
  • Carpenter T. P., Franke M. L., & Levi L. (2003). Thinking Mathematically: Integrating Aritmetic & Algebra. Portsmouth, NH: Heineman.
  • Carpenter,T. P., Levi, L., Franke, M. L., & Zeringue, J. K. (2005) Algebra in elementary school: Developing relational thinking. ZDM-The International Journal on Mathematics Education 37 (1), 53-59.
  • Çepni, S. (2012). Araştırma ve Proje Çalışmalarına Giriş. Trabzon: Celepler Matbaacılık.
  • Driscoll, M. (1999) Fostering algebraic thinking: A guide for teachers grades 6-10. Portsmouth, NH: Heinemann.
  • Ellis, A. B. (2011). Algebra in The Middle School: Developing Functional Relationships Through Quantitative Reasoning. In J. Cai, & E. Knuth (Eds.), Early Algebraization: A Global Dialogue From Multiple Perspectives (pp. 215-238). Heidelberg: Springer.
  • Fraenkel, J. R., & Wallen, N. E. (2006). How to Design and Evaluate Research in Education. New York: McGraw-Hill International Edition.
  • Herbert, K., & Brown, R. (1997). Patterns as tools for algebraic reasoning. Teaching Children Mathematics, 3, 340-344.
  • Hersovics, N., & Linchevski, L. (1994). A Cognative gap between arithmetic and algebra. Educational Studies in Mathematics. 27 (1), 59-78.
  • Hohensee, C. (2015). Preparing elementary prospective teachers to teach early algebra. Journal of Mathematics Teacher Education, 1-27. doi:10.1007/s10857-015-9324-9
  • Kamol, N. (2005). A framework for characterizing lower secondary school students’ algebraic thinking (Doctoral dissertation). Srinakharinwirot University, Bangkok.
  • Kaput, J. J. (2008). What is Algebra? What is Algebraic Reasoning? In J. J. Kaput, D. W. Carraher, & M. L. Blanton (Eds.), Algebra in The Early Grades (pp. 5-17). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Karasar, N. (2012). Bilimsel Araştırma Yöntemi. Ankara: Nobel Yayın Dağıtım.
  • Kieran, C. (1981). Concepts associated with the equality symbol. Educational Studies in Mathematics, 12 (3), 317-326.
  • Kieran, C. (1991). A Procedural-structural perspective on algebra research. In F. Furinghetti (Ed.). Proceedings of The Fifteenth International Conference for The Psychology of Mathematics Education (pp. 245-253). Genoa, Italy.
  • Kieran, C. (1992). The Learning and Teaching of School Algebra. In D. A. Grouws (Ed.). Handbook of Research on Mathematics Teaching and Learning (pp. 390‐419). New York: Macmillan.
  • Kieran, C. (2007). Learning and Teaching Algebra at The Middle School Through College Levels: Building Meaning for Symbols and Their Manipulation. In F. K. Lester (Ed.), Second Handbook of Research on Mathematics Teaching and Learning, (pp. 707-762). Charlotte, NC: Information Age Publishing.
  • Kieran, C., Boileau, A., & Garançon, M. (1996). Introducing Algebra by Means of a Technology-Supported, Functional Approach. In N. Bednarz, C. Kieran, & L. Lee (Eds.), Approaches to Algebra: Perspectives for Research and Teaching (pp. 257-294). Dordrecht: Kluwer.
  • Kieran, C., & Chalouh, L. (1993). Prealgebra: The transition from arithmetic to algebra. In P. S. Wilson (Ed.), Research ideas for the classroom: Middle grades mathematics (pp. 119-139). New York: Macmillan.
  • Lee, L. (1996). An Initiation into Algebraic Culture Through Generalization Activities. In N. Bednarz, C. Kieran, & L. Lee (Eds.), Approaches to Algebra: Perspectives for Research and Teaching (pp. 87-106). London: Kluwer Academic Publishers.
  • Lott, J. W. (2000). Algebra? A gate? A barrier? A mystery! Mathematics Education Dialogues 3 (2), 1-12.
  • National Council of Teachers of Mathematics. (2000). Principles and Standards for School Mathematics. Reston, VA: NCTM.
  • National Council of Teachers of Mathematics. (2009). Guiding principles for mathematics curriculum and assessment. http://scimath.unl.edu/MIM/coursematerials/files/TEAC %20801/2.%20Handouts/01.%20NCTM%20Guiding%20Principles%20for%20Math%20Curriculum%20and%20Assesment.pdf (Erişim Tarihi: 14 Kasım 2016).
  • Smith, E. (2003). Stasis and Change: Integrating Pattern, Functions, and Algebra Throughout the K-12 Curriculum. In J. Kilpatrick, W. G.Martin, & D. Schifter (Eds.), A Research Companion to Principles and Standards for School Mathematics (pp. 136-150). Reston, VA: NCTM.
  • Stephens, A. C. (2006). Equivalence and relational thinking: Preservice elementary teachers’ awareness of opportunities and misconceptions. Journal of Mathematics Teacher Education, 9, 249-278.
  • Tabach, M., & Friedlander, A. (2008). The Role of Context in Learning Beginnig Algebra. In C. Greenes, & R. Rubenstein (Eds.), Algebra and Algebraic Thinking in School Mathematics (pp. 223-232). Reston: NCTM.
  • Turgut, S. (2016). Sınıf öğretmenlerinin erken cebir düşüncelerinin geliştirilmesine yönelik bir eylem araştırması. Yayınlanmamış doktora tezi. Kütahya: Dumlupınar Üniversitesi Eğitim Bilimleri Enstitüsü.
  • Van Amerom, B. (2002). Reinvention of early algebra: Developmental research on the transition from arithmetic to algebra. Unpublished doctoral dissertation. The Netherlands: University of Utrecht.
  • Vance, J. (1998). Number operations from on algebraic perspective. Teaching Children Mathemetics, 4, 282‐285.
  • Van De Walle, J. A., Karp, K. S., & Bay-Williams, J. M. (2013). İlkokul ve Ortaokul Matematiği Gelişimsel Yaklaşımla Öğretim. (Çev. S. Durmuş). Ankara: Nobel Akademi Yayıncılık.
  • Warren, E., & Cooper, T. (2005). Introducing functional thinking in year 2: A case study of early algebra teaching. Contemporary Issues in Early Childhood, 6 (2), 150-162.
  • Warren, E., & Cooper, T. (2006). Using repeating patterns to explore functional thinking. Australian Primary Mathematics Classroom, 11 (1), 9-14.
  • Warren, E. A., Cooper, T. J., & Lamb, J. T. (2006). Investigating functional thinking in the elementary classroom: Foundations of early algebraic reasoning. Journal of Mathematical Behavior, 25, 208-223.
  • Williams, A. M., & Cooper, T. J., (2001). Moving From Arithmetic to Algebra Under The Time Pressures of Real Classrooms. In H. Chick, K. Stacey, J. Vincent, & J. Vincent (Eds.), Proceedings of the 12th ICMI Study Conference: The Future of the Teaching and Learning of Algebra (pp. 665-662). Melbourne: University of Melbourne.
  • Yıldırım, A. ve Şimşek, H. (2011). Sosyal Bilimlerde Nitel Araştırma Yöntemleri. Ankara: Seçkin Yayıncılık.
There are 39 citations in total.

Details

Primary Language Turkish
Subjects Studies on Education
Journal Section Makaleler
Authors

Özlem Doğan Temur

Sedat Turgut

Publication Date April 20, 2018
Published in Issue Year 2018 Volume: 14 Issue: 1

Cite

APA Doğan Temur, Ö., & Turgut, S. (2018). Sınıf Öğretmeni Adaylarının Erken Cebire Yönelik Farkındalıklarının İncelenmesi. Mersin Üniversitesi Eğitim Fakültesi Dergisi, 14(1), 35-53. https://doi.org/10.17860/mersinefd.290580

Once articles are published in the journal, the publishing rights belong to the journal. All articles published in the journal are licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license, which permits sharing by others.