Research Article
BibTex RIS Cite

Dondurarak kurutulmuş bal tozu üretimi; fizikokimyasal ve teknolojik özelliklerinin belirlenmesi

Year 2025, Volume: 14 Issue: 3, 1 - 1
https://doi.org/10.28948/ngumuh.1660966

Abstract

En yüksek bal içeriğine, en yüksek verime ve aynı zamanda iyi fizikokimyasal ve teknolojik özelliklere sahip bal tozu elde etmek için üç farklı taşıyıcı ajan (peynir altı suyu protein izolatı, maltodekstrin ve sığır jelatini) iki farklı bal: taşıyıcı oranı (60:40 ve 70:30) ve üç farklı besleme katı konsantrasyon oranı (%20, %30 ve %40 bal+taşıyıcı) parametreleri kullanılarak çalışılmıştır. Dondurarak kurutulmuş (liyofilize) örneklerde, düşük su aktivitesi (0.238), nem (%2.78), higroskopi (%13.05), Hausner oranı (HR) (1.049), Carr indeks (CI) (4.651) ve yüksek çözünürlük (32.5 saniye) parametreleri en iyi olan örnek, besleme çözeltisinin katı konsantrasyonunun (bal + taşıyıcı) %30 olduğu, bal:taşıyıcı oranının ise 60:40 olduğu formülasyonda taşıyıcı olarak maltodekstrinin kullanıldığı örnek grubu olarak belirlenmiştir. Higroskopitesi oldukça yüksek bir ürün olan balın taşıma, muhafaza ve ürün formülasyonlarında kullanılabilirliğini geliştirmek için toz formuna dönüştürülmesi önemlidir. Bu çalışma ile geliştirilen toz ürünlerin sütlü tatlılar, unlu mamüller ve şekerleme formülasyonlarında sakkaroza alternatif olabileceği düşünülmektedir.

Ethical Statement

Bu çalışmada herhangi bir insan veya hayvan deneyi yapılmamıştır.

Supporting Institution

Kırklareli Üniversitesi Gıda İhtisaslaşma Koordinatörlüğü

Project Number

BKOP_01

Thanks

Bu çalışma, Cumhurbaşkanlığı Strateji ve Bütçe Başkanlığı tarafından finanse edilen ve Yüksek Öğretim Kurumu tarafından koordine edilen Bölgesel Kalkınma Odaklı Misyon Farklılaşması ve İhtisaslaşma Programı kapsamında Kırklareli Üniversitesi Gıda İhtisaslaşma Koordinatörlüğü tarafından BKOP_01 nolu proje ile desteklenmiştir.

References

  • M.S. Ngalimat, R.N.Z.R.A. Rahman, M.T. Yusof, A. Syahir, S. Sabri. Characterisation of bacteria isolated from the stingless bee, Heterotrigona itama, honey, bee bread and propolis. PeerJ, 7, e7478, 2019. https://doi.org/10.7717/peerj.7478
  •    N.M. Nedić, M. Gojak, I. Zlatanović, N. Rudonja, K.B. Lazarević, M.S. Drazić, K. Gligorević, M.B. Pajić. Study of vacuum and freeze drying of bee honey. Thermal Science, 24, 6, 4241-4251, 2020. https://doi.org/10.2298/TSCI200317194N
  •    Y. Suhag, G.A. Nayik, I.K. Karabagias, V. Nanda. Development and characterization of a nutritionally rich spray-dried honey powder. Foods, 10, 1, 162, 2021. https://doi.org/10.3390/foods10010162
  •    M. Sramek, B. Woerz, H. Horn, J. Weiss, R. Kohlus. Preparation of high‐grade powders from honey–glucose syrup formulations by vacuum foam‐drying method. Journal of Food Processing and Preservation, 40, 4, 790-797, 2016. https://doi.org/10.1111/ jfpp.
  •    K. Samborska. Powdered honey–drying methods and parameters, types of carriers and drying aids, physicochemical properties and storage stability. Trends in food science & technology, 88, 133-142, 2019. https://doi.org/10.1016/j.tifs.2019.03.019
  •    R.C. Rivero, D.A. Archaina, C.M. Busquet, B.M.B. Coronel, V.M. Busch. Development of a honey-based powder ingredient using a mixture design: Botanical origin effect and hydration properties. LWT, 147, 111446, 2021. https://doi.org/10.1016/j.lwt.2021.
  •    L. Cantero, L. González-Ceballos, S. Vallejos, G. Puertas, M.A. Fernández-Muiño, M.T. Sancho, S.M. Osés. Impact of the Drying Procedure and Botanical Origin on the Physico-Chemical and Potentially Bioactive Properties of Honey Powders. Foods, 12, 21,
  •    Y. Suhag, V. Nanda. Optimisation of process parameters to develop nutritionally rich spray-dried honey powder with vitamin C content and antioxidant properties. International Journal of Food Science and Technology, 50, 8, 1771-1777, 2015. https://doi
  •    S.M. Osés, L. Cantero, G. Puertas, M.Á. Fernández-Muiño, M.T. Sancho. Antioxidant, antimicrobial and anti-inflammatory activities of ling-heather honey powder obtained by different methods with several carriers. LWT, 159, 113235 2022. https://doi.org
  • A. Keke, I. Cinkmanis. α-Amylase Activity in Freeze-Dried and Spray-Dried Honey. Research for Rural Development, 35, 2020. DOI: 10.22616/rrd.26.2020.017
  • C. Mutlu, A. Koç, M. Erbaş. Some physical properties and adsorption isotherms of vacuum-dried honey powder with different carrier materials. LWT, 134, 110166, 2020. https://doi.org/10.1016/j.lwt.2020. 110166
  • S.M. Osés, L. Cantero, M. Crespo, G. Puertas, L. González-Ceballos, S. Vallejos, M.Á. Fernández-Muiño, M.T. Sancho. Attributes of ling-heather honey powder obtained by different methods with several carriers. LWT, 150, 112063, 2021. https://doi.org/10.
  • Y.H. Roos. Glass transition temperature and its relevance in food processing. Annual review of food science and technology, 1, 1, 469-496, 2010. https://doi.org/10.1146/annurev.food.102308.124139
  • F. Fan, Y.H. Roos. Physicochemical properties, structural transformation, and relaxation time in strength analysis for honey powder models. Food research international, 122, 137-148, 2019. https://doi.org/10.1016/j.foodres.2019.04.003
  • K. Samborska, B. Bienkowska. Physicochemical properties of spray dried honey preparations. Zeszyty Problemowe Postępów Nauk Rolniczych, 575, 2013.
  • H. Umesh Hebbar, N. Rastogi, R. Subramanian. Properties of dried and intermediate moisture honey products: A review. International Journal of Food Properties, 11, 4, 804-819, 2008. https://doi.org/10.1080/10942910701624736
  • A.R. Jambrak, T.J. Mason, V. Lelas, L. Paniwnyk, Z. Herceg. Effect of ultrasound treatment on particle size and molecular weight of whey proteins. Journal of Food Engineering, 121, 15–23, 2014. http://dx.doi.org/10.1016/j.jfoodeng.2013.08.012
  • N. Castro, V. Durrieu, C. Raynaud, A. Rouilly. Influence of DE-value on the physicochemical properties ofmaltodextrin for melt extrusion processes. Carbohydrate Polymers, 144, 464–473, 2016. http://dx.doi.org/10.1016/j.carbpol.2016.03.004
  • A. Saxena, K. Sachin, H.B. Bohidar, A.K. Verma. Effect of molecular weight heterogeneity on drug encapsulation efficiency of gelatin nano-particles. Colloids and Surfaces B: Biointerfaces, 45, 42–48, 2005. https://doi.org/10.1016/j.colsurfb.2005.07.005
  • T.A. Ganaie, F. Masoodi, S.A. Rather, A. Gani. Exploiting maltodextrin and whey protein isolate macromolecules as carriers for the development of freeze dried honey powder. Carbohydrate Polymer Technologies and Applications, 2, 100040, 2021. https://do
  • D. Stagos, N. Soulitsiotis, C. Tsadila, S. Papaeconomou, C. Arvanitis, A. Ntontos, F. Karkanta, S. Adamou‑Androulaki, K. Petrotos, D.A. Spandidos. Antibacterial and antioxidant activity of different types of honey derived from Mount Olympus in Greece.
  • A. Keke, I. Cinkmanis. Comparison of individual phenolic compounds in freeze-dried and spray-dried honey powders. 187-191, 2022. UDC 638.162:547.56]:66.047.3
  • AOAC, Official Methods of Analysis, (Moisture in Nuts and Nuts Products), Association of Official Analytical Chemists, Washington, DC, USA. 1995.
  • S. Santhalakshmy, S.J.D. Bosco, S. Francis, M. Sabeena. Effect of inlet temperature on physicochemical properties of spray-dried jamun fruit juice powder. Powder Technology, 274, 37-43, 2015. https://doi.org/10.1016/j.powtec.2015.01.016
  • N. Jinapong, M. Suphantharika, P. Jamnong. Production of instant soymilk powders by ultrafiltration, spray drying and fluidized bed agglomeration. Journal of food engineering, 84, 2, 194-205, 2008. https://doi.org/10.1016/j.jfoodeng. 2007.04.032
  • K. Samborska, E. Langa, A. Kamińska-Dwórznicka, D. Witrowa-Rajchert. The influence of sodium caseinate on the physical properties of spray-dried honey. International Journal of Food Science and Technology, 50, 1, 256-262, 2015. https://doi.org/10.1111/
  • L.N. Ikhsan, K.-Y. Chin, F. Ahmad. Methods of the dehydration process and its effect on the physicochemical properties of stingless bee honey: a review. Molecules, 27, 21, 7243, 2022. https://doi.org/10.3390/molecules27217243
  • B. Nurhad, R. Andoyo, R. Indiarto. Study the properties of honey powder produced from spray drying and vacuum drying method. International Food Research Journal, 19, 3, 2012.
  • Y.H. Chen, W.C. Chuah, F.Y. Chye. Effect of drying on physicochemical and functional properties of stingless bee honey. Journal of Food Processing and Preservation, 45, 4, e15328, 2021. https://doi.org/10.1111/jfpp.15328
  • T. Tultabayeva, U. Chomanov, M. Tultabayev, A. Shoman, U. Zhumanova, R. Kasymbek, B. Tultebayev. Technology Improvement Obtaining Powdered Dried Honey. Eastern-European Journal of Enterprise Technologies, 124, 11, 2023. 10.15587/1729-4061.2023.285447
  • P. Schuck, E. Blanchard, A. Dolivet, S. Méjean, E. Onillon, R. Jeantet. Water activity and glass transition in dairy ingredients. Le Lait, 85, 4-5, 295-304, 2005. https://doi.org/10.1051/lait:2005020
  • F. Avaltroni, P.-E. Bouquerand, V. Normand. Maltodextrin molecular weight distribution influence on the glass transition temperature and viscosity in aqueous solutions. Carbohydrate Polymers, 58, 3, 323-334, 2024. https://doi.org/10.1016/j.carbpol. 200
  • P. Gabbott. A practical introduction to differential scanning calorimetry. Principles and applications of thermal analysis, 1-50, 2008. https://doi.org/10.1002/ 9780470697702

Production of freeze-dried honey powder; determination of its physicochemical and technological properties

Year 2025, Volume: 14 Issue: 3, 1 - 1
https://doi.org/10.28948/ngumuh.1660966

Abstract

In order to obtain honey powder with the highest honey content, the highest yield, and simultaneously good physicochemical and technological properties, three different carrier agents (whey protein isolate, maltodextrin, and bovine gelatin), two different honey-to-carrier ratios (60:40 and 70:30), and three different feed solid concentration ratios (20%, 30%, and 40% honey + carrier) were investigated. Among the freeze-dried (lyophilized) samples, the formulation in which maltodextrin was used as the carrier agent, with a feed solution solid concentration (honey + carrier) of 30% and a honey-to-carrier ratio of 60:40, was determined to be the optimal group. This formulation exhibited the best parameters, including low water activity (0.238), moisture content (2.78%), hygroscopicity (13.05%), Hausner ratio (HR) (1.049), Carr index (CI) (4.651), and high solubility (32.5 seconds). Given that honey is a highly hygroscopic product, its conversion into powder form is crucial for improving its transportation, storage, and usability in product formulations. The honey powder developed in this study is considered a potential alternative to sucrose in dairy desserts, bakery products, and confectionery formulations.

Project Number

BKOP_01

References

  • M.S. Ngalimat, R.N.Z.R.A. Rahman, M.T. Yusof, A. Syahir, S. Sabri. Characterisation of bacteria isolated from the stingless bee, Heterotrigona itama, honey, bee bread and propolis. PeerJ, 7, e7478, 2019. https://doi.org/10.7717/peerj.7478
  •    N.M. Nedić, M. Gojak, I. Zlatanović, N. Rudonja, K.B. Lazarević, M.S. Drazić, K. Gligorević, M.B. Pajić. Study of vacuum and freeze drying of bee honey. Thermal Science, 24, 6, 4241-4251, 2020. https://doi.org/10.2298/TSCI200317194N
  •    Y. Suhag, G.A. Nayik, I.K. Karabagias, V. Nanda. Development and characterization of a nutritionally rich spray-dried honey powder. Foods, 10, 1, 162, 2021. https://doi.org/10.3390/foods10010162
  •    M. Sramek, B. Woerz, H. Horn, J. Weiss, R. Kohlus. Preparation of high‐grade powders from honey–glucose syrup formulations by vacuum foam‐drying method. Journal of Food Processing and Preservation, 40, 4, 790-797, 2016. https://doi.org/10.1111/ jfpp.
  •    K. Samborska. Powdered honey–drying methods and parameters, types of carriers and drying aids, physicochemical properties and storage stability. Trends in food science & technology, 88, 133-142, 2019. https://doi.org/10.1016/j.tifs.2019.03.019
  •    R.C. Rivero, D.A. Archaina, C.M. Busquet, B.M.B. Coronel, V.M. Busch. Development of a honey-based powder ingredient using a mixture design: Botanical origin effect and hydration properties. LWT, 147, 111446, 2021. https://doi.org/10.1016/j.lwt.2021.
  •    L. Cantero, L. González-Ceballos, S. Vallejos, G. Puertas, M.A. Fernández-Muiño, M.T. Sancho, S.M. Osés. Impact of the Drying Procedure and Botanical Origin on the Physico-Chemical and Potentially Bioactive Properties of Honey Powders. Foods, 12, 21,
  •    Y. Suhag, V. Nanda. Optimisation of process parameters to develop nutritionally rich spray-dried honey powder with vitamin C content and antioxidant properties. International Journal of Food Science and Technology, 50, 8, 1771-1777, 2015. https://doi
  •    S.M. Osés, L. Cantero, G. Puertas, M.Á. Fernández-Muiño, M.T. Sancho. Antioxidant, antimicrobial and anti-inflammatory activities of ling-heather honey powder obtained by different methods with several carriers. LWT, 159, 113235 2022. https://doi.org
  • A. Keke, I. Cinkmanis. α-Amylase Activity in Freeze-Dried and Spray-Dried Honey. Research for Rural Development, 35, 2020. DOI: 10.22616/rrd.26.2020.017
  • C. Mutlu, A. Koç, M. Erbaş. Some physical properties and adsorption isotherms of vacuum-dried honey powder with different carrier materials. LWT, 134, 110166, 2020. https://doi.org/10.1016/j.lwt.2020. 110166
  • S.M. Osés, L. Cantero, M. Crespo, G. Puertas, L. González-Ceballos, S. Vallejos, M.Á. Fernández-Muiño, M.T. Sancho. Attributes of ling-heather honey powder obtained by different methods with several carriers. LWT, 150, 112063, 2021. https://doi.org/10.
  • Y.H. Roos. Glass transition temperature and its relevance in food processing. Annual review of food science and technology, 1, 1, 469-496, 2010. https://doi.org/10.1146/annurev.food.102308.124139
  • F. Fan, Y.H. Roos. Physicochemical properties, structural transformation, and relaxation time in strength analysis for honey powder models. Food research international, 122, 137-148, 2019. https://doi.org/10.1016/j.foodres.2019.04.003
  • K. Samborska, B. Bienkowska. Physicochemical properties of spray dried honey preparations. Zeszyty Problemowe Postępów Nauk Rolniczych, 575, 2013.
  • H. Umesh Hebbar, N. Rastogi, R. Subramanian. Properties of dried and intermediate moisture honey products: A review. International Journal of Food Properties, 11, 4, 804-819, 2008. https://doi.org/10.1080/10942910701624736
  • A.R. Jambrak, T.J. Mason, V. Lelas, L. Paniwnyk, Z. Herceg. Effect of ultrasound treatment on particle size and molecular weight of whey proteins. Journal of Food Engineering, 121, 15–23, 2014. http://dx.doi.org/10.1016/j.jfoodeng.2013.08.012
  • N. Castro, V. Durrieu, C. Raynaud, A. Rouilly. Influence of DE-value on the physicochemical properties ofmaltodextrin for melt extrusion processes. Carbohydrate Polymers, 144, 464–473, 2016. http://dx.doi.org/10.1016/j.carbpol.2016.03.004
  • A. Saxena, K. Sachin, H.B. Bohidar, A.K. Verma. Effect of molecular weight heterogeneity on drug encapsulation efficiency of gelatin nano-particles. Colloids and Surfaces B: Biointerfaces, 45, 42–48, 2005. https://doi.org/10.1016/j.colsurfb.2005.07.005
  • T.A. Ganaie, F. Masoodi, S.A. Rather, A. Gani. Exploiting maltodextrin and whey protein isolate macromolecules as carriers for the development of freeze dried honey powder. Carbohydrate Polymer Technologies and Applications, 2, 100040, 2021. https://do
  • D. Stagos, N. Soulitsiotis, C. Tsadila, S. Papaeconomou, C. Arvanitis, A. Ntontos, F. Karkanta, S. Adamou‑Androulaki, K. Petrotos, D.A. Spandidos. Antibacterial and antioxidant activity of different types of honey derived from Mount Olympus in Greece.
  • A. Keke, I. Cinkmanis. Comparison of individual phenolic compounds in freeze-dried and spray-dried honey powders. 187-191, 2022. UDC 638.162:547.56]:66.047.3
  • AOAC, Official Methods of Analysis, (Moisture in Nuts and Nuts Products), Association of Official Analytical Chemists, Washington, DC, USA. 1995.
  • S. Santhalakshmy, S.J.D. Bosco, S. Francis, M. Sabeena. Effect of inlet temperature on physicochemical properties of spray-dried jamun fruit juice powder. Powder Technology, 274, 37-43, 2015. https://doi.org/10.1016/j.powtec.2015.01.016
  • N. Jinapong, M. Suphantharika, P. Jamnong. Production of instant soymilk powders by ultrafiltration, spray drying and fluidized bed agglomeration. Journal of food engineering, 84, 2, 194-205, 2008. https://doi.org/10.1016/j.jfoodeng. 2007.04.032
  • K. Samborska, E. Langa, A. Kamińska-Dwórznicka, D. Witrowa-Rajchert. The influence of sodium caseinate on the physical properties of spray-dried honey. International Journal of Food Science and Technology, 50, 1, 256-262, 2015. https://doi.org/10.1111/
  • L.N. Ikhsan, K.-Y. Chin, F. Ahmad. Methods of the dehydration process and its effect on the physicochemical properties of stingless bee honey: a review. Molecules, 27, 21, 7243, 2022. https://doi.org/10.3390/molecules27217243
  • B. Nurhad, R. Andoyo, R. Indiarto. Study the properties of honey powder produced from spray drying and vacuum drying method. International Food Research Journal, 19, 3, 2012.
  • Y.H. Chen, W.C. Chuah, F.Y. Chye. Effect of drying on physicochemical and functional properties of stingless bee honey. Journal of Food Processing and Preservation, 45, 4, e15328, 2021. https://doi.org/10.1111/jfpp.15328
  • T. Tultabayeva, U. Chomanov, M. Tultabayev, A. Shoman, U. Zhumanova, R. Kasymbek, B. Tultebayev. Technology Improvement Obtaining Powdered Dried Honey. Eastern-European Journal of Enterprise Technologies, 124, 11, 2023. 10.15587/1729-4061.2023.285447
  • P. Schuck, E. Blanchard, A. Dolivet, S. Méjean, E. Onillon, R. Jeantet. Water activity and glass transition in dairy ingredients. Le Lait, 85, 4-5, 295-304, 2005. https://doi.org/10.1051/lait:2005020
  • F. Avaltroni, P.-E. Bouquerand, V. Normand. Maltodextrin molecular weight distribution influence on the glass transition temperature and viscosity in aqueous solutions. Carbohydrate Polymers, 58, 3, 323-334, 2024. https://doi.org/10.1016/j.carbpol. 200
  • P. Gabbott. A practical introduction to differential scanning calorimetry. Principles and applications of thermal analysis, 1-50, 2008. https://doi.org/10.1002/ 9780470697702
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Articles
Authors

Şeyda Yanardağ Karabulut 0000-0002-9649-5874

Gülce Bedis Kaynarca 0000-0001-7896-457X

Hatice Şanlıdere Aloğlu 0000-0001-6004-0694

Harun Uran 0000-0002-3161-6698

Project Number BKOP_01
Early Pub Date May 23, 2025
Publication Date
Submission Date March 19, 2025
Acceptance Date April 17, 2025
Published in Issue Year 2025 Volume: 14 Issue: 3

Cite

APA Yanardağ Karabulut, Ş., Kaynarca, G. B., Şanlıdere Aloğlu, H., Uran, H. (2025). Dondurarak kurutulmuş bal tozu üretimi; fizikokimyasal ve teknolojik özelliklerinin belirlenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(3), 1-1. https://doi.org/10.28948/ngumuh.1660966
AMA Yanardağ Karabulut Ş, Kaynarca GB, Şanlıdere Aloğlu H, Uran H. Dondurarak kurutulmuş bal tozu üretimi; fizikokimyasal ve teknolojik özelliklerinin belirlenmesi. NOHU J. Eng. Sci. May 2025;14(3):1-1. doi:10.28948/ngumuh.1660966
Chicago Yanardağ Karabulut, Şeyda, Gülce Bedis Kaynarca, Hatice Şanlıdere Aloğlu, and Harun Uran. “Dondurarak Kurutulmuş Bal Tozu üretimi; Fizikokimyasal Ve Teknolojik özelliklerinin Belirlenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, no. 3 (May 2025): 1-1. https://doi.org/10.28948/ngumuh.1660966.
EndNote Yanardağ Karabulut Ş, Kaynarca GB, Şanlıdere Aloğlu H, Uran H (May 1, 2025) Dondurarak kurutulmuş bal tozu üretimi; fizikokimyasal ve teknolojik özelliklerinin belirlenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 3 1–1.
IEEE Ş. Yanardağ Karabulut, G. B. Kaynarca, H. Şanlıdere Aloğlu, and H. Uran, “Dondurarak kurutulmuş bal tozu üretimi; fizikokimyasal ve teknolojik özelliklerinin belirlenmesi”, NOHU J. Eng. Sci., vol. 14, no. 3, pp. 1–1, 2025, doi: 10.28948/ngumuh.1660966.
ISNAD Yanardağ Karabulut, Şeyda et al. “Dondurarak Kurutulmuş Bal Tozu üretimi; Fizikokimyasal Ve Teknolojik özelliklerinin Belirlenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/3 (May 2025), 1-1. https://doi.org/10.28948/ngumuh.1660966.
JAMA Yanardağ Karabulut Ş, Kaynarca GB, Şanlıdere Aloğlu H, Uran H. Dondurarak kurutulmuş bal tozu üretimi; fizikokimyasal ve teknolojik özelliklerinin belirlenmesi. NOHU J. Eng. Sci. 2025;14:1–1.
MLA Yanardağ Karabulut, Şeyda et al. “Dondurarak Kurutulmuş Bal Tozu üretimi; Fizikokimyasal Ve Teknolojik özelliklerinin Belirlenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 14, no. 3, 2025, pp. 1-1, doi:10.28948/ngumuh.1660966.
Vancouver Yanardağ Karabulut Ş, Kaynarca GB, Şanlıdere Aloğlu H, Uran H. Dondurarak kurutulmuş bal tozu üretimi; fizikokimyasal ve teknolojik özelliklerinin belirlenmesi. NOHU J. Eng. Sci. 2025;14(3):1-.

download