An Overview of the Epistemological Link between Mathematical Thinking and Computational Thinking from Theory to Practice
Year 2025,
Issue: 64, 123 - 149, 19.05.2025
Behiye Dinçer Aksoy
,
Berna Cantürk Günhan
,
Filiz Mumcu
Abstract
Mathematical thinking is critical to the maintenance of daily life and the development of science. This study examines the epistemological connection between mathematical and Computational Thinking (CT). Since CT involves the problem-solving process through thinking and computer science tools, it is thought to have an important relationship with mathematical thinking. In order to understand this relationship, mathematical modeling problems are addressed from a cognitive perspective in this study. Using a case study, a conceptual framework was developed by examining studies that attempt to integrate CT into mathematics education. In line with the framework, a professional development course was prepared and administered to a mathematics teacher. Subsequently, the relationship between the cognitive processes in the modeling process and the components of CT was examined. The study's findings revealed that (a) considering abstraction in the context of Piaget's abstraction theory is a more effective approach for understanding mathematical thinking, (b) more than one CT component can be identified at each stage of the modeling process, and no single component can be exclusively associated with a single stage, and (c) common and distinct thinking processes between mathematical thinking and CT were uncovered. These findings contribute to a more nuanced comprehension of the intricate interrelationships between mathematical thinking and cognitive flexibility.
References
-
Aktaş, S. E. (2022). Investigation of mathematics teacher candidates' mental actions related to information processing thinking in the process of technology supported mathematical modeling [Master's Thesis, Pamukkale University] National Thesis Center.
-
Anđić, B., Mumcu, F., Tejera, M., Schmidthaler, E., & Lavicza, Z. (2023). Unplugging math: Integrating computational thinking into mathematics education through poly-universe. In M. De Rossi, L. Hadjileontiadou, & A. Ottaviano (Eds.), Proceedings of the Conference on Smart Learning Ecosystems and Regional Development (pp. 247–263). Springer. https://doi.org/10.1007/978-981-99-5540-4_15
-
Barcelos, T. S., & Silveira, I. F. (2012). Teaching computational thinking in initial series: An analysis of the confluence among mathematics and computer sciences in elementary education and its implications for higher education. In Proceedings of the XXXVIII Conferencia Latinoamericana en Informática (CLEI) (pp. 1–8). IEEE.
-
Barefoot. (2014). Computational thinking. Barefoot.https://barefootcas.org.uk/ barefoot-primary-computing-resources/concepts/computational-thinking/
-
Barr, D., Harrison, J., & Conery, L. (2011). Computational thinking: A digital age skill for everyone. Learning & Leading with Technology, 38(6), 20-23.
-
Blum, W., & Niss, M. (1989). Mathematical problem solving, modelling, applications, and links to other subjects: State, trends, and issues in mathematics instruction. In W. Blum, M. Niss, & I. Huntley (Eds.), Modelling, applications and applied problem solving (pp. 1–21). Ellis Horwood.
-
Borromeo Ferri, R. (2010). On the influence of mathematical thinking styles on learners’ modeling behavior. Journal für Mathematik-Didaktik, 31(1), 99-118.
-
Bråting, K., & Kilhamn, C. (2021). Exploring the intersection of algebraic and computational thinking. Mathematical Thinking and Learning, 23(2), 170–185.
-
Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. Proceedings of the 2012 Annual Meeting of the American Educational Research Association (Vol. 1, p. 25). AERA.
-
Cansu, F. K., & Cansu, S. K. (2019). An overview of computational thinking. International Journal of Computer Science Education in Schools, 3(1), 17-30.
-
Çetin, I., & Dubinsky, E. (2017). Reflective abstraction in computational thinking. The Journal of Mathematical Behavior, 47, 70–80.
-
CSTA & ISTE. (2011). Computational thinking in K–12 education leadership toolkit.http://csta.acm.org/Curriculum/sub/CurrFiles/471.11CTLeadershiptToolkit-SP-vF.pdf
-
Cui, Z., & Ng, O. L. (2021). The interplay between mathematical and computational thinking in primary school students’ mathematical problem-solving within a programming environment. Journal of Educational Computing Research, 59(5), 988-1012.
-
Çelik, D. (2016). Matematiksel düşünme. In E. Bingölbali, S. Arslan & I. Zembat (Eds.), Matematik eğitiminde teoriler (pp. 17–42). Pegem Akademi.
-
Deniz, G. (2020). The effect of using tinkercad in programming education on students' information processing thinking skills and perceptions [Master's Thesis, Gazi University]. National Thesis Center.
-
Denning, P. J. (2009). The profession of IT Beyond computational thinking. Communications of the ACM, 52(6), 28-30.
-
Doruk, K. B., & Umay, A. (2011). Matematiği günlük yaşama transfer etmede matematiksel modellemenin etkisi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 41(41), 124-135.
-
Dreyfus, T. (2002). Advanced mathematical thinking processes. In D. Tall (Ed.), Advanced mathematical thinking (Vol. 11, pp. 25–41). Springer. https://doi.org/10.1007/0-306-47203-1_2
-
Dubinsky, E. (1991). Constructive aspects of reflective abstraction in advanced mathematics. In A. Hirst & K. Hirst (Eds.), Epistemological foundations of mathematical experience (pp. 160–187). Springer-Verlag.
-
Ferri, R. B. (2006). Theoretical and empirical differentiations of phases in the modelling process. ZDM, 38, 86-95.
-
Ferri, R. B. (2007). Modelling problems from a cognitive perspective. In Mathematical Modelling (pp. 260-270). Woodhead Publishing.
-
Freudenthal, H. (1973). Mathematics as an educational task. D. Reidel Publishing Company.
-
Furber, S. (2012). Shut down or restart? The way forward for computing in UK schools. The Royal Society. https://royalsociety.org/education/ policy/ computing-in-schools/report/
-
Gleasman, C., & Kim, C. (2020). Pre-service teacher’s use of block-based programming and computational thinking to teach elementary mathematics. Digital Experiences in Mathematics Education, 6, 52-90.
-
Gray, E., & Tall, D. (1991). Duality, ambiguity, and flexibility in successful mathematical thinking. In Proceedings of the 18th Annual Meeting of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 72–79). PME.
-
Güç, F. A., & Baki, A. (2016). Matematiksel Modelleme Yeterliklerini Geliştirme ve Değerlendirme Yaklaşımlarının Sınıflandırılması 1. Turkish Journal of Computer and Mathematics Education, 7(3), 621.
-
Gülbahar, Y. (2017). Bilgi işlemsel düşünme ve programlama konusunda değişim ve dönüşümler. In Y. Gülbahar (Ed.), Bilgi işlemsel düşünmeden programlamaya (pp. 395–410). Pegem Akademi.
-
Hemmendinger, D. (2010). A plea for modesty. ACM Inroads, 1(2), 4–7. https://doi.org/10.1145/1805724.1805725
-
Hershkowitz, R., Schwarz, B. B., & Dreyfus, T. (2001). Abstraction in context: Epistemic actions. Journal for Research in Mathematics Education, 32(2), 195-222.
-
Hıdıroğlu, Ç. N., & Güzel, E. B. (2013). Matematiksel modelleme sürecini açıklayan farklı yaklaşımlar. Bartın Üniversitesi Eğitim Fakültesi Dergisi.
-
Huang, W., Deng, Z., & Rongsheng, D. (2009). Programming courses teaching method for ability enhancement of computational thinking. In 2009 International Association of Computer Science and Information Technology-Spring Conference (pp. 182–185). IEEE.
-
Humphreys, S. (2015). Computational thinking: A guide for teachers. Computing at School. Charlotte BCS: The Chartered Institute for IT.
-
Isoda, M., & Katagiri, S. (2012). Introductory chapter: Problem solving approach to develop mathematical thinking. In M. Isoda & S. Katagiri (Eds.), Mathematical thinking: How to develop it in the classroom (pp. 1–28). World Scientific.
-
ISTE (2016). Computational thinking teacher resources. https://csta.acm.org/Curriculum/sub/CurrFiles/472.11CTTeacherResources_2ed-SPvF.pdf.
-
Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modelling in mathematics education. ZDM, 38(4), 302–310.
-
Kalelioglu, F., Gulbahar, Y., & Kukul, V. (2016). A framework for computational thinking based on a systematic research review. Baltic Journal of Modern Computing, 4(3), 583–596.
-
Kallia, M., van Borkulo, S. P., Drijvers, P., Barendsen, E., & Tolboom, J. (2021). Characterising computational thinking in mathematics education: a literature-informed Delphi study. Research in Mathematics Education, 23(2), 159-187.
-
Kaup, C. F. (2022). Mapping the relations between computational thinking and mathematics in terms of problem-solving. Acta Didactica Norden, 16(4), 9185.
-
Kilhamn, C., Bråting, K., Helenius, O., & Mason, J. (2022). Variables in early algebra: exploring didactic potentials in programming activities. ZDM–Mathematics Education, 54(6), 1273-1288.
-
Lesh, R., & Lehrer, R. (2003). Models and modeling perspectives on the development of students and teachers. Mathematical Thinking and Learning, 5(2-3), 109-129.
-
Li, Y., Schoenfeld, A. H., diSessa, A. A., Graesser, A. C., Benson, L. C., English, L. D., & Duschl, R. A. (2020). Computational thinking is more about thinking than computing. Journal for STEM Education Research, 3, 1-18.
-
Liu, J., & Wang, L. (2010). Notice of retraction: Computational thinking in discrete mathematics. In 2010 Second International Workshop on Education Technology and Computer Science (Vol. 1, pp. 413–416). IEEE
-
Lu, J. J., & Fletcher, G. H. (2009). Thinking about computational thinking. In Proceedings of the 40th ACM Technical Symposium on Computer Science Education (pp. 260–264). ACM.
-
Mason, J., Burton, L., & Stacey, K. (2010). Thinking mathematically (Second Edition). Pearson Education Limited.
-
Mumcu, F., Bardakçı, S., & Lavicza, Z. (2023). Reimagining STEM: Booming computer science education as a component of STEM education. In Z. Lavicza, I. F. Rahmadi, S. Arkün-Kocadere, & K. Fenyvesi (Eds.), STEAM-BOX: Empowering educators to integrate transdisciplinary STEAM practices in schools (pp. 72–92). Johannes Kepler Universität Linz. https://doi.org/10.35011/9783903480032
-
Mumcu, F., Kidiman, E., & Özdinç, F. (2023). Integrating Computational Thinking into Mathematics Education through an Unplugged Computer Science Activity. Journal of Pedagogical Research, 7(2), 72-92.
-
Piaget, J. (2001). In (R.L. Campell, Ed.) Studies in reflecting abstraction (1st ed.). Psychology Press. https://doi.org/10.4324/9781315800509
-
Pólya, G. (1945). How to Solve It, Princeton University Press.
-
Román-González, M., Pérez-González, J. C., & Jiménez-Fernández, C. (2017). Which cognitive abilities underlie computational thinking? Criterion validity of the Computational Thinking Test. Computers in human behavior, 72, 678-691.
-
Sarıtepeci, M., & Durak, H. (2017). Analyzing the effect of block and robotic coding activities on computational thinking in programming education. In I. Koleva & G. Duman (Eds.), Educational research and practice (pp. 490–501). St. Kliment Ohridski University Press.
-
Schoenfeld, A. H. (1982). Measures of problem-solving performance and of problem-solving instruction. Journal for Research in Mathematics Education, 13(1), 31-49.
-
Selby, C., & Woollard, J. (2013). Computational thinking: The developing definition. In Proceedings of the Special Interest Group on Computer Science Education (SIGCSE).
-
Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research Review, 22, 142-158.
-
Sneider, C., Stephenson, C., Schafer, B., & Flick, L. (2014). Exploring the science framework and NGSS: Computational thinking in the science classroom. Science Scope, 38(3), 10.
-
Tall, D. (1995). Cognitive growth in elementary and advanced mathematical thinking. In L. Meira & D. Carraher (Eds.), Proceedings of the 19th International Conference for the Psychology of Mathematics Education (Vol. 1, pp. 1–61).
-
Tall, D. (1999). Reflections on APOS theory in elementary and advanced mathematical thinking. In Proceedings of the 23 rd Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 148-155).
-
Tekdal, M. (2021). Trends and development in research on computational thinking. Education and Information Technologies, 26(5), 6499-6529.
-
Van Oers, B. (2001). Contextualisation for abstraction. Cognitive Science Quarterly, 1(3), 279-305.
-
Wing, J. (2011). Research notebook: Computational thinking-What and why. The Link Magazine, 6, 20-23.
-
Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.
-
Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1881), 3717-3725.
-
Wing, J. M. (2014, January 10). Computational thinking benefits society. 40th Anniversary Blog Of Social İssues in Computing. http://socialissues.cs.toronto.edu/index.html%3Fp=279.html
-
Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, J. T. (2014). Computational thinking in elementary and secondary teacher education. ACM Transactions on Computing Education (TOCE), 14(1), 1-16.
-
Yeşildere, S., & Türnüklü, E. B. (2008). Investigation of knowledge construction processes of primary eighth grade students according to their mathematical strengths. Journal of Uludag University Faculty of Education, 21(2), 485-510.
-
Yıldırım, A., & Şimşek, H. (2008). Sosyal bilimlerde nitel araştırma yöntemleri. Seçkin Yayınevi.
-
Yıldız, B. (2017). Disiplinlerarası öğretim yaklaşımı: Bilgi işlemsel düşünme ve FeTeMM. In Y. Gülbahar (Ed.), Bilgi işlemsel düşünmeden programlamaya (pp. 319–336). Pegem Akademi.
-
Zembat, I. (2016). Piaget’ye göre soyutlama ve çeşitleri. In E. Bingölbali, S. Arslan, & I. Zembat (Eds.), Matematik eğitiminde teoriler (pp. 448-458). Pegem Akademi.
Matematiksel Düşünme ve Bilgi İşlemsel Düşünmenin Epistemolojik Bağlantısına Kuramdan Uygulamaya Bir Bakış
Year 2025,
Issue: 64, 123 - 149, 19.05.2025
Behiye Dinçer Aksoy
,
Berna Cantürk Günhan
,
Filiz Mumcu
Abstract
Matematiksel düşünme, günlük yaşamın sürdürülmesinde ve bilimin gelişiminde kritik bir öneme sahiptir. Bu çalışmada, matematiksel düşünme ile Bilgi İşlemsel Düşünme (BİD) arasındaki epistemolojik bağlantı incelenmektedir. Çünkü BİD, problem çözme sürecini düşünme biçimi ve bilgisayar bilimi araçlarıyla ele aldığı için, matematiksel düşünmeyle önemli bir ilişkiye sahip olduğu düşünülmektedir. Bu ilişkinin anlaşılması için, çalışmada matematiksel modelleme problemleri bilişsel perspektifle ele alınmıştır. Durum çalışması araştırma deseni kullanılarak, matematik eğitimine BİD'i entegre etmeye çalışan çalışmalar incelenmiş ve bir kavramsal çerçeve oluşturulmuştur. Oluşturulan çerçeve doğrultusunda bir mesleki gelişim kursu hazırlanmış ve bir matematik öğretmenine uygulanmıştır. Böylece modelleme sürecindeki bilişsel süreçler ile BİD bileşenleri arasındaki ilişki incelenmiştir. Araştırmanın bulgularına göre, (a) soyutlamanın Piaget’in soyutlama teorisi bağlamında ele alınmasının matematiksel düşünmeyi anlamada daha etkili olduğu, (b) modelleme sürecinde birden fazla BİD bileşeninin her aşamada açığa çıkabileceği ve herhangi bir bileşenin tek bir aşama ile ilişkilendirilemeyeceği belirlenmiş, (c) matematiksel düşünme ile BİD arasındaki ortak ve farklı düşünme süreçleri ortaya konmuştur. Bu bulgular, matematiksel düşünme ve BİD arasındaki karmaşık ilişkilerin daha derinlemesine anlaşılmasına katkı sağlamaktadır.
Ethical Statement
Bu araştırma, Dokuz Eylül Üniversitesi Bilimsel Araştırma ve Yayın Etiği Sosyal ve Beşeri Bilimler kurulunun 21/11/2023 tarihli E-87347630-659-806813 sayılı kararı ile alınan izinle yürütülmüştür.
References
-
Aktaş, S. E. (2022). Investigation of mathematics teacher candidates' mental actions related to information processing thinking in the process of technology supported mathematical modeling [Master's Thesis, Pamukkale University] National Thesis Center.
-
Anđić, B., Mumcu, F., Tejera, M., Schmidthaler, E., & Lavicza, Z. (2023). Unplugging math: Integrating computational thinking into mathematics education through poly-universe. In M. De Rossi, L. Hadjileontiadou, & A. Ottaviano (Eds.), Proceedings of the Conference on Smart Learning Ecosystems and Regional Development (pp. 247–263). Springer. https://doi.org/10.1007/978-981-99-5540-4_15
-
Barcelos, T. S., & Silveira, I. F. (2012). Teaching computational thinking in initial series: An analysis of the confluence among mathematics and computer sciences in elementary education and its implications for higher education. In Proceedings of the XXXVIII Conferencia Latinoamericana en Informática (CLEI) (pp. 1–8). IEEE.
-
Barefoot. (2014). Computational thinking. Barefoot.https://barefootcas.org.uk/ barefoot-primary-computing-resources/concepts/computational-thinking/
-
Barr, D., Harrison, J., & Conery, L. (2011). Computational thinking: A digital age skill for everyone. Learning & Leading with Technology, 38(6), 20-23.
-
Blum, W., & Niss, M. (1989). Mathematical problem solving, modelling, applications, and links to other subjects: State, trends, and issues in mathematics instruction. In W. Blum, M. Niss, & I. Huntley (Eds.), Modelling, applications and applied problem solving (pp. 1–21). Ellis Horwood.
-
Borromeo Ferri, R. (2010). On the influence of mathematical thinking styles on learners’ modeling behavior. Journal für Mathematik-Didaktik, 31(1), 99-118.
-
Bråting, K., & Kilhamn, C. (2021). Exploring the intersection of algebraic and computational thinking. Mathematical Thinking and Learning, 23(2), 170–185.
-
Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. Proceedings of the 2012 Annual Meeting of the American Educational Research Association (Vol. 1, p. 25). AERA.
-
Cansu, F. K., & Cansu, S. K. (2019). An overview of computational thinking. International Journal of Computer Science Education in Schools, 3(1), 17-30.
-
Çetin, I., & Dubinsky, E. (2017). Reflective abstraction in computational thinking. The Journal of Mathematical Behavior, 47, 70–80.
-
CSTA & ISTE. (2011). Computational thinking in K–12 education leadership toolkit.http://csta.acm.org/Curriculum/sub/CurrFiles/471.11CTLeadershiptToolkit-SP-vF.pdf
-
Cui, Z., & Ng, O. L. (2021). The interplay between mathematical and computational thinking in primary school students’ mathematical problem-solving within a programming environment. Journal of Educational Computing Research, 59(5), 988-1012.
-
Çelik, D. (2016). Matematiksel düşünme. In E. Bingölbali, S. Arslan & I. Zembat (Eds.), Matematik eğitiminde teoriler (pp. 17–42). Pegem Akademi.
-
Deniz, G. (2020). The effect of using tinkercad in programming education on students' information processing thinking skills and perceptions [Master's Thesis, Gazi University]. National Thesis Center.
-
Denning, P. J. (2009). The profession of IT Beyond computational thinking. Communications of the ACM, 52(6), 28-30.
-
Doruk, K. B., & Umay, A. (2011). Matematiği günlük yaşama transfer etmede matematiksel modellemenin etkisi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 41(41), 124-135.
-
Dreyfus, T. (2002). Advanced mathematical thinking processes. In D. Tall (Ed.), Advanced mathematical thinking (Vol. 11, pp. 25–41). Springer. https://doi.org/10.1007/0-306-47203-1_2
-
Dubinsky, E. (1991). Constructive aspects of reflective abstraction in advanced mathematics. In A. Hirst & K. Hirst (Eds.), Epistemological foundations of mathematical experience (pp. 160–187). Springer-Verlag.
-
Ferri, R. B. (2006). Theoretical and empirical differentiations of phases in the modelling process. ZDM, 38, 86-95.
-
Ferri, R. B. (2007). Modelling problems from a cognitive perspective. In Mathematical Modelling (pp. 260-270). Woodhead Publishing.
-
Freudenthal, H. (1973). Mathematics as an educational task. D. Reidel Publishing Company.
-
Furber, S. (2012). Shut down or restart? The way forward for computing in UK schools. The Royal Society. https://royalsociety.org/education/ policy/ computing-in-schools/report/
-
Gleasman, C., & Kim, C. (2020). Pre-service teacher’s use of block-based programming and computational thinking to teach elementary mathematics. Digital Experiences in Mathematics Education, 6, 52-90.
-
Gray, E., & Tall, D. (1991). Duality, ambiguity, and flexibility in successful mathematical thinking. In Proceedings of the 18th Annual Meeting of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 72–79). PME.
-
Güç, F. A., & Baki, A. (2016). Matematiksel Modelleme Yeterliklerini Geliştirme ve Değerlendirme Yaklaşımlarının Sınıflandırılması 1. Turkish Journal of Computer and Mathematics Education, 7(3), 621.
-
Gülbahar, Y. (2017). Bilgi işlemsel düşünme ve programlama konusunda değişim ve dönüşümler. In Y. Gülbahar (Ed.), Bilgi işlemsel düşünmeden programlamaya (pp. 395–410). Pegem Akademi.
-
Hemmendinger, D. (2010). A plea for modesty. ACM Inroads, 1(2), 4–7. https://doi.org/10.1145/1805724.1805725
-
Hershkowitz, R., Schwarz, B. B., & Dreyfus, T. (2001). Abstraction in context: Epistemic actions. Journal for Research in Mathematics Education, 32(2), 195-222.
-
Hıdıroğlu, Ç. N., & Güzel, E. B. (2013). Matematiksel modelleme sürecini açıklayan farklı yaklaşımlar. Bartın Üniversitesi Eğitim Fakültesi Dergisi.
-
Huang, W., Deng, Z., & Rongsheng, D. (2009). Programming courses teaching method for ability enhancement of computational thinking. In 2009 International Association of Computer Science and Information Technology-Spring Conference (pp. 182–185). IEEE.
-
Humphreys, S. (2015). Computational thinking: A guide for teachers. Computing at School. Charlotte BCS: The Chartered Institute for IT.
-
Isoda, M., & Katagiri, S. (2012). Introductory chapter: Problem solving approach to develop mathematical thinking. In M. Isoda & S. Katagiri (Eds.), Mathematical thinking: How to develop it in the classroom (pp. 1–28). World Scientific.
-
ISTE (2016). Computational thinking teacher resources. https://csta.acm.org/Curriculum/sub/CurrFiles/472.11CTTeacherResources_2ed-SPvF.pdf.
-
Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modelling in mathematics education. ZDM, 38(4), 302–310.
-
Kalelioglu, F., Gulbahar, Y., & Kukul, V. (2016). A framework for computational thinking based on a systematic research review. Baltic Journal of Modern Computing, 4(3), 583–596.
-
Kallia, M., van Borkulo, S. P., Drijvers, P., Barendsen, E., & Tolboom, J. (2021). Characterising computational thinking in mathematics education: a literature-informed Delphi study. Research in Mathematics Education, 23(2), 159-187.
-
Kaup, C. F. (2022). Mapping the relations between computational thinking and mathematics in terms of problem-solving. Acta Didactica Norden, 16(4), 9185.
-
Kilhamn, C., Bråting, K., Helenius, O., & Mason, J. (2022). Variables in early algebra: exploring didactic potentials in programming activities. ZDM–Mathematics Education, 54(6), 1273-1288.
-
Lesh, R., & Lehrer, R. (2003). Models and modeling perspectives on the development of students and teachers. Mathematical Thinking and Learning, 5(2-3), 109-129.
-
Li, Y., Schoenfeld, A. H., diSessa, A. A., Graesser, A. C., Benson, L. C., English, L. D., & Duschl, R. A. (2020). Computational thinking is more about thinking than computing. Journal for STEM Education Research, 3, 1-18.
-
Liu, J., & Wang, L. (2010). Notice of retraction: Computational thinking in discrete mathematics. In 2010 Second International Workshop on Education Technology and Computer Science (Vol. 1, pp. 413–416). IEEE
-
Lu, J. J., & Fletcher, G. H. (2009). Thinking about computational thinking. In Proceedings of the 40th ACM Technical Symposium on Computer Science Education (pp. 260–264). ACM.
-
Mason, J., Burton, L., & Stacey, K. (2010). Thinking mathematically (Second Edition). Pearson Education Limited.
-
Mumcu, F., Bardakçı, S., & Lavicza, Z. (2023). Reimagining STEM: Booming computer science education as a component of STEM education. In Z. Lavicza, I. F. Rahmadi, S. Arkün-Kocadere, & K. Fenyvesi (Eds.), STEAM-BOX: Empowering educators to integrate transdisciplinary STEAM practices in schools (pp. 72–92). Johannes Kepler Universität Linz. https://doi.org/10.35011/9783903480032
-
Mumcu, F., Kidiman, E., & Özdinç, F. (2023). Integrating Computational Thinking into Mathematics Education through an Unplugged Computer Science Activity. Journal of Pedagogical Research, 7(2), 72-92.
-
Piaget, J. (2001). In (R.L. Campell, Ed.) Studies in reflecting abstraction (1st ed.). Psychology Press. https://doi.org/10.4324/9781315800509
-
Pólya, G. (1945). How to Solve It, Princeton University Press.
-
Román-González, M., Pérez-González, J. C., & Jiménez-Fernández, C. (2017). Which cognitive abilities underlie computational thinking? Criterion validity of the Computational Thinking Test. Computers in human behavior, 72, 678-691.
-
Sarıtepeci, M., & Durak, H. (2017). Analyzing the effect of block and robotic coding activities on computational thinking in programming education. In I. Koleva & G. Duman (Eds.), Educational research and practice (pp. 490–501). St. Kliment Ohridski University Press.
-
Schoenfeld, A. H. (1982). Measures of problem-solving performance and of problem-solving instruction. Journal for Research in Mathematics Education, 13(1), 31-49.
-
Selby, C., & Woollard, J. (2013). Computational thinking: The developing definition. In Proceedings of the Special Interest Group on Computer Science Education (SIGCSE).
-
Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research Review, 22, 142-158.
-
Sneider, C., Stephenson, C., Schafer, B., & Flick, L. (2014). Exploring the science framework and NGSS: Computational thinking in the science classroom. Science Scope, 38(3), 10.
-
Tall, D. (1995). Cognitive growth in elementary and advanced mathematical thinking. In L. Meira & D. Carraher (Eds.), Proceedings of the 19th International Conference for the Psychology of Mathematics Education (Vol. 1, pp. 1–61).
-
Tall, D. (1999). Reflections on APOS theory in elementary and advanced mathematical thinking. In Proceedings of the 23 rd Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 148-155).
-
Tekdal, M. (2021). Trends and development in research on computational thinking. Education and Information Technologies, 26(5), 6499-6529.
-
Van Oers, B. (2001). Contextualisation for abstraction. Cognitive Science Quarterly, 1(3), 279-305.
-
Wing, J. (2011). Research notebook: Computational thinking-What and why. The Link Magazine, 6, 20-23.
-
Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.
-
Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1881), 3717-3725.
-
Wing, J. M. (2014, January 10). Computational thinking benefits society. 40th Anniversary Blog Of Social İssues in Computing. http://socialissues.cs.toronto.edu/index.html%3Fp=279.html
-
Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, J. T. (2014). Computational thinking in elementary and secondary teacher education. ACM Transactions on Computing Education (TOCE), 14(1), 1-16.
-
Yeşildere, S., & Türnüklü, E. B. (2008). Investigation of knowledge construction processes of primary eighth grade students according to their mathematical strengths. Journal of Uludag University Faculty of Education, 21(2), 485-510.
-
Yıldırım, A., & Şimşek, H. (2008). Sosyal bilimlerde nitel araştırma yöntemleri. Seçkin Yayınevi.
-
Yıldız, B. (2017). Disiplinlerarası öğretim yaklaşımı: Bilgi işlemsel düşünme ve FeTeMM. In Y. Gülbahar (Ed.), Bilgi işlemsel düşünmeden programlamaya (pp. 319–336). Pegem Akademi.
-
Zembat, I. (2016). Piaget’ye göre soyutlama ve çeşitleri. In E. Bingölbali, S. Arslan, & I. Zembat (Eds.), Matematik eğitiminde teoriler (pp. 448-458). Pegem Akademi.