Review
BibTex RIS Cite
Year 2024, Volume: 10 Issue: 6, 1647 - 1678, 19.11.2024

Abstract

References

  • [1] Ekka JP, Kumar D. A review of industrial food processing using solar dryers with heat storage systems. J Stored Prod Res 2023;101:102090. [CrossRef]
  • [2] Lingayat AB, Chandramohan VP, Raju VRK, Meda V. A review on indirect type solar dryers for agricultural crops – Dryer setup, its performance, energy storage and important highlights. Appl Energy 2020;258:114005. [CrossRef]
  • [3] Sharma AK, Sawant S, Somkuwar RG, Naik S. Postharvest losses in grapes: Indian status. Available at: https://www.researchgate.net/publication/311693568_Postharvest_losses_in_grapes_Indian_status?channel=doi&linkId=5b60409a458515c4b254a3b0&showFulltext=true. Accessed Nov 1, 2024.
  • [4] Sodha MS, Chandra R. Solar drying systems and their testing procedures: A review. Energy Conver Manage 1994;35:219–267. [CrossRef]
  • [5] Borah A, Hazarika K. Simulation and validation of a suitable model for thin layer drying of ginger rhizomes in an induced draft dryer. Int J Green Energy 2017;14:1150–1155. [CrossRef]
  • [6] Karthikeyan AK, Murugavelh S. Thin layer drying kinetics and exergy analysis of turmeric (Curcuma longa) in a mixed mode forced convection solar tunnel dryer. Renew Energy 2018;128:305–312. [CrossRef]
  • [7] Elzubeir AO. Solar Dehydration of Sliced Onion. Int J Veg Sci 2014;20:264–269. [CrossRef]
  • [8] Gasa S, Sibanda S, Workneh TS, Laing M, Kassim A. Thin-layer modelling of sweet potato slices drying under naturally-ventilated warm air by solar-venturi dryer. Heliyon 2022;8:e08949. [CrossRef]
  • [9] Vigneshkumar N, Venkatasudhahar M, Manoj Kumar P, Ramesh A, Subbiah R, Michael Joseph Stalin P, et al. Investigation on indirect solar dryer for drying sliced potatoes using phase change materials (PCM). Mater Today Proc 2021;47:5233–5238. [CrossRef]
  • [10] Patil R, Gawande R. Performance of a forced convection solar tunnel dryer with and without thermal storage for drying of tomatoes. IJERMCE 2016;1:111–116.
  • [11] Azam MM, Eltawil MA, Amer BMA. Thermal analysis of PV system and solar collector integrated with greenhouse dryer for drying tomatoes. Energy 2020;212:118764. [CrossRef]
  • [12] Dufera LT, Hofacker W, Esper A, Hensel O. Experimental evaluation of drying kinetics of tomato (Lycopersicum Esculentum L.) slices in twin layer solar tunnel dryer. Energy Sustain Dev 2021;61:241–250. [CrossRef]
  • [13] Ringeisen B, Barrett DM, Stroeve P. Concentrated solar drying of tomatoes. Energy Sustain Dev 2014;19:47–55. [CrossRef]
  • [14] Planinić M, Velić D, Tomas S, Bilić M, Bucić A. Modelling of drying and rehydration of carrots using Peleg’s model. Eur Food Res Technol 2005;221:446–51. [CrossRef]
  • [15] Gilago MC, Mugi VR, V PC. Performance assessment of passive indirect solar dryer comparing without and with heat storage unit by investigating the drying kinetics of carrot. Energy Nexus 2023;9:100178. [CrossRef]
  • [16] Cerezal-Mezquita P, Bugueño-Muñoz W. Drying of carrot strips in indirect solar dehydrator with photovoltaic cell and thermal energy storage. Sustainability 2022;14:2147. [CrossRef]
  • [17] Phoungchandang S, Nongsang S, Sanchai P. The development of ginger drying using tray drying, heat pump–dehumidified drying, and mixed-mode solar drying. Dry Technol 2009;27:1123–31. [CrossRef]
  • [18] Aritesty E, Wulandani D. Performance of the rack type-greenhouse effect solar dryer for wild ginger (curcuma xanthorizza roxb.) drying. Energy Proc 2014;47:94–100. [CrossRef]
  • [19] Gan H, Charters E, Driscoll R, Srzednicki G. Effects of drying and blanching on the retention of bioactive compounds in ginger and turmeric. Horticulturae 2016;3:13. [CrossRef]
  • [20] Hadibi T, Boubekri A, Mennouche D, Benhamza A, Abdenouri N. 3E analysis and mathematical modelling of garlic drying process in a hybrid solar-electric dryer. Renew Energy 2021;170:1052–1069. [CrossRef]
  • [21] Kaveh M, Rasooli Sharabiani V, Amiri Chayjan R, Taghinezhad E, Abbaspour-Gilandeh Y, Golpour I. ANFIS and ANNs model for prediction of moisture diffusivity and specific energy consumption potato, garlic and cantaloupe drying under convective hot air dryer. Inf Process Agric 2018;5:372–387. [CrossRef]
  • [22] Arjoo A, Yadvika Y, Yadaadav YK. Performance evaluation of solar tunnel dryer for drying of garlic. Curr Agric Res J 2017:212–218. [CrossRef]
  • [23] Nukulwar MR, Tungikar VB. Thin-layer mathematical modeling of turmeric in indirect natural conventional solar dryer. J Sol Energy Engineer 2020;142:041001. [CrossRef]
  • [24] Nukulwar MR, Tungikar VB. Evaluation of drying model and quality analysis of turmeric using solar thermal system. Appl Sol Energy 2020;56:233–241. [CrossRef]
  • [25] Khawale VR, Khawale RP. Performance evaluation of a double pass indirect solar drier for drying of red chili. Int J Innov Emerg Res Engineer 2016;3:514–8.
  • [26] Simo-Tagne M, Ndukwu MC, Zoulalian A, Bennamoun L, Kifani-Sahban F, Rogaume Y. Numerical analysis and validation of a natural convection mix-mode solar dryer for drying red chilli under variable conditions. Renew Energy 2020;151:659–673. [CrossRef]
  • [27] Bhardwaj AK, Kumar R, Chauhan R, Kumar S. Experimental investigation and performance evaluation of a novel solar dryer integrated with a combination of SHS and PCM for drying chilli in the Himalayan region. Therm Sci Engineer Prog 2020;20:100713. [CrossRef]
  • [28] Kaewkiew J, Nabnean S, Janjai S. Experimental investigation of the performance of a large-scale greenhouse type solar dryer for drying chilli in Thailand. Procedia Eng 2012;32:433–439. [CrossRef]
  • [29] Banout J, Ehl P, Havlik J, Lojka B, Polesny Z, Verner V. Design and performance evaluation of a double-pass solar drier for drying of red chilli (capsicum annum L.). Sol Energy 2011;85:506–515. [CrossRef]
  • [30] Hossain MA, Bala BK. Drying of hot chilli using solar tunnel drier. Sol Energy 2007;81:85–92. [CrossRef]
  • [31] Ekka JP, Palanisamy M. Determination of heat transfer coefficients and drying kinetics of red chilli dried in a forced convection mixed mode solar dryer. Therm Sci Engineer Prog 2020;19:100607. [CrossRef]
  • [32] Hempattarasuwan P, Somsong P, Duangmal K, Jaskulski M, Adamiec J, Srzednicki G. Performance evaluation of parabolic greenhouse-type solar dryer used for drying of cayenne pepper. Dry Technol 2020;38:48–54. [CrossRef]
  • [33] Stegou–Sagia AS. Thin layer drying modeling of apples and apricots in a solar-assisted drying system. J Therm Engineer 2017:1680–1691. [CrossRef]
  • [34] Cerci KN, Akpinar EK. Experimental determination of convective heat transfer coefficient during open sun and greenhouse drying of apple slices. J Therm Engineer 2016;2:741–747. [CrossRef]
  • [35] Akoy EAOM, Ismail MA, Ahmed EFA, Luecke W. Design and construction of a solar dryer for mango slices. Available at: https://www.researchgate.net/publication/237472327_Design_and_Construction_of_A_Solar_Dryer_for_Mango_Slices. Accessed Nov 1, 2024.
  • [36] Singh S, Kawade S, Dhar A, Powar S. Analysis of mango drying methods and effect of blanching process based on energy consumption, drying time using multi-criteria decision-making. Clean Engineer Technol 2022;8:100500. https://doi.org/10.1016/j.clet.2022.100500.
  • [37] Mongi RJ, Ngoma SJ. Effect of Solar drying methods on proximate composition, sugar profile and organic acids of mango varieties in Tanzania. Appl Food Res 2022;2:100140. [CrossRef]
  • [38] Subbian V, Siva Kumar S, Chaithanya K, Jose Arul S, Kaliyaperumal G, Adam KM. Optimization of solar tunnel dryer for mango slice using response surface methodology. Mater Today Proc 2021;46:7844–7847. [CrossRef]
  • [39] Hamdi I, Kooli S, Elkhadraoui A, Azaizia Z, Abdelhamid F, Guizani A. Experimental study and numerical modeling for drying grapes under solar greenhouse. Renew Energy 2018;127:936–946. [CrossRef]
  • [40] Macías-Ganchozo ER, Bello-Moreira IP, Trueba-Macías SL, Anchundia-Muentes XE, Anchundia-Muentes ME, Bravo-Moreira CD. Design, development and performance of solar dryer for pineapple (Ananas comosus (L.) Merr.), mamey (Mammea americana L.) and banana (Musa paradisiaca L.) fruit drying. Acta Agronómica 2018;67:30–38. [CrossRef]
  • [41] Rani P, Tripathy PP. Drying characteristics, energetic and exergetic investigation during mixed-mode solar drying of pineapple slices at varied air mass flow rates. Renew Energy 2021;167:508–519. [CrossRef]
  • [42] Hasan Ismaeel H, Yumrutaş R. Investigation of a solar assisted heat pump wheat drying system with underground thermal energy storage tank. Sol Energy 2020;199:538–551. [CrossRef]
  • [43] Maia C, Silva G, Ferreira A, Coutinho RM. Performance evaluation of an indirect solar dryer for corn drying. Procceedings 18th Braz. Congr Therm Sci Engineer, ABCM; 2020. [CrossRef]
  • [44] Jain D. Determination of convective heat and mass transfer coefficients for solar drying of fish. Biosyst Engineer 2006;94:429–435. [CrossRef]
  • [45] Nugrahani EF, Arifianti QAMO, Pratiwi NA, Khoiro Ummatin K. Experimental analysis of solar cabinet dryer for fish processing in Gresik, Indonesia. 2018 Int Conf Util Exhib Green Energy Sustain Dev, ICUE, Phuket, Thailand: IEEE; 2018. pp. 1–5. [CrossRef]
  • [46] Lithi UJ, Faridullah M, Roy VC, Roy KC, Alam AN. Efficiency of organic pesticides, turmeric (Curcuma longa) and neem (Azadirachta indica) against dry fish beetle (Dermestes sp.) during storage condition. J Bangladesh Agric Univ 2019;17:110–116. [CrossRef]
  • [47] Hirun S, Utamaang N, Roach PD. Turmeric (Curcuma longa L.) drying: an optimization approach using microwave-vacuum drying. J Food Sci Technol 2014;51:2127–2133. [CrossRef]
  • [48] Nukulwar MR, Tungikar VB. Recent development of the solar dryer integrated with thermal energy storage and auxiliary units. Therm Sci Engineer Prog 2022;29:101192. [CrossRef]
  • [49] Jairaj KS, Singh SP, Srikant K. A review of solar dryers developed for grape drying. Sol Energy 2009;83:1698–1712. [CrossRef]
  • [50] Pangavhane DR, Sawhney RL, Sarsavadia PN. Effect of various dipping pretreatment on drying kinetics of Thompson seedless grapes. J Food Engineer 1999;39:211–216. [CrossRef]
  • [51] Pirasteh G, Saidur R, Rahman SMA, Rahim NA. A review on development of solar drying applications. Renew Sustain Energy Rev 2014;31:133–148. [CrossRef]
  • [52] Mustayen AGMB, Mekhilef S, Saidur R. Performance study of different solar dryers: A review. Renew Sustain Energy Rev 2014;34:463–470. [CrossRef]
  • [53] Abene A, Dubois V, Le Ray M, Ouagued A. Study of a solar air flat plate collector: Use of obstacles and application for the drying of grape. J Food Engineer 2004;65:15–22. [CrossRef]
  • [54] Ghaffari A, Mehdipour R. Modeling and improving the performance of cabinet solar dryer using computational fluid dynamics. Int J Food Engineer 2015;11:157–172. [CrossRef]
  • [55] Löf GOG. Recent investigations in the use of solar energy for the drying of solids. Sol Energy 1962;6:122–128. [CrossRef]
  • [56] Goswami DY, Lavania A, Shahbazi S, Masood M. Analysis of a geodesic dome solar fruit dryer. Dry Technol 1991;9:677–691. [CrossRef]
  • [57] Fohr JP, Arnaud G. Crape drying: From sample behaviour to the drier project. Dry Technol 1992;10:445–465. [CrossRef]
  • [58] Pangavhane DR, Sawhney RL, Sarsavadia PN. Design, development and performance testing of a new natural convection solar dryer. Energy 2002;27:579–590. [CrossRef]
  • [59] Kokate YD, Baviskar PR, Baviskar KP, Deshmukh PS, Chaudhari YR, Amrutkar KP. Design, fabrication and performance analysis of indirect solar dryer. Mater Today Proc 2023;77:748–753. [CrossRef]
  • [60] Ragul Kumar N, Natarajan M, Ayyappan S, Natarajan K. Analysis of solar tunnel dryer performance with red chili drying in two intervals. Res J Chem Environ 2020;24:125–129.
  • [61] Seveda MS. Design and development of walk-in type hemicylindrical solar tunnel dryer for industrial use. ISRN Renew Energy 2012;2012:1–9. [CrossRef]
  • [62] Rathore NS, Panwar NL. Design and development of energy efficient solar tunnel dryer for industrial drying. Clean Technol Environ Policy 2011;13:125–132. [CrossRef]
  • [63] Verma G, Dewangan N, Kumar Ghritlahre H, Verma M, Kumar S, Kumar Y, et al. Experimental investigation of mixed mode ultraviolet tent house solar dryer under natural convection regime. Sol Energy 2023;251:51–67. [CrossRef]
  • [64] Mathew AA, Thangavel V. A novel thermal energy storage integrated evacuated tube heat pipe solar dryer for agricultural products: Performance and economic evaluation. Renew Energy 2021;179:1674–1693. [CrossRef]
  • [65] Dutta C, Yadav DK, Arora VK, Malakar S. Drying characteristics and quality analysis of pre-treated turmeric (Curcuma longa) using evacuated tube solar dryer with and without thermal energy storage. Sol Energy 2023;251:392–403. [CrossRef]
  • [66] Jahromi MSB, Iranmanesh M, Akhijahani HS. Thermo-economic analysis of solar drying of Jerusalem artichoke (Helianthus tuberosus L.) integrated with evacuated tube solar collector and phase change material. J Energy Storage 2022;52:104688. [CrossRef]
  • [67] Shringi V, Kothari S, Panwar NL. Experimental investigation of drying of garlic clove in solar dryer using phase change material as energy storage. J Therm Anal Calorim 2014;118:533–539. [CrossRef]
  • [68] Wang W, Li M, Hassanien RHE, Wang Y, Yang L. Thermal performance of indirect forced convection solar dryer and kinetics analysis of mango. Appl Therm Engineer 2018;134:310–321. [CrossRef]
  • [69] Bhavsar H, Patel CM. Performance analysis of cabinet type solar dryer for ginger drying with & without thermal energy storage material. Mater Today Proc 2023;73:595–603. [CrossRef]
  • [70] Patil RC, Gawande RR. Drying characteristics of amla candy in solar tunnel greenhouse dryer. J Food Process Engineer 2018;41:e12824. [CrossRef]
  • [71] Erick César LV, Ana Lilia CM, Octavio GV, Isaac PF, Rogelio BO. Thermal performance of a passive, mixed-type solar dryer for tomato slices (Solanum lycopersicum). Renew Energy 2020;147:845–855. [CrossRef]
  • [72] Ssemwanga M, Makule E, Kayondo SI. Performance analysis of an improved solar dryer integrated with multiple metallic solar concentrators for drying fruits. Sol Energy 2020;204:419–428. [CrossRef]
  • [73] Suherman S, Hadiyanto H, Susanto EE, Rahmatullah SA, Pratama AR. Towards an optimal hybrid solar method for lime-drying behavior. Heliyon 2020;6:e05356. [CrossRef]
  • [74] Nukulwar MR, Tungikar VB. Drying kinetics and thermal analysis of turmeric blanching and drying using solar thermal system. Sustain Energy Technol Assess 2021;45:101120. [CrossRef]
  • [75] Mehta P, Samaddar S, Patel P, Markam B, Maiti S. Design and performance analysis of a mixed mode tent-type solar dryer for fish-drying in coastal areas. Sol Energy 2018;170:671–681. [CrossRef]
  • [76] Hegde VN, Hosur VS, Rathod SK, Harsoor PA, Narayana KB. Design, fabrication and performance evaluation of solar dryer for banana. Energy Sustain Soc 2015;5:23. [CrossRef]
  • [77] Eltawil MA, Azam MM, Alghannam AO. Solar PV powered mixed-mode tunnel dryer for drying potato chips. Renew Energy 2018;116:594–605. [CrossRef]
  • [78] Sekyere CKK, Forson FK, Adam FW. Experimental investigation of the drying characteristics of a mixed mode natural convection solar crop dryer with back up heater. Renew Energy 2016;92:532–542. [CrossRef]
  • [79] Fudholi A, Othman MY, Ruslan MH, Sopian K. Drying of Malaysian capsicum annuum l. (red chili) dried by open and solar drying. Int J Photoenergy 2013;2013:1–9. [CrossRef]
  • [80] Ayua E, Mugalavai V, Simon J, Weller S, Obura P, Nyabinda N. Comparison of a mixed modes solar dryer to a direct mode solar dryer for African indigenous vegetable and chili processing. J Food Process Preserv 2017;41:e13216. [CrossRef]
  • [81] Pardhi CB, Bhagoria JL. Development and performance evaluation of mixed-mode solar dryer with forced convection. Int J Energy Environ Eng 2013;4:23. [CrossRef]
  • [82] Cetina-Quiñones AJ, Arıcı M, Cisneros-Villalobos L, Bassam A. Digital twin model and global sensitivity analysis of an indirect type solar dryer with sensible heat storage material: An approach from exergy sustainability indicators under tropical climate conditions. J Energy Storage 2023;58:106368. [CrossRef]
  • [83] Andharia JK, Solanki JB, Maiti S. Performance evaluation of a mixed-mode solar thermal dryer with black pebble-based sensible heat storage for drying marine products. J Energy Storage 2023;57:106186. [CrossRef]
  • [84] Dheyab HS, Al-Jethelah MSM, Yassen TA, Ibrahim TK. Experimental study of the optimum air gap of a rectangular solar air heater. J Adv Res Fluid Mech Therm Sci 2019;59:318–329.
  • [85] Nukulwar MR, Tungikar VB. A review on performance evaluation of solar dryer and its material for drying agricultural products. Mater Today Proc 2021;46:345–349. [CrossRef]
  • [86] Nabnean S, Janjai S, Thepa S, Sudaprasert K, Songprakorp R, Bala BK. Experimental performance of a new design of solar dryer for drying osmotically dehydrated cherry tomatoes. Renew Energy 2016;94:147–156. [CrossRef]
  • [87] Djebli A, Hanini S, Badaoui O, Haddad B, Benhamou A. Modeling and comparative analysis of solar drying behavior of potatoes. Renew Energy 2020;145:1494–1506. [CrossRef]
  • [88] Reyes A, Mahn A, Vásquez F. Mushrooms dehydration in a hybrid-solar dryer, using a phase change material. Energy Conver Manage 2014;83:241–248. [CrossRef]
  • [89] Folayan JA, Osuolale FN, Anawe PAL. Data on exergy and exergy analyses of drying process of onion in a batch dryer. Data Brief 2018;21:1784–1793. [CrossRef]
  • [90] Deshmukh AW, Varma MN, Yoo CK, Wasewar KL. Investigation of solar drying of ginger (Zingiber officinale): Emprical modelling, drying characteristics, and quality study. Chin J Engineer 2014;2014:1–7. [CrossRef]
  • [91] Lingayat A, Chandramohan VP, Raju VRK, Kumar A. Development of indirect type solar dryer and experiments for estimation of drying parameters of apple and watermelon. Therm Sci Engineer Prog 2020;16:100477. [CrossRef]
  • [92] Akoy EAOM, Ismail MA, Ahmed EFA, Luecke W. Design and construction of a solar dryer for mango slices. Available at: https://www.researchgate.net/publication/237472327_Design_and_Construction_of_A_Solar_Dryer_for_Mango_Slices. Accessed Nov 1, 2024.
  • [93] Amer BMA, Hossain MA, Gottschalk K. Design and performance evaluation of a new hybrid solar dryer for banana. Energy Conver Manage 2010;51:813–820. [CrossRef]
  • [94] Rabha DK, Muthukumar P, Somayaji C. Energy and exergy analyses of the solar drying processes of ghost chilli pepper and ginger. Renew Energy 2017;105:764–773. [CrossRef]
  • [95] ELkhadraoui A, Kooli S, Hamdi I, Farhat A. Experimental investigation and economic evaluation of a new mixed-mode solar greenhouse dryer for drying of red pepper and grape. Renew Energy 2015;77:1–8. [CrossRef]
  • [96] Azaizia Z, Kooli S, Hamdi I, Elkhal W, Guizani AA. Experimental study of a new mixed mode solar greenhouse drying system with and without thermal energy storage for pepper. Renew Energy 2020;145:1972–1984. [CrossRef]
  • [97] da Silva GM, Ferreira AG, Coutinho RM, Maia CB. Experimental analysis of corn drying in a sustainable solar dryer. J Adv Res Fluid Mech Therm Sci 2020;67:1–12.
  • [98] Chaouch WB, Khellaf A, Mediani A, Slimani MEA, Loumani A, Hamid A. Experimental investigation of an active direct and indirect solar dryer with sensible heat storage for camel meat drying in Saharan environment. Sol Energy 2018;174:328–341. [CrossRef]
  • [99] Mahmutoglu T, Emír F, Saygi YB. Sun/solar drying of differently treated grapes and storage stability of dried grapes. J Food Engineer 1996;29:289–300. [CrossRef]
  • [100] Karathanos VT, Belessiotis VG. Sun and artificial air drying kinetics of some agricultural products. J Food Engineer 1997;31:35–46. [CrossRef]
  • [101] Lutz K, Mühlbauer W, Müller J, Reisinger G. Development of a multi-purpose solar crop dryer for arid zones. Sol Wind Technol 1987;4:417–424. [CrossRef]
  • [102] Tiris C, Tiris M, Dincer I. Experiments on a new small-scale solar dryer. Appl Therm Engineer 1996;16:183–187. [CrossRef]
  • [103] Turk Togrul İT, Pehlivan D. Modelling of thin layer drying kinetics of some fruits under open-air sun drying process. J Food Engineer 2004;65:413–425. [CrossRef]
  • [104] Fadhel A, Kooli S, Farhat A, Bellghith A. Study of the solar drying of grapes by three different processes. Desalination 2005;185:535–541. [CrossRef]
  • [105] Fuller RJ, Charters WWS. Performance of a solar tunnel dryer with microcomputer control. Sol Energy 1997;59:151–154. [CrossRef]
  • [106] El-Sebaii AA, Aboul-Enein S, Ramadan MRI, El-Gohary HG. Experimental investigation of an indirect type natural convection solar dryer. Energy Conver Manage 2002;43:2251–2566. [CrossRef]
  • [107] Rathore NS, Panwar NL. Experimental studies on hemi cylindrical walk-in type solar tunnel dryer for grape drying. Appl Energy 2010;87:2764–2767. [CrossRef]
  • [108] Hallak H, Hilal J, Hilal F. The staircase solar dryer design and charateristics. Renew Energy 1996;7:177–183. [CrossRef]
  • [109] Yaldiz O, Ertekin C, Uzun HI. Mathematical modeling of thin layer solar drying of sultana grapes. Energy 2001;26:457–465. [CrossRef]
  • [110] Al-Juamily KEJ, Khalifa AJN, Yassen TA. Testing of the performance of a fruit and vegetable solar drying system in Iraq. Desalination 2007;209:163–170. [CrossRef]
  • [111] Ramos IN, Brandão TRS, Silva CLM. Simulation of solar drying of grapes using an integrated heat and mass transfer model. Renew Energy 2015;81:896–902. [CrossRef]
  • [112] Barghi Jahromi MS, Kalantar V, Samimi Akhijahani H, Kargarsharifabad H. Recent progress on solar cabinet dryers for agricultural products equipped with energy storage using phase change materials. J Energy Storage 2022;51:104434. [CrossRef]
  • [113] Natarajan K, Thokchom SS, Verma TN, Nashine P. Convective solar drying of Vitis vinifera & Momordica charantia using thermal storage materials. Renew Energy 2017;113:1193–1200. [CrossRef]
  • [114] Kamble AK, Pardeshi IL. Drying of chilli using solar cabinet dryer coupled with gravel bed heat storage system. J Food Res Technol 2017;1:87–94.
  • [115] Ayyappan S, Mayilsamy K, Sreenarayanan VV. Performance improvement studies in a solar greenhouse drier using sensible heat storage materials. Heat Mass Transf 2016;52:459–467. [CrossRef]
  • [116] Abubakar S, Umaru S, Kaisan MU, Umar UA, Ashok B, Nanthagopal K. Development and performance comparison of mixed-mode solar crop dryers with and without thermal storage. Renew Energy 2018;128:285–298. [CrossRef]
  • [117] Santos DDC, Queiroz AJDM, De Figueirêdo RMF, De Oliveira ENA. Drying of residual grains of annatto in a heat accumulator dryer combined with drying in a solar dryer. Bol Cent Pesqui Process Aliment 2014;32:39074. [CrossRef]
  • [118] Vásquez J, Reyes A, Pailahueque N. Modeling, simulation and experimental validation of a solar dryer for agro-products with thermal energy storage system. Renew Energy 2019;139:1375–1390. [CrossRef]
  • [119] Baniasadi E, Ranjbar S, Boostanipour O. Experimental investigation of the performance of a mixed-mode solar dryer with thermal energy storage. Renew Energy 2017;112:143–150. [CrossRef]
  • [120] Jain D, Tewari P. Performance of indirect through pass natural convective solar crop dryer with phase change thermal energy storage. Renew Energy 2015;80:244–250. [CrossRef]
  • [121] Shalaby SM, Bek MA. Experimental investigation of a novel indirect solar dryer implementing PCM as energy storage medium. Energy Conver Manage 2014;83:1–8. [CrossRef]
  • [122] Madhankumar S, Viswanathan K, Wu W, Ikhsan Taipabu M. Analysis of indirect solar dryer with PCM energy storage material: Energy, economic, drying and optimization. Sol Energy 2023;249:667–683. [CrossRef]
  • [123] Gilago MC, Chandramohan VP. Study of drying parameters of pineapple and performance of indirect solar dryer supported with thermal energy storage: Comparing passive and active modes. J Energy Storage 2023;61:106810. [CrossRef]
  • [124] Kondareddy R, Natarajan S, Radha Krishnan K, Saikia D, Singha S, Nayak PK. Performance evaluation of modified forced convection solar dryer with energy storage unit for drying of elephant apple (Dillenia indica). J Food Process Engineer 2022;45:13934. [CrossRef]
  • [125] Hussain MI, Lee GH. Concentrated solar powered agricultural products dryer: Energy, exergoeconomic and exergo-environmental analyses. J Clean Prod 2023;393:136162. [CrossRef]
  • [126] Erbay Z, Icier F. A Review of thin layer drying of foods: theory, modeling, and experimental results. Crit Rev Food Sci Nutr 2010;50:441–464. [CrossRef]
  • [127] Lewis WK. The rate of drying of solid materials. J Ind Engineer Chem 1921;13:427–432. [CrossRef]
  • [128] Overhults DG, White GM, Hamilton HE, Ross IJ, Fox JD. Effect of heated air drying on soybean oil quality. Trans ASAE 1975;18:942–945. [CrossRef]
  • [129] White GM, Bridges TC, Loewer OJ, Ross IJ. Seed coat damage in thin-layer drying of soybeans. Trans ASAE 1980;23:224–227. [CrossRef]
  • [130] Diamante LM, Munro PA. Mathematical modelling of the thin layer solar drying of sweet potato slices. Sol Energy 1993;51:271–276. [CrossRef]
  • [131] Henderson SM, Pabis S. Grain drying theory I: Temperature effect on drying coefficient. J Agricult Engineer Res 1961;6:169–174.
  • [132] Henderson SM. Progress in developing the thin layer drying equation. Trans ASAE 1974;17:1167–1168. [CrossRef]
  • [133] Sharaf-Eldeen YI, Blaisdell JL, Hamdy MY. A model for ear corn drying. Trans ASAE 1980;23:1261–1265. [CrossRef]
  • [134] Verma LR, Bucklin RA, Endan JB, Wratten FT. Effects of drying air parameters on rice drying models. Trans ASAE 1985;28:296–301. [CrossRef]
  • [135] Chandra PK, Singh RP. Applied numerical methods for food and agricultural engineers. 1st ed. Boca Raton, FL: CRC Press; 1995. [CrossRef]
  • [136] Karathanos VT. Determination of water content of dried fruits by drying kinetics. J Food Engineer 1999;39:337–344. [CrossRef]
  • [137] Midilli A, Kucuk H, Yapar Z. A new model for single-layer drying. Dry Technol 2002;20:1503–1513. [CrossRef]
  • [138] Ghazanfari A, Emami S, Tabil LG, Panigrahi S. Thin-layer drying of flax fiber: II. modeling drying process using semi-theoretical and empirical models. Dry Technol 2006;24:1637–1642. [CrossRef]
  • [139] Demir V, Gunhan T, Yagcioglu AK. Mathematical modelling of convection drying of green table olives. Biosyst Eng 2007;98:47–53. [CrossRef]
  • [140] Thompson TL, Peart RM, Foster GH. Mathematical simulation of corn drying a new model. Trans ASAE 1968;11:582–586. [CrossRef]
  • [141] Wang CY, Singh RP. A single layer drying equation for rough rice. St Joseph, MI: ASAE; 1978. pp. 78–3001.
  • [142] Kaleemullah S, Kailappan R. Drying kinetics of red chillies in a rotary dryer. Biosyst Engineer 2005;92:15–23. [CrossRef]
  • [143] Hii CL, Law CL, Cloke M. Modeling using a new thin layer drying model and product quality of cocoa. J Food Engineer 2009;90:191–198. [CrossRef]
  • [144] Alara OR, Abdurahman NH, Olalere OA. Mathematical modelling and morphological properties of thin layer oven drying of Vernonia amygdalina leaves. J Saudi Soc Agric Sci 2019;18:309–315. [CrossRef]
  • [145] Dejchanchaiwong R, Arkasuwan A, Kumar A, Tekasakul P. Mathematical modeling and performance investigation of mixed-mode and indirect solar dryers for natural rubber sheet drying. Energy Sustain Dev 2016;34:44–53. [CrossRef]
  • [146] Kokate YD, Baviskar PR, Nukulwar MR. Mathematical Modelling and drying kinetics of onion and garlic in indirect solar dryer. Appl Sol Energy 2022;58:643–660. [CrossRef]
  • [147] Mohd Nasir NA, Arsat ZA, Abdullah F, Uda MNA, Hashim MKR, Muttalib MFA, et al. Finite element analysis on solar mobile dryer for shrimp paste drying application. Mater Today Proc 2023:S2214785323001517. [CrossRef]
  • [148] Mirzaee P, Salami P, Samimi Akhijahani H, Zareei S. Life cycle assessment, energy and exergy analysis in an indirect cabinet solar dryer equipped with phase change materials. J Energy Storage 2023;61:106760. [CrossRef]
  • [149] Jain A, Sharma M, Kumar A, Sharma A, Palamanit A. Computational fluid dynamics simulation and energy analysis of domestic direct-type multi-shelf solar dryer. J Therm Anal Calorim 2019;136:173–184. [CrossRef]
  • [150] Chavan A, Vitankar V, Thorat B. CFD modeling and experimental study of solar conduction dryer. Dry Technol 2021;39:1087–1100. [CrossRef]
  • [151] Dhalsamant K. Development, validation, and comparison of FE modeling and ANN model for mixed-mode solar drying of potato cylinders. J Food Sci 2021;86:3384–3402. [CrossRef]
  • [152] Sandali M, Boubekri A, Mennouche D. Thermal behavior modeling of a cabinet direct solar dryer as influenced by sensible heat storage in a fractured porous medium. AIP Conf Proc 1968:020014. [CrossRef]
  • [153] Alonge OI, Obayopo SO. Computational fluid dynamics and experimental analysis of direct solar dryer for fish. Agricult Engineer Int 2019;21:108–117.
  • [154] Bouraoui C, Ben Nejma F. Numerical study of the greenhouse solar drying of olive mill wastewater under different conditions. Adv Mech Engineer 2020;12:168781401988974. [CrossRef]
  • [155] Iranmanesh M, Samimi Akhijahani H, Barghi Jahromi MS. CFD modeling and evaluation the performance of a solar cabinet dryer equipped with evacuated tube solar collector and thermal storage system. Renew Energy 2020;145:1192–1213. [CrossRef]
  • [156] Purusothaman M, Valarmathi TN. Computational fluid dynamics analysis of greenhouse solar dryer. Int J Ambient Energy 2019;40:894–900. [CrossRef]
  • [157] Moghimi P, Rahimzadeh H, Ahmadpour A. Experimental and numerical optimal design of a household solar fruit and vegetable dryer. Sol Energy 2021;214:575–587. [CrossRef]
  • [158] Salhi M, Chaatouf D, Raillani B, Bria A, Amraqui S, Mezrhab A. Numerical investigation of an indirect solar dryer equipped with two solar air collectors using computational fluid dynamics. J Stored Prod Res 2023;104:102189. [CrossRef]

A recapitulation of solar dryers in realm - evaluating geometry, modes, thermal energy storage, and applications in agricultural produce

Year 2024, Volume: 10 Issue: 6, 1647 - 1678, 19.11.2024

Abstract

Waste of agricultural produce attributed poor post-harvest management practices. To resolve this problem now days solar drying system gained hegemony to preserve and process the agricultural produce. The study systematically analyses the experimentation conducted on different factors of solar dryer, including its geometry, modes, agricultural produce, heat storage materials, mathematical models, and validation through Finite Element Analysis (FEA) analysis, providing valuable insights for future study. In the reviewed literature, the desiccation of agricultural produce commonly occurs within the air temperature range of 28°C to 86°C. It was found that the most effective desiccation of agricultural produce in solar dryer cabinets takes place within the air temperature range of 50°C to 65°C, leads to reduce drying time. In the majority of studies aimed at improving the desiccation rate, air circulation is achieved through the use of blowers or fans, with velocities typically rang of 0.5 m/s to 2 m/s. Additionally, the air flow rates employed in these studies vary from 0.003 kg/s to 0.09 kg/s. However, further research and investment are needed to enhance solar drying technologies, exploring new geometries, intermittent air circulation, desiccants to reduce air humidity and make them available to more farmers across the world.

References

  • [1] Ekka JP, Kumar D. A review of industrial food processing using solar dryers with heat storage systems. J Stored Prod Res 2023;101:102090. [CrossRef]
  • [2] Lingayat AB, Chandramohan VP, Raju VRK, Meda V. A review on indirect type solar dryers for agricultural crops – Dryer setup, its performance, energy storage and important highlights. Appl Energy 2020;258:114005. [CrossRef]
  • [3] Sharma AK, Sawant S, Somkuwar RG, Naik S. Postharvest losses in grapes: Indian status. Available at: https://www.researchgate.net/publication/311693568_Postharvest_losses_in_grapes_Indian_status?channel=doi&linkId=5b60409a458515c4b254a3b0&showFulltext=true. Accessed Nov 1, 2024.
  • [4] Sodha MS, Chandra R. Solar drying systems and their testing procedures: A review. Energy Conver Manage 1994;35:219–267. [CrossRef]
  • [5] Borah A, Hazarika K. Simulation and validation of a suitable model for thin layer drying of ginger rhizomes in an induced draft dryer. Int J Green Energy 2017;14:1150–1155. [CrossRef]
  • [6] Karthikeyan AK, Murugavelh S. Thin layer drying kinetics and exergy analysis of turmeric (Curcuma longa) in a mixed mode forced convection solar tunnel dryer. Renew Energy 2018;128:305–312. [CrossRef]
  • [7] Elzubeir AO. Solar Dehydration of Sliced Onion. Int J Veg Sci 2014;20:264–269. [CrossRef]
  • [8] Gasa S, Sibanda S, Workneh TS, Laing M, Kassim A. Thin-layer modelling of sweet potato slices drying under naturally-ventilated warm air by solar-venturi dryer. Heliyon 2022;8:e08949. [CrossRef]
  • [9] Vigneshkumar N, Venkatasudhahar M, Manoj Kumar P, Ramesh A, Subbiah R, Michael Joseph Stalin P, et al. Investigation on indirect solar dryer for drying sliced potatoes using phase change materials (PCM). Mater Today Proc 2021;47:5233–5238. [CrossRef]
  • [10] Patil R, Gawande R. Performance of a forced convection solar tunnel dryer with and without thermal storage for drying of tomatoes. IJERMCE 2016;1:111–116.
  • [11] Azam MM, Eltawil MA, Amer BMA. Thermal analysis of PV system and solar collector integrated with greenhouse dryer for drying tomatoes. Energy 2020;212:118764. [CrossRef]
  • [12] Dufera LT, Hofacker W, Esper A, Hensel O. Experimental evaluation of drying kinetics of tomato (Lycopersicum Esculentum L.) slices in twin layer solar tunnel dryer. Energy Sustain Dev 2021;61:241–250. [CrossRef]
  • [13] Ringeisen B, Barrett DM, Stroeve P. Concentrated solar drying of tomatoes. Energy Sustain Dev 2014;19:47–55. [CrossRef]
  • [14] Planinić M, Velić D, Tomas S, Bilić M, Bucić A. Modelling of drying and rehydration of carrots using Peleg’s model. Eur Food Res Technol 2005;221:446–51. [CrossRef]
  • [15] Gilago MC, Mugi VR, V PC. Performance assessment of passive indirect solar dryer comparing without and with heat storage unit by investigating the drying kinetics of carrot. Energy Nexus 2023;9:100178. [CrossRef]
  • [16] Cerezal-Mezquita P, Bugueño-Muñoz W. Drying of carrot strips in indirect solar dehydrator with photovoltaic cell and thermal energy storage. Sustainability 2022;14:2147. [CrossRef]
  • [17] Phoungchandang S, Nongsang S, Sanchai P. The development of ginger drying using tray drying, heat pump–dehumidified drying, and mixed-mode solar drying. Dry Technol 2009;27:1123–31. [CrossRef]
  • [18] Aritesty E, Wulandani D. Performance of the rack type-greenhouse effect solar dryer for wild ginger (curcuma xanthorizza roxb.) drying. Energy Proc 2014;47:94–100. [CrossRef]
  • [19] Gan H, Charters E, Driscoll R, Srzednicki G. Effects of drying and blanching on the retention of bioactive compounds in ginger and turmeric. Horticulturae 2016;3:13. [CrossRef]
  • [20] Hadibi T, Boubekri A, Mennouche D, Benhamza A, Abdenouri N. 3E analysis and mathematical modelling of garlic drying process in a hybrid solar-electric dryer. Renew Energy 2021;170:1052–1069. [CrossRef]
  • [21] Kaveh M, Rasooli Sharabiani V, Amiri Chayjan R, Taghinezhad E, Abbaspour-Gilandeh Y, Golpour I. ANFIS and ANNs model for prediction of moisture diffusivity and specific energy consumption potato, garlic and cantaloupe drying under convective hot air dryer. Inf Process Agric 2018;5:372–387. [CrossRef]
  • [22] Arjoo A, Yadvika Y, Yadaadav YK. Performance evaluation of solar tunnel dryer for drying of garlic. Curr Agric Res J 2017:212–218. [CrossRef]
  • [23] Nukulwar MR, Tungikar VB. Thin-layer mathematical modeling of turmeric in indirect natural conventional solar dryer. J Sol Energy Engineer 2020;142:041001. [CrossRef]
  • [24] Nukulwar MR, Tungikar VB. Evaluation of drying model and quality analysis of turmeric using solar thermal system. Appl Sol Energy 2020;56:233–241. [CrossRef]
  • [25] Khawale VR, Khawale RP. Performance evaluation of a double pass indirect solar drier for drying of red chili. Int J Innov Emerg Res Engineer 2016;3:514–8.
  • [26] Simo-Tagne M, Ndukwu MC, Zoulalian A, Bennamoun L, Kifani-Sahban F, Rogaume Y. Numerical analysis and validation of a natural convection mix-mode solar dryer for drying red chilli under variable conditions. Renew Energy 2020;151:659–673. [CrossRef]
  • [27] Bhardwaj AK, Kumar R, Chauhan R, Kumar S. Experimental investigation and performance evaluation of a novel solar dryer integrated with a combination of SHS and PCM for drying chilli in the Himalayan region. Therm Sci Engineer Prog 2020;20:100713. [CrossRef]
  • [28] Kaewkiew J, Nabnean S, Janjai S. Experimental investigation of the performance of a large-scale greenhouse type solar dryer for drying chilli in Thailand. Procedia Eng 2012;32:433–439. [CrossRef]
  • [29] Banout J, Ehl P, Havlik J, Lojka B, Polesny Z, Verner V. Design and performance evaluation of a double-pass solar drier for drying of red chilli (capsicum annum L.). Sol Energy 2011;85:506–515. [CrossRef]
  • [30] Hossain MA, Bala BK. Drying of hot chilli using solar tunnel drier. Sol Energy 2007;81:85–92. [CrossRef]
  • [31] Ekka JP, Palanisamy M. Determination of heat transfer coefficients and drying kinetics of red chilli dried in a forced convection mixed mode solar dryer. Therm Sci Engineer Prog 2020;19:100607. [CrossRef]
  • [32] Hempattarasuwan P, Somsong P, Duangmal K, Jaskulski M, Adamiec J, Srzednicki G. Performance evaluation of parabolic greenhouse-type solar dryer used for drying of cayenne pepper. Dry Technol 2020;38:48–54. [CrossRef]
  • [33] Stegou–Sagia AS. Thin layer drying modeling of apples and apricots in a solar-assisted drying system. J Therm Engineer 2017:1680–1691. [CrossRef]
  • [34] Cerci KN, Akpinar EK. Experimental determination of convective heat transfer coefficient during open sun and greenhouse drying of apple slices. J Therm Engineer 2016;2:741–747. [CrossRef]
  • [35] Akoy EAOM, Ismail MA, Ahmed EFA, Luecke W. Design and construction of a solar dryer for mango slices. Available at: https://www.researchgate.net/publication/237472327_Design_and_Construction_of_A_Solar_Dryer_for_Mango_Slices. Accessed Nov 1, 2024.
  • [36] Singh S, Kawade S, Dhar A, Powar S. Analysis of mango drying methods and effect of blanching process based on energy consumption, drying time using multi-criteria decision-making. Clean Engineer Technol 2022;8:100500. https://doi.org/10.1016/j.clet.2022.100500.
  • [37] Mongi RJ, Ngoma SJ. Effect of Solar drying methods on proximate composition, sugar profile and organic acids of mango varieties in Tanzania. Appl Food Res 2022;2:100140. [CrossRef]
  • [38] Subbian V, Siva Kumar S, Chaithanya K, Jose Arul S, Kaliyaperumal G, Adam KM. Optimization of solar tunnel dryer for mango slice using response surface methodology. Mater Today Proc 2021;46:7844–7847. [CrossRef]
  • [39] Hamdi I, Kooli S, Elkhadraoui A, Azaizia Z, Abdelhamid F, Guizani A. Experimental study and numerical modeling for drying grapes under solar greenhouse. Renew Energy 2018;127:936–946. [CrossRef]
  • [40] Macías-Ganchozo ER, Bello-Moreira IP, Trueba-Macías SL, Anchundia-Muentes XE, Anchundia-Muentes ME, Bravo-Moreira CD. Design, development and performance of solar dryer for pineapple (Ananas comosus (L.) Merr.), mamey (Mammea americana L.) and banana (Musa paradisiaca L.) fruit drying. Acta Agronómica 2018;67:30–38. [CrossRef]
  • [41] Rani P, Tripathy PP. Drying characteristics, energetic and exergetic investigation during mixed-mode solar drying of pineapple slices at varied air mass flow rates. Renew Energy 2021;167:508–519. [CrossRef]
  • [42] Hasan Ismaeel H, Yumrutaş R. Investigation of a solar assisted heat pump wheat drying system with underground thermal energy storage tank. Sol Energy 2020;199:538–551. [CrossRef]
  • [43] Maia C, Silva G, Ferreira A, Coutinho RM. Performance evaluation of an indirect solar dryer for corn drying. Procceedings 18th Braz. Congr Therm Sci Engineer, ABCM; 2020. [CrossRef]
  • [44] Jain D. Determination of convective heat and mass transfer coefficients for solar drying of fish. Biosyst Engineer 2006;94:429–435. [CrossRef]
  • [45] Nugrahani EF, Arifianti QAMO, Pratiwi NA, Khoiro Ummatin K. Experimental analysis of solar cabinet dryer for fish processing in Gresik, Indonesia. 2018 Int Conf Util Exhib Green Energy Sustain Dev, ICUE, Phuket, Thailand: IEEE; 2018. pp. 1–5. [CrossRef]
  • [46] Lithi UJ, Faridullah M, Roy VC, Roy KC, Alam AN. Efficiency of organic pesticides, turmeric (Curcuma longa) and neem (Azadirachta indica) against dry fish beetle (Dermestes sp.) during storage condition. J Bangladesh Agric Univ 2019;17:110–116. [CrossRef]
  • [47] Hirun S, Utamaang N, Roach PD. Turmeric (Curcuma longa L.) drying: an optimization approach using microwave-vacuum drying. J Food Sci Technol 2014;51:2127–2133. [CrossRef]
  • [48] Nukulwar MR, Tungikar VB. Recent development of the solar dryer integrated with thermal energy storage and auxiliary units. Therm Sci Engineer Prog 2022;29:101192. [CrossRef]
  • [49] Jairaj KS, Singh SP, Srikant K. A review of solar dryers developed for grape drying. Sol Energy 2009;83:1698–1712. [CrossRef]
  • [50] Pangavhane DR, Sawhney RL, Sarsavadia PN. Effect of various dipping pretreatment on drying kinetics of Thompson seedless grapes. J Food Engineer 1999;39:211–216. [CrossRef]
  • [51] Pirasteh G, Saidur R, Rahman SMA, Rahim NA. A review on development of solar drying applications. Renew Sustain Energy Rev 2014;31:133–148. [CrossRef]
  • [52] Mustayen AGMB, Mekhilef S, Saidur R. Performance study of different solar dryers: A review. Renew Sustain Energy Rev 2014;34:463–470. [CrossRef]
  • [53] Abene A, Dubois V, Le Ray M, Ouagued A. Study of a solar air flat plate collector: Use of obstacles and application for the drying of grape. J Food Engineer 2004;65:15–22. [CrossRef]
  • [54] Ghaffari A, Mehdipour R. Modeling and improving the performance of cabinet solar dryer using computational fluid dynamics. Int J Food Engineer 2015;11:157–172. [CrossRef]
  • [55] Löf GOG. Recent investigations in the use of solar energy for the drying of solids. Sol Energy 1962;6:122–128. [CrossRef]
  • [56] Goswami DY, Lavania A, Shahbazi S, Masood M. Analysis of a geodesic dome solar fruit dryer. Dry Technol 1991;9:677–691. [CrossRef]
  • [57] Fohr JP, Arnaud G. Crape drying: From sample behaviour to the drier project. Dry Technol 1992;10:445–465. [CrossRef]
  • [58] Pangavhane DR, Sawhney RL, Sarsavadia PN. Design, development and performance testing of a new natural convection solar dryer. Energy 2002;27:579–590. [CrossRef]
  • [59] Kokate YD, Baviskar PR, Baviskar KP, Deshmukh PS, Chaudhari YR, Amrutkar KP. Design, fabrication and performance analysis of indirect solar dryer. Mater Today Proc 2023;77:748–753. [CrossRef]
  • [60] Ragul Kumar N, Natarajan M, Ayyappan S, Natarajan K. Analysis of solar tunnel dryer performance with red chili drying in two intervals. Res J Chem Environ 2020;24:125–129.
  • [61] Seveda MS. Design and development of walk-in type hemicylindrical solar tunnel dryer for industrial use. ISRN Renew Energy 2012;2012:1–9. [CrossRef]
  • [62] Rathore NS, Panwar NL. Design and development of energy efficient solar tunnel dryer for industrial drying. Clean Technol Environ Policy 2011;13:125–132. [CrossRef]
  • [63] Verma G, Dewangan N, Kumar Ghritlahre H, Verma M, Kumar S, Kumar Y, et al. Experimental investigation of mixed mode ultraviolet tent house solar dryer under natural convection regime. Sol Energy 2023;251:51–67. [CrossRef]
  • [64] Mathew AA, Thangavel V. A novel thermal energy storage integrated evacuated tube heat pipe solar dryer for agricultural products: Performance and economic evaluation. Renew Energy 2021;179:1674–1693. [CrossRef]
  • [65] Dutta C, Yadav DK, Arora VK, Malakar S. Drying characteristics and quality analysis of pre-treated turmeric (Curcuma longa) using evacuated tube solar dryer with and without thermal energy storage. Sol Energy 2023;251:392–403. [CrossRef]
  • [66] Jahromi MSB, Iranmanesh M, Akhijahani HS. Thermo-economic analysis of solar drying of Jerusalem artichoke (Helianthus tuberosus L.) integrated with evacuated tube solar collector and phase change material. J Energy Storage 2022;52:104688. [CrossRef]
  • [67] Shringi V, Kothari S, Panwar NL. Experimental investigation of drying of garlic clove in solar dryer using phase change material as energy storage. J Therm Anal Calorim 2014;118:533–539. [CrossRef]
  • [68] Wang W, Li M, Hassanien RHE, Wang Y, Yang L. Thermal performance of indirect forced convection solar dryer and kinetics analysis of mango. Appl Therm Engineer 2018;134:310–321. [CrossRef]
  • [69] Bhavsar H, Patel CM. Performance analysis of cabinet type solar dryer for ginger drying with & without thermal energy storage material. Mater Today Proc 2023;73:595–603. [CrossRef]
  • [70] Patil RC, Gawande RR. Drying characteristics of amla candy in solar tunnel greenhouse dryer. J Food Process Engineer 2018;41:e12824. [CrossRef]
  • [71] Erick César LV, Ana Lilia CM, Octavio GV, Isaac PF, Rogelio BO. Thermal performance of a passive, mixed-type solar dryer for tomato slices (Solanum lycopersicum). Renew Energy 2020;147:845–855. [CrossRef]
  • [72] Ssemwanga M, Makule E, Kayondo SI. Performance analysis of an improved solar dryer integrated with multiple metallic solar concentrators for drying fruits. Sol Energy 2020;204:419–428. [CrossRef]
  • [73] Suherman S, Hadiyanto H, Susanto EE, Rahmatullah SA, Pratama AR. Towards an optimal hybrid solar method for lime-drying behavior. Heliyon 2020;6:e05356. [CrossRef]
  • [74] Nukulwar MR, Tungikar VB. Drying kinetics and thermal analysis of turmeric blanching and drying using solar thermal system. Sustain Energy Technol Assess 2021;45:101120. [CrossRef]
  • [75] Mehta P, Samaddar S, Patel P, Markam B, Maiti S. Design and performance analysis of a mixed mode tent-type solar dryer for fish-drying in coastal areas. Sol Energy 2018;170:671–681. [CrossRef]
  • [76] Hegde VN, Hosur VS, Rathod SK, Harsoor PA, Narayana KB. Design, fabrication and performance evaluation of solar dryer for banana. Energy Sustain Soc 2015;5:23. [CrossRef]
  • [77] Eltawil MA, Azam MM, Alghannam AO. Solar PV powered mixed-mode tunnel dryer for drying potato chips. Renew Energy 2018;116:594–605. [CrossRef]
  • [78] Sekyere CKK, Forson FK, Adam FW. Experimental investigation of the drying characteristics of a mixed mode natural convection solar crop dryer with back up heater. Renew Energy 2016;92:532–542. [CrossRef]
  • [79] Fudholi A, Othman MY, Ruslan MH, Sopian K. Drying of Malaysian capsicum annuum l. (red chili) dried by open and solar drying. Int J Photoenergy 2013;2013:1–9. [CrossRef]
  • [80] Ayua E, Mugalavai V, Simon J, Weller S, Obura P, Nyabinda N. Comparison of a mixed modes solar dryer to a direct mode solar dryer for African indigenous vegetable and chili processing. J Food Process Preserv 2017;41:e13216. [CrossRef]
  • [81] Pardhi CB, Bhagoria JL. Development and performance evaluation of mixed-mode solar dryer with forced convection. Int J Energy Environ Eng 2013;4:23. [CrossRef]
  • [82] Cetina-Quiñones AJ, Arıcı M, Cisneros-Villalobos L, Bassam A. Digital twin model and global sensitivity analysis of an indirect type solar dryer with sensible heat storage material: An approach from exergy sustainability indicators under tropical climate conditions. J Energy Storage 2023;58:106368. [CrossRef]
  • [83] Andharia JK, Solanki JB, Maiti S. Performance evaluation of a mixed-mode solar thermal dryer with black pebble-based sensible heat storage for drying marine products. J Energy Storage 2023;57:106186. [CrossRef]
  • [84] Dheyab HS, Al-Jethelah MSM, Yassen TA, Ibrahim TK. Experimental study of the optimum air gap of a rectangular solar air heater. J Adv Res Fluid Mech Therm Sci 2019;59:318–329.
  • [85] Nukulwar MR, Tungikar VB. A review on performance evaluation of solar dryer and its material for drying agricultural products. Mater Today Proc 2021;46:345–349. [CrossRef]
  • [86] Nabnean S, Janjai S, Thepa S, Sudaprasert K, Songprakorp R, Bala BK. Experimental performance of a new design of solar dryer for drying osmotically dehydrated cherry tomatoes. Renew Energy 2016;94:147–156. [CrossRef]
  • [87] Djebli A, Hanini S, Badaoui O, Haddad B, Benhamou A. Modeling and comparative analysis of solar drying behavior of potatoes. Renew Energy 2020;145:1494–1506. [CrossRef]
  • [88] Reyes A, Mahn A, Vásquez F. Mushrooms dehydration in a hybrid-solar dryer, using a phase change material. Energy Conver Manage 2014;83:241–248. [CrossRef]
  • [89] Folayan JA, Osuolale FN, Anawe PAL. Data on exergy and exergy analyses of drying process of onion in a batch dryer. Data Brief 2018;21:1784–1793. [CrossRef]
  • [90] Deshmukh AW, Varma MN, Yoo CK, Wasewar KL. Investigation of solar drying of ginger (Zingiber officinale): Emprical modelling, drying characteristics, and quality study. Chin J Engineer 2014;2014:1–7. [CrossRef]
  • [91] Lingayat A, Chandramohan VP, Raju VRK, Kumar A. Development of indirect type solar dryer and experiments for estimation of drying parameters of apple and watermelon. Therm Sci Engineer Prog 2020;16:100477. [CrossRef]
  • [92] Akoy EAOM, Ismail MA, Ahmed EFA, Luecke W. Design and construction of a solar dryer for mango slices. Available at: https://www.researchgate.net/publication/237472327_Design_and_Construction_of_A_Solar_Dryer_for_Mango_Slices. Accessed Nov 1, 2024.
  • [93] Amer BMA, Hossain MA, Gottschalk K. Design and performance evaluation of a new hybrid solar dryer for banana. Energy Conver Manage 2010;51:813–820. [CrossRef]
  • [94] Rabha DK, Muthukumar P, Somayaji C. Energy and exergy analyses of the solar drying processes of ghost chilli pepper and ginger. Renew Energy 2017;105:764–773. [CrossRef]
  • [95] ELkhadraoui A, Kooli S, Hamdi I, Farhat A. Experimental investigation and economic evaluation of a new mixed-mode solar greenhouse dryer for drying of red pepper and grape. Renew Energy 2015;77:1–8. [CrossRef]
  • [96] Azaizia Z, Kooli S, Hamdi I, Elkhal W, Guizani AA. Experimental study of a new mixed mode solar greenhouse drying system with and without thermal energy storage for pepper. Renew Energy 2020;145:1972–1984. [CrossRef]
  • [97] da Silva GM, Ferreira AG, Coutinho RM, Maia CB. Experimental analysis of corn drying in a sustainable solar dryer. J Adv Res Fluid Mech Therm Sci 2020;67:1–12.
  • [98] Chaouch WB, Khellaf A, Mediani A, Slimani MEA, Loumani A, Hamid A. Experimental investigation of an active direct and indirect solar dryer with sensible heat storage for camel meat drying in Saharan environment. Sol Energy 2018;174:328–341. [CrossRef]
  • [99] Mahmutoglu T, Emír F, Saygi YB. Sun/solar drying of differently treated grapes and storage stability of dried grapes. J Food Engineer 1996;29:289–300. [CrossRef]
  • [100] Karathanos VT, Belessiotis VG. Sun and artificial air drying kinetics of some agricultural products. J Food Engineer 1997;31:35–46. [CrossRef]
  • [101] Lutz K, Mühlbauer W, Müller J, Reisinger G. Development of a multi-purpose solar crop dryer for arid zones. Sol Wind Technol 1987;4:417–424. [CrossRef]
  • [102] Tiris C, Tiris M, Dincer I. Experiments on a new small-scale solar dryer. Appl Therm Engineer 1996;16:183–187. [CrossRef]
  • [103] Turk Togrul İT, Pehlivan D. Modelling of thin layer drying kinetics of some fruits under open-air sun drying process. J Food Engineer 2004;65:413–425. [CrossRef]
  • [104] Fadhel A, Kooli S, Farhat A, Bellghith A. Study of the solar drying of grapes by three different processes. Desalination 2005;185:535–541. [CrossRef]
  • [105] Fuller RJ, Charters WWS. Performance of a solar tunnel dryer with microcomputer control. Sol Energy 1997;59:151–154. [CrossRef]
  • [106] El-Sebaii AA, Aboul-Enein S, Ramadan MRI, El-Gohary HG. Experimental investigation of an indirect type natural convection solar dryer. Energy Conver Manage 2002;43:2251–2566. [CrossRef]
  • [107] Rathore NS, Panwar NL. Experimental studies on hemi cylindrical walk-in type solar tunnel dryer for grape drying. Appl Energy 2010;87:2764–2767. [CrossRef]
  • [108] Hallak H, Hilal J, Hilal F. The staircase solar dryer design and charateristics. Renew Energy 1996;7:177–183. [CrossRef]
  • [109] Yaldiz O, Ertekin C, Uzun HI. Mathematical modeling of thin layer solar drying of sultana grapes. Energy 2001;26:457–465. [CrossRef]
  • [110] Al-Juamily KEJ, Khalifa AJN, Yassen TA. Testing of the performance of a fruit and vegetable solar drying system in Iraq. Desalination 2007;209:163–170. [CrossRef]
  • [111] Ramos IN, Brandão TRS, Silva CLM. Simulation of solar drying of grapes using an integrated heat and mass transfer model. Renew Energy 2015;81:896–902. [CrossRef]
  • [112] Barghi Jahromi MS, Kalantar V, Samimi Akhijahani H, Kargarsharifabad H. Recent progress on solar cabinet dryers for agricultural products equipped with energy storage using phase change materials. J Energy Storage 2022;51:104434. [CrossRef]
  • [113] Natarajan K, Thokchom SS, Verma TN, Nashine P. Convective solar drying of Vitis vinifera & Momordica charantia using thermal storage materials. Renew Energy 2017;113:1193–1200. [CrossRef]
  • [114] Kamble AK, Pardeshi IL. Drying of chilli using solar cabinet dryer coupled with gravel bed heat storage system. J Food Res Technol 2017;1:87–94.
  • [115] Ayyappan S, Mayilsamy K, Sreenarayanan VV. Performance improvement studies in a solar greenhouse drier using sensible heat storage materials. Heat Mass Transf 2016;52:459–467. [CrossRef]
  • [116] Abubakar S, Umaru S, Kaisan MU, Umar UA, Ashok B, Nanthagopal K. Development and performance comparison of mixed-mode solar crop dryers with and without thermal storage. Renew Energy 2018;128:285–298. [CrossRef]
  • [117] Santos DDC, Queiroz AJDM, De Figueirêdo RMF, De Oliveira ENA. Drying of residual grains of annatto in a heat accumulator dryer combined with drying in a solar dryer. Bol Cent Pesqui Process Aliment 2014;32:39074. [CrossRef]
  • [118] Vásquez J, Reyes A, Pailahueque N. Modeling, simulation and experimental validation of a solar dryer for agro-products with thermal energy storage system. Renew Energy 2019;139:1375–1390. [CrossRef]
  • [119] Baniasadi E, Ranjbar S, Boostanipour O. Experimental investigation of the performance of a mixed-mode solar dryer with thermal energy storage. Renew Energy 2017;112:143–150. [CrossRef]
  • [120] Jain D, Tewari P. Performance of indirect through pass natural convective solar crop dryer with phase change thermal energy storage. Renew Energy 2015;80:244–250. [CrossRef]
  • [121] Shalaby SM, Bek MA. Experimental investigation of a novel indirect solar dryer implementing PCM as energy storage medium. Energy Conver Manage 2014;83:1–8. [CrossRef]
  • [122] Madhankumar S, Viswanathan K, Wu W, Ikhsan Taipabu M. Analysis of indirect solar dryer with PCM energy storage material: Energy, economic, drying and optimization. Sol Energy 2023;249:667–683. [CrossRef]
  • [123] Gilago MC, Chandramohan VP. Study of drying parameters of pineapple and performance of indirect solar dryer supported with thermal energy storage: Comparing passive and active modes. J Energy Storage 2023;61:106810. [CrossRef]
  • [124] Kondareddy R, Natarajan S, Radha Krishnan K, Saikia D, Singha S, Nayak PK. Performance evaluation of modified forced convection solar dryer with energy storage unit for drying of elephant apple (Dillenia indica). J Food Process Engineer 2022;45:13934. [CrossRef]
  • [125] Hussain MI, Lee GH. Concentrated solar powered agricultural products dryer: Energy, exergoeconomic and exergo-environmental analyses. J Clean Prod 2023;393:136162. [CrossRef]
  • [126] Erbay Z, Icier F. A Review of thin layer drying of foods: theory, modeling, and experimental results. Crit Rev Food Sci Nutr 2010;50:441–464. [CrossRef]
  • [127] Lewis WK. The rate of drying of solid materials. J Ind Engineer Chem 1921;13:427–432. [CrossRef]
  • [128] Overhults DG, White GM, Hamilton HE, Ross IJ, Fox JD. Effect of heated air drying on soybean oil quality. Trans ASAE 1975;18:942–945. [CrossRef]
  • [129] White GM, Bridges TC, Loewer OJ, Ross IJ. Seed coat damage in thin-layer drying of soybeans. Trans ASAE 1980;23:224–227. [CrossRef]
  • [130] Diamante LM, Munro PA. Mathematical modelling of the thin layer solar drying of sweet potato slices. Sol Energy 1993;51:271–276. [CrossRef]
  • [131] Henderson SM, Pabis S. Grain drying theory I: Temperature effect on drying coefficient. J Agricult Engineer Res 1961;6:169–174.
  • [132] Henderson SM. Progress in developing the thin layer drying equation. Trans ASAE 1974;17:1167–1168. [CrossRef]
  • [133] Sharaf-Eldeen YI, Blaisdell JL, Hamdy MY. A model for ear corn drying. Trans ASAE 1980;23:1261–1265. [CrossRef]
  • [134] Verma LR, Bucklin RA, Endan JB, Wratten FT. Effects of drying air parameters on rice drying models. Trans ASAE 1985;28:296–301. [CrossRef]
  • [135] Chandra PK, Singh RP. Applied numerical methods for food and agricultural engineers. 1st ed. Boca Raton, FL: CRC Press; 1995. [CrossRef]
  • [136] Karathanos VT. Determination of water content of dried fruits by drying kinetics. J Food Engineer 1999;39:337–344. [CrossRef]
  • [137] Midilli A, Kucuk H, Yapar Z. A new model for single-layer drying. Dry Technol 2002;20:1503–1513. [CrossRef]
  • [138] Ghazanfari A, Emami S, Tabil LG, Panigrahi S. Thin-layer drying of flax fiber: II. modeling drying process using semi-theoretical and empirical models. Dry Technol 2006;24:1637–1642. [CrossRef]
  • [139] Demir V, Gunhan T, Yagcioglu AK. Mathematical modelling of convection drying of green table olives. Biosyst Eng 2007;98:47–53. [CrossRef]
  • [140] Thompson TL, Peart RM, Foster GH. Mathematical simulation of corn drying a new model. Trans ASAE 1968;11:582–586. [CrossRef]
  • [141] Wang CY, Singh RP. A single layer drying equation for rough rice. St Joseph, MI: ASAE; 1978. pp. 78–3001.
  • [142] Kaleemullah S, Kailappan R. Drying kinetics of red chillies in a rotary dryer. Biosyst Engineer 2005;92:15–23. [CrossRef]
  • [143] Hii CL, Law CL, Cloke M. Modeling using a new thin layer drying model and product quality of cocoa. J Food Engineer 2009;90:191–198. [CrossRef]
  • [144] Alara OR, Abdurahman NH, Olalere OA. Mathematical modelling and morphological properties of thin layer oven drying of Vernonia amygdalina leaves. J Saudi Soc Agric Sci 2019;18:309–315. [CrossRef]
  • [145] Dejchanchaiwong R, Arkasuwan A, Kumar A, Tekasakul P. Mathematical modeling and performance investigation of mixed-mode and indirect solar dryers for natural rubber sheet drying. Energy Sustain Dev 2016;34:44–53. [CrossRef]
  • [146] Kokate YD, Baviskar PR, Nukulwar MR. Mathematical Modelling and drying kinetics of onion and garlic in indirect solar dryer. Appl Sol Energy 2022;58:643–660. [CrossRef]
  • [147] Mohd Nasir NA, Arsat ZA, Abdullah F, Uda MNA, Hashim MKR, Muttalib MFA, et al. Finite element analysis on solar mobile dryer for shrimp paste drying application. Mater Today Proc 2023:S2214785323001517. [CrossRef]
  • [148] Mirzaee P, Salami P, Samimi Akhijahani H, Zareei S. Life cycle assessment, energy and exergy analysis in an indirect cabinet solar dryer equipped with phase change materials. J Energy Storage 2023;61:106760. [CrossRef]
  • [149] Jain A, Sharma M, Kumar A, Sharma A, Palamanit A. Computational fluid dynamics simulation and energy analysis of domestic direct-type multi-shelf solar dryer. J Therm Anal Calorim 2019;136:173–184. [CrossRef]
  • [150] Chavan A, Vitankar V, Thorat B. CFD modeling and experimental study of solar conduction dryer. Dry Technol 2021;39:1087–1100. [CrossRef]
  • [151] Dhalsamant K. Development, validation, and comparison of FE modeling and ANN model for mixed-mode solar drying of potato cylinders. J Food Sci 2021;86:3384–3402. [CrossRef]
  • [152] Sandali M, Boubekri A, Mennouche D. Thermal behavior modeling of a cabinet direct solar dryer as influenced by sensible heat storage in a fractured porous medium. AIP Conf Proc 1968:020014. [CrossRef]
  • [153] Alonge OI, Obayopo SO. Computational fluid dynamics and experimental analysis of direct solar dryer for fish. Agricult Engineer Int 2019;21:108–117.
  • [154] Bouraoui C, Ben Nejma F. Numerical study of the greenhouse solar drying of olive mill wastewater under different conditions. Adv Mech Engineer 2020;12:168781401988974. [CrossRef]
  • [155] Iranmanesh M, Samimi Akhijahani H, Barghi Jahromi MS. CFD modeling and evaluation the performance of a solar cabinet dryer equipped with evacuated tube solar collector and thermal storage system. Renew Energy 2020;145:1192–1213. [CrossRef]
  • [156] Purusothaman M, Valarmathi TN. Computational fluid dynamics analysis of greenhouse solar dryer. Int J Ambient Energy 2019;40:894–900. [CrossRef]
  • [157] Moghimi P, Rahimzadeh H, Ahmadpour A. Experimental and numerical optimal design of a household solar fruit and vegetable dryer. Sol Energy 2021;214:575–587. [CrossRef]
  • [158] Salhi M, Chaatouf D, Raillani B, Bria A, Amraqui S, Mezrhab A. Numerical investigation of an indirect solar dryer equipped with two solar air collectors using computational fluid dynamics. J Stored Prod Res 2023;104:102189. [CrossRef]
There are 158 citations in total.

Details

Primary Language English
Subjects Thermodynamics and Statistical Physics
Journal Section Reviews
Authors

Yogesh D. Kokate This is me 0000-0001-9693-9757

Prasad R. Baviskar This is me 0000-0002-0356-6216

Sanjeev D. Suryawanshi This is me 0000-0003-4385-6063

Publication Date November 19, 2024
Submission Date September 16, 2023
Published in Issue Year 2024 Volume: 10 Issue: 6

Cite

APA Kokate, Y. D., Baviskar, P. R., & Suryawanshi, S. D. (2024). A recapitulation of solar dryers in realm - evaluating geometry, modes, thermal energy storage, and applications in agricultural produce. Journal of Thermal Engineering, 10(6), 1647-1678.
AMA Kokate YD, Baviskar PR, Suryawanshi SD. A recapitulation of solar dryers in realm - evaluating geometry, modes, thermal energy storage, and applications in agricultural produce. Journal of Thermal Engineering. November 2024;10(6):1647-1678.
Chicago Kokate, Yogesh D., Prasad R. Baviskar, and Sanjeev D. Suryawanshi. “A Recapitulation of Solar Dryers in Realm - Evaluating Geometry, Modes, Thermal Energy Storage, and Applications in Agricultural Produce”. Journal of Thermal Engineering 10, no. 6 (November 2024): 1647-78.
EndNote Kokate YD, Baviskar PR, Suryawanshi SD (November 1, 2024) A recapitulation of solar dryers in realm - evaluating geometry, modes, thermal energy storage, and applications in agricultural produce. Journal of Thermal Engineering 10 6 1647–1678.
IEEE Y. D. Kokate, P. R. Baviskar, and S. D. Suryawanshi, “A recapitulation of solar dryers in realm - evaluating geometry, modes, thermal energy storage, and applications in agricultural produce”, Journal of Thermal Engineering, vol. 10, no. 6, pp. 1647–1678, 2024.
ISNAD Kokate, Yogesh D. et al. “A Recapitulation of Solar Dryers in Realm - Evaluating Geometry, Modes, Thermal Energy Storage, and Applications in Agricultural Produce”. Journal of Thermal Engineering 10/6 (November 2024), 1647-1678.
JAMA Kokate YD, Baviskar PR, Suryawanshi SD. A recapitulation of solar dryers in realm - evaluating geometry, modes, thermal energy storage, and applications in agricultural produce. Journal of Thermal Engineering. 2024;10:1647–1678.
MLA Kokate, Yogesh D. et al. “A Recapitulation of Solar Dryers in Realm - Evaluating Geometry, Modes, Thermal Energy Storage, and Applications in Agricultural Produce”. Journal of Thermal Engineering, vol. 10, no. 6, 2024, pp. 1647-78.
Vancouver Kokate YD, Baviskar PR, Suryawanshi SD. A recapitulation of solar dryers in realm - evaluating geometry, modes, thermal energy storage, and applications in agricultural produce. Journal of Thermal Engineering. 2024;10(6):1647-78.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering