Review
BibTex RIS Cite

Advances in passive heat transfer enhancement for heat exchangers: a comprehensive review

Year 2025, Volume: 11 Issue: 4, 1148 - 1159, 31.07.2025

Abstract

This paper reviews the latest advances in passive heat transfer enhancement techniques, addressing the gap in the literature regarding recent developments. Heat exchangers are crucial in improving energy efficiency in various industrial applications, including power plants and nuclear reactors. Various heat enhancement techniques such as geometric modifications, air bubble injection, vortex generators, tape inserts, micro-surfaces, baffles, printed circuit heat exchangers, and phase change materials are studied. These techniques are evaluated based on heat transfer rate, pressure drop, and performance evaluation criteria. It is found from this review that the air bubble injection in shell and tube heat exchangers demonstrates the highest performance evaluation criteria of 4.5. However, its application is limited by process constraints. On the other hand, the Y-shaped tape inserts with a trapezoidal configuration though having a slightly lower performance evaluation criteria of 3.68 is easier to implement in existing and new designs. In printed circuit heat exchangers, zigzag channels exhibit a 50% improvement in thermal performance compared to straight channels. The study also highlights the potential of gyroid structures for application in high-pressure and high-temperature systems, such as advanced nuclear reactors. The comprehensive evaluation of heat enhancement techniques provides designers and engineers with a practical insight into designing heat exchanger for specific system requirements.

References

  • 1. White FM. Viscous fluid flow. New York: McGraw-Hill Inc.; 1991.
  • 2. Chapman DR. A theoretical analysis of heat transfer in regions of separated flow. NACA-TN-3792; 1956. Available at: https://ntrs.nasa.gov/api/citations/19930084514/downloads/19930084514.pdf. Accessed July 14, 2025.
  • 3. Picón-Núñez M, Melo-González JC, García-Castillo JL. Use of heat transfer enhancement techniques in the design of heat exchangers. In: Castro Gómez L, Velázquez Flores VM, editors. Advances in heat exchangers. London: IntechOpen; 2022.
  • 4. Kumar KS, Muniamuthu S, Mohan KR. Measurement of temperature flow analysis by condition monitoring system for WTG gear box to evaluate the thermal performance associated with plant load factor. J Therm Eng 2023;9:979–987. [CrossRef]
  • 5. Roy U, Roy PK. Advances in heat intensification techniques in shell and tube heat exchanger. In: Advanced analytic and control techniques for thermal systems with heat exchangers. Cambridge: Academic Press; 2020. p. 197–207. [CrossRef]
  • 6. Varuvel EG, Sonthalia A, Aloui F, Saravanan CG. Basics of heat transfer: Heat exchanger. In: Handbook of thermal management systems. Amsterdam: Elsevier; 2023. p. 79–93. [CrossRef]
  • 7. Babaelahi M, Babazadeh MA, Saadatfar M. New design for the cold part of heat pipes using functionally graded material in heat sink with variable thickness fins: An analytical approach. J Therm Eng 2024;10:1323–1334. [CrossRef]
  • 8. Hasan KS, Al-fahham M, Abd Al-wahid WA, Khwayyir HH, Kareem AR, Hasan SS, Al-naffakh J. Experimental study on the combustion of gaseous based fuel (LPG) in a tangential swirl burner of a steam boiler. J Therm Eng 2024;10:1226–1240. [CrossRef]
  • 9. Deshmukh MS, Deshmukh DS, Chavhan SP. A critical assessment of the implementation of phase change materials in the VCC of refrigerator. J Therm Eng 2022;8:562–572. [CrossRef]
  • 10. Anderson Process. A Closer Look at Heat Exchangers. Available at: https://www.andersonprocess.com/a-closer-look-at-heat-exchangers/. Accessed July 14, 2025.
  • 11. Kılıc M, Ullah A. Numerical investigation of effect of different parameter on heat transfer for a crossflow heat exchanger by using nanofluids. J Therm Eng 2021;7:1980–1989. [CrossRef]
  • 12. Li H, Wang Y, Han Y, Li W, Yang L, Guo J, Jiang F. A comprehensive review of heat transfer enhancement and flow characteristics in the concentric pipe heat exchanger. Powder Technol 2022;397:117037. [CrossRef]
  • 13. Tavousi E, Perera N, Flynn D, Hasan R. Heat transfer and fluid flow characteristics of the passive method in double tube heat exchangers: A critical review. Int J Thermofluids 2023;17:100282. [CrossRef]
  • 14. Liu S, Sakr M. A comprehensive review on passive heat transfer enhancements in pipe exchangers. Renew Sustain Energy Rev 2013;19:64–81. [CrossRef]
  • 15. Zhang J, Zhu X, Mondejar ME, Haglind F. A review of heat transfer enhancement techniques in plate heat exchangers. Renew Sustain Energy Rev 2019;101:305–328. [CrossRef]
  • 16. Alam T, Kim MH. A comprehensive review on single phase heat transfer enhancement techniques in heat exchanger applications. Renew Sustain Energy Rev 2018;81:813–839. [CrossRef]
  • 17. Mousa MH, Miljkovic N, Nawaz K. Review of heat transfer enhancement techniques for single phase flows. Renew Sustain Energy Rev 2021;137:110566. [CrossRef]
  • 18. Mousa MH, Yang CM, Nawaz K, Miljkovic N. Review of heat transfer enhancement techniques in two-phase flows for highly efficient and sustainable cooling. Renew Sustain Energy Rev 2022;155:111896. [CrossRef]
  • 19. Diaconu BM, Cruceru M, Anghelescu L. A critical review on heat transfer enhancement techniques in latent heat storage systems based on phase change materials. Passive and active techniques, system designs and optimization. J Energy Storage 2023;61:106830. [CrossRef]
  • 20. Bdaiwi M, Akroot A, Wahhab HAA, Assaf YH, Nawaf MY, Talal W. Enhancement heat exchanger performance by insert dimple surface ball inside tubes: A review. Results Eng 2023;19:101323. [CrossRef]
  • 21. Bhatnagar MK, Rai M, Ashraf M, Kapoor O, Mamatha TG, Vishnoi M. Efficiency enhancement of heat exchanger using inserts and nano-fluid: A review. Mater Today Proc 2021;44:4399–4403. [CrossRef]
  • 22. Habibishandiz M, Saghir MZ. A critical review of heat transfer enhancement methods in the presence of porous media, nanofluids, and microorganisms. Therm Sci Eng Prog 2022;30:101267. [CrossRef]
  • 23. Ho MLG, Oon CS, Tan LL, Wang Y, Hung YM. A review on nanofluids coupled with extended surfaces for heat transfer enhancement. Results Eng 2023;17:100957. [CrossRef]
  • 24. Khargotra R, Kumar R, Nadda R, Dhingra S, Alam T, Dobrota D, et al. RETRACTED: A review of different twisted tape configurations used in heat exchanger and their impact on thermal performance of the system. Heliyon 2023;9:e16390. [CrossRef]
  • 25. Shelare SD, Aglawe KR, Belkhode PN. A review on twisted tape inserts for enhancing the heat transfer. Mater Today Proc 2022;54:560–565. [CrossRef]
  • 26. Li W, Yu Z. Heat exchangers for cooling supercritical carbon dioxide and heat transfer enhancement: A review and assessment. Energy Rep 2021;7:4085–4105. [CrossRef]
  • 27. Nguyen DH, Ahn HS. A comprehensive review on micro/nanoscale surface modification techniques for heat transfer enhancement in heat exchanger. Int J Heat Mass Transf 2021;178:121601. [CrossRef]
  • 28. Sheikholeslami M, Gorji-Bandpy M, Ganji DD. Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices. Renew Sustain Energy Rev 2015;49:444–469. [CrossRef]
  • 29. Ahmed W, Zhan Y, Zhang H, Zhou X, Shahid M, Mudasar F, et al. Preparation, applications, stability and improved thermal characteristics of sonochemically synthesized nanosuspension using varying heat exchangers: A review. J Mol Liq 2023;387:122665. [CrossRef]
  • 30. Sadique H, Murtaza Q. Heat transfer augmentation in microchannel heat sink using secondary flows: A review. Int J Heat Mass Transf 2022;194:123063. [CrossRef]
  • 31. Ali MR, Al-Khaled K, Hussain M, Labidi T, Khan SU, Kolsi L, et al. Effect of design parameters on passive control of heat transfer enhancement phenomenon in heat exchangers: A brief review. Case Stud Therm Eng 2023;43:102674. [CrossRef]
  • 32. Babu R, Kumar P, Roy S, Ganesan R. A comprehensive review on compound heat transfer enhancement using passive techniques in a heat exchanger. Mater Today Proc 2022;54:428–436. [CrossRef]
  • 33. Hughes MT, Garimella S. A review of active enhancement methods for boiling and condensation. Int J Heat Mass Transf 2024;218:124752. [CrossRef]
  • 34. Dehbani M, Rahimi M, Rahimi Z. A review on convective heat transfer enhancement using ultrasound. Appl Therm Eng 2022;208:118273. [CrossRef]
  • 35. Mousavi Ajarostaghi SS, Zaboli M, Javadi H, Badenes B, Urchueguia JF. A review of recent passive heat transfer enhancement methods. Energies 2022;15:986. [CrossRef]
  • 36. Lu Q, Liu Y, Deng J, Luo X, Deng Z, Mi Z. Review of interdisciplinary heat transfer enhancement technology for nuclear reactor. Ann Nucl Energy 2021;159:108302. [CrossRef]
  • 37. Gugulothu R, Reddy KVK, Somanchi NS, Adithya EL. A review on enhancement of heat transfer techniques. Mater Today Proc 2017;4:1051–1056. [CrossRef]
  • 38. Edreis E, Petrov A. Types of heat exchangers in industry, their advantages and disadvantages, and the study of their parameters. In: IOP Conf Ser Mater Sci Eng 2020;963:012027. [CrossRef]
  • 39. Khan MA, Khalid MD, Ilyas M, Nauman MD, Asim M, Waheed K, et al. Experimental and numerical study of an innovative twined tube HX design. Ann Nucl Energy 2024;195:110185. [CrossRef]
  • 40. Li C, Hou J, Wang Y, Wei S, Zhou P, He Z, et al. Dynamic heat transfer characteristics of ice storage in smooth-tube and corrugated-tube heat exchangers. Appl Therm Eng 2023;223:120037. [CrossRef]
  • 41. Qin SY, Yu ZQ, Fang ZB, Liu W, Shan F. Effects of the wall heat flux on the flow characteristics of large-scale coherent structures in a pipe with enhanced heat transfer. Chem Eng Sci 2023;282:119284. [CrossRef]
  • 42. Hu Q, Qu X, Peng W, Wang J. Experimental and numerical investigation of turbulent heat transfer enhancement of an intermediate heat exchanger using corrugated tubes. Int J Heat Mass Transf 2022;185:122385. [CrossRef]
  • 43. Rezaei A, Hadibafekr S, Khalilian M, Chitsaz A, Mirzaee I, Shirvani H. A comprehensive numerical study on using lobed cross-sections in spiral heat exchanger: Fluid flow and heat transfer analysis. Int J Therm Sci 2023;193:108464. [CrossRef]
  • 44. Khashaei A, Ameri M, Azizifar S, Cheraghi MH. Experimental investigation on the heat transfer augmentation and friction factor inside tube enhanced with deep dimples. Int Commun Heat Mass Transf 2023;149:107149. [CrossRef]
  • 45. Xin F, Wu H, Sun Y, Zhang J, Yang Y, Zhao B. Numerical simulation study of heat transfer enhancement in a tube based on an eccentric structure. Energy Rep 2023;9:275–283. [CrossRef]
  • 46. Li W, Yu Z. Heat transfer enhancement of supercritical carbon dioxide in eccentrical helical tubes. Int J Heat Mass Transf 2024;221:125041. [CrossRef]
  • 47. Islam MS, Saha SC. Heat transfer enhancement investigation in a novel flat plate heat exchanger. Int J Therm Sci 2021;161:106763. [CrossRef]
  • 48. Yahiat F, Bouvier P, Russeil S, André C, Bougeard D. Swirl influence on thermo-hydraulic performances within a heat exchanger/reactor with macro deformed walls in laminar flow regime. Chem Eng Process Process Intensif 2023;189:109373. [CrossRef]
  • 49. Zhao J, Reda SA, Al-Zahrani KS, Singh PK, Amin MT, Tag-Eldin E, Emami F. Hydro-thermal and economic analyses of the air/water two-phase flow in a double tube heat exchanger equipped with wavy strip turbulator. Case Stud Therm Eng 2022;37:102260. [CrossRef]
  • 50. Luo J, Asadollahzadeh M, Chauhan BS, Abdalmonem A, Elbadawy I, Salah B, et al. First and second law analysis of a heat exchanger equipped with perforated wavy strip turbulator in the presence of water-CuO nanofluid. Case Stud Therm Eng 2024;54:103968. [CrossRef]
  • 51. Wang N, Ghoushchi SP, Sharma K, Elbadawy I, Mouldi A, Loukil H, et al. Thermal performance enhancement in a double tube heat exchanger using combination of bubble injection and helical coiled wire insert. Case Stud Therm Eng 2023;52:103722. [CrossRef]
  • 52. Al-darraji AR, Marzouk SA, Aljabr A, Almehmadi FA, Alqaed S, Kaood A, et al. Enhancement of heat transfer in a vertical shell and tube heat exchanger using air injection and new baffles: Experimental and numerical approach. Appl Therm Eng 2024;236:121493. [CrossRef]
  • 53. Zhou X, Bai H, Xu Q, Mansir IB, Ayed H, Abbas SZ, et al. Evaluations on effect of volume fraction of injected air on exergo-economic performance of a shell and tube heat exchanger. Case Stud Therm Eng 2022;35:101919. [CrossRef]
  • 54. Rastan H, Abdi A, Hamawandi B, Ignatowicz M, Meyer JP, Palm B, et al. Heat transfer study of enhanced additively manufactured minichannel heat exchangers. Int J Heat Mass Transf 2020;161:120271. [CrossRef]
  • 55. Aridi R, Ali S, Lemenand T, Faraj J, Khaled M. CFD analysis on the spatial effect of vortex generators in concentric tube heat exchangers: A comparative study. Int J Thermofluids 2022;16:100247. [CrossRef]
  • 56. Hassan JH, Hameed VM. Evaluate the hydrothermal behavior in the heat exchanger equipped with an innovative turbulator. S Afr J Chem Eng 2022;41:182–192. [CrossRef]
  • 57. Vahidifar S, Banihashemi S. Experimental and numerical evaluation of heat transfer enhancement by internal flow excitation. Int J Therm Sci 2023;192:108395. [CrossRef]
  • 58. Salhi JE, Zarrouk T, Merrouni AA, Salhi M, Salhi N. Numerical investigations of the impact of a novel turbulator configuration on the performances enhancement of heat exchangers. J Energy Storage 2022;46:103813. [CrossRef]
  • 59. Zhu S, Li L, Qi T, Hu W, Cheng C, Cao S, et al. The effect of swallow-shaped bionic ribs on the thermal-hydraulic performance of heat exchanger tubes. Therm Sci Eng Prog 2023;46:102180. [CrossRef]
  • 60. Zhao L, Qian Z, Wang X, Wang Q, Li C, Zhang Z, et al. Analysis of the thermal improvement of plate fin-tube heat exchanger with straight and curved rectangular winglet vortex generators. Case Stud Therm Eng 2023;51:103612. [CrossRef]
  • 61. Dadvand A, Hosseini S, Aghebatandish S, Khoo BC. Enhancement of heat and mass transfer in a microchannel via passive oscillation of a flexible vortex generator. Chem Eng Sci 2019;207:556–580. [CrossRef]
  • 62. Mousavi SMS, Alavi SMA. Experimental and numerical study to optimize flow and heat transfer of airfoil-shaped turbulators in a double-pipe heat exchanger. Appl Therm Eng 2022;215:118961. [CrossRef]
  • 63. Vishwakarma DK, Bhattacharyya S, Soni MK, Goel V, Meyer JP. Evaluating the heat transfer and pressure drop in the transitional flow regime for a horizontal circular tube fitted with wavy-tape inserts. Int J Therm Sci 2024;196:108677. [CrossRef]
  • 64. Farnam M, Khoshvaght-Aliabadi M, Asadollahzadeh MJ. Heat transfer intensification of agitated U-tube heat exchanger using twisted-tube and twisted-tape as passive techniques. Chem Eng Process Process Intensif 2018;133:137–147. [CrossRef]
  • 65. Luo J, Alghamdi A, Aldawi F, Moria H, Mouldi A, Loukil H, et al. Thermal-frictional behavior of new special shape twisted tape and helical coiled wire turbulators in engine heat exchangers system. Case Stud Therm Eng 2024;53:103877. [CrossRef]
  • 66. Forooghi P, Flory M, Bertsche D, Wetzel T, Frohnapfel B. Heat transfer enhancement on the liquid side of an industrially designed flat-tube heat exchanger with passive inserts: Numerical investigation. Appl Therm Eng 2017;123:573–583. [CrossRef]
  • 67. Heeraman J, Kumar R, Chaurasiya PK, Beloev HI, Iliev IK. Experimental evaluation and thermal performance analysis of a twisted tape with dimple configuration in a heat exchanger. Case Stud Therm Eng 2023;46:103003. [CrossRef]
  • 68. Farhadi S, Shekari Y, Omidvar P. Numerical and experimental investigation of laminar and turbulent convective heat transfer in a coiled flow reverser with twisted tape insert. Int J Therm Sci 2024;197:108781. [CrossRef]
  • 69. Ifraj NF, Fahad MK, Tahsin SH, Haque MR, Haque MM. Numerical investigation of the thermal performance optimization inside a heat exchanger tube using different novel combination of perforations on Y-shaped insert. Int J Therm Sci 2023;194:108583. [CrossRef]
  • 70. Gnanavel C, Saravanan R, Chandrasekaran M. Heat transfer enhancement through nano-fluids and twisted tape insert with rectangular cut on its rib in a double pipe heat exchanger. Mater Today Proc 2020;21:865–869. [CrossRef]
  • 71. Azhari AA, Milyani AH, Abu-Hamdeh NH, Hussin AM. Thermal improvement of heat exchanger with involve of swirl flow device utilizing nanomaterial. Case Stud Therm Eng 2023;44:102793. [CrossRef]
  • 72. Saini R, Gupta B, Shukla AP, Singh B, Baredar P, Bisen A, et al. CFD analysis of heat transfer enhancement in a concentric tube counter flow heat exchanger using nanofluids (SiO₂/H₂O, Al₂O₃/H₂O, CNTs/H₂O) and twisted tape turbulators. Mater Today Proc 2023;76:418–429. [CrossRef]
  • 73. Kumar V, Sahoo RR. 4 E’s (energy, exergy, economic, environmental) performance analysis of air heat exchanger equipped with various twisted turbulator inserts utilizing ternary hybrid nanofluids. Alex Eng J 2022;61:5033–5050. [CrossRef]
  • 74. Das L, Aslfattahi N, Habib K, Saidur R, Das A, Kadirgama K, et al. Thermohydraulic performance investigation of a heat exchanger with combined effect of ribbed insert and Therminol55/MXene+ Al₂O₃ nanofluid: A numerical two-phase approach. Heliyon 2023;9:e14283. [CrossRef]
  • 75. Nguyen DH, Nguyen PQ, Rehman RU, Kim JF, Ahn HS. Optimizing the effect of micro-surface on the thermal hydraulic performance of plate heat exchanger. Appl Therm Eng 2024;239:122172. [CrossRef]
  • 76. Khalaf-Allah RA, Mohamed SM, Saeed E, Tolan M. Augmentation of water pool boiling heat transfer using heating surfaces fabricated by multi passive techniques. Appl Therm Eng 2023;219:119693. [CrossRef]
  • 77. Moharana S, Das M, Pecherkin N, Pavlenko A, Volodin O. Experimental assessment of enhanced 2×3 semi-closed microstructure tube bundle as an alternative in shell and tube heat exchangers. Appl Therm Eng 2023;232:120966. [CrossRef]
  • 78. Alnaimat F, AlHamad IM, Mathew B. Heat transfer intensification in MEMS two-fluid parallel flow heat exchangers by embedding pin fins in microchannels. Int J Thermofluids 2021;9:100048. [CrossRef]
  • 79. Dizjeh SZ, Brinkerhoff J. Numerical investigations of turbulent heat transfer enhancement in circular tubes via modified internal profiles. Int J Thermofluids 2022;16:100237. [CrossRef]
  • 80. Alteneiji M, Ali MIH, Khan KA, Al-Rub RKA. Heat transfer effectiveness characteristics maps for additively manufactured TPMS compact heat exchangers. Energy Storage Saving 2022;1:153–161. [CrossRef]
  • 81. Yan K, Deng H, Xiao Y, Wang J, Luo Y. Thermo-hydraulic performance evaluation through experiment and simulation of additive manufactured Gyroid-structured heat exchanger. Appl Therm Eng 2024;241:122402. [CrossRef]
  • 82. Liu M, Calautit JK. A parametric investigation of the heat transfer enhancement of tube bank heat exchanger with reversed trapezoidal profile fins. Therm Sci Eng Prog 2023;42:101914. [CrossRef]
  • 83. Soheibi H, Shomali Z, Ghazanfarian J. Combined active-passive heat transfer control using slotted fins and oscillation: The cases of single cylinder and tube bank. Int J Heat Mass Transf 2022;182:121972. [CrossRef]
  • 84. Searle M, Ramesh S, Straub D. Optimization-inspired pin-fin array for supercritical carbon dioxide recuperator. Appl Therm Eng 2024;241:122335. [CrossRef]
  • 85. Tariq H, Sajjad R, Khan MZU, Ghachem K, Naqvi AA, Khan SU, et al. Effective waste heat recovery from engine exhaust using fin prolonged heat exchanger with graphene oxide nanoparticles. J Indian Chem Soc 2023;100:100911. [CrossRef]
  • 86. Marzouk SA, Abou Al-Sood MM, El-Said EM, Younes MM, El-Fakharany MK. A comprehensive review of methods of heat transfer enhancement in shell and tube heat exchangers. J Therm Anal Calorim 2023;148:7539–7578. [CrossRef]
  • 87. Mazharmanesh S, Tian FB, Lei C. Enhancing heat transfer using flow-induced oscillations of a flexible baffle attached to a vertical heated flat surface. Int J Therm Sci 2023;194:108604. [CrossRef]
  • 88. Boonloi A, Jedsadaratanachai W. Flow and heat transfer profiles in a heat exchanger tube equipped with XV baffles (XVB): A numerical analysis. Case Stud Therm Eng 2023;49:103263. [CrossRef]
  • 89. Rahman MA, Dhiman SK. Performance evaluation of turbulent circular heat exchanger with a novel flow deflector-type baffle plate. J Eng Res 2024;12:941–949. [CrossRef]
  • 90. Abidi A, Sajadi SM. Numerical assessment of hydraulic behavior and thermal efficiency of multiphase hybrid nanofluid in a shell-and-tube heat exchanger with inclined baffles. Eng Anal Bound Elem 2023;156:114–125. [CrossRef]
  • 91. Ma Y, Xie G, Hooman K. Review of printed circuit heat exchangers and its applications in solar thermal energy. Renew Sustain Energy Rev 2022;155:111933. [CrossRef]
  • 92. Pandey V, Kumar P. Modelling and analysis of pre-cooler for a sCO2 Brayton cycle with different banking configurations using a stack-based model. Appl Therm Eng 2024;242:122466. [CrossRef]
  • 93. Zhong SG, Ren Y, Wang PD, Wu WD, Yang YY, Yang QG. Experimental test of rectangular microchannel printed circuit heat exchanger using supercritical carbon dioxide as working fluid. J Supercrit Fluids 2023;200:105967. [CrossRef]
  • 94. Xu P, Zhou T, Fu Z, Mao S, Chen J, Jiang Y. Heat transfer performance of liquid lead–bismuth eutectic and supercritical carbon dioxide in double D-type straight channel. Appl Therm Eng 2023;219:119484. [CrossRef]
  • 95. Li X, Su X, Gu L, Liu D, Wang G, Wang X, Guo Y. Investigation on thermo-hydraulic characteristic of lead–bismuth eutectic and supercritical carbon dioxide in a straight-channel printed circuit heat exchanger. Appl Therm Eng 2024;240:122294. [CrossRef]
  • 96. Li Q, Lin ZJ, Yang L, Wang Y, Li Y, Cai WH. Micro segment analysis of supercritical methane thermal-hydraulic performance and pseudo-boiling in a PCHE straight channel. Pet Sci 2024;21:1275–1289. [CrossRef]
  • 97. Xu J, Ma Y, Han Z, Wang Q, Ma T. Thermal design of printed circuit heat exchanger used for lead-bismuth fast reactor. Appl Therm Eng 2023;226:120343. [CrossRef]
  • 98. Lee G, Joo Y, Yu Y, Kim HG. Dual-fluid topology optimization of printed-circuit heat exchanger with low-pumping-power design. Case Stud Therm Eng 2023;49:103318. [CrossRef]
  • 99. Tong ZX, Zou TT, Jiang T, Yang JQ. Investigation of field synergy principle for convective heat transfer with temperature-dependent fluid properties. Case Stud Therm Eng 2023;45:102926. [CrossRef]
  • 100. Lao J, Ding J, Fu Q, Wang W, Lu J. Heat transfer between molten salt and supercritical CO2 in discontinuous fins print circuits heat exchanger. Energy Procedia 2019;158:5832–5837. [CrossRef]
  • 101. He M, Talaat K, Chen M. Design and optimization of molten salt printed circuit steam generators. Appl Therm Eng 2024;238:122161. [CrossRef]
  • 102. Liu SH, Liu RL, Huang YP, Zhu XL, Yang L, Tang J, et al. Experimental study on flow and heat transfer of supercritical carbon dioxide in zigzag channels with bending angle 30° for advanced nuclear systems. Ann Nucl Energy 2023;185:109720. [CrossRef]
  • 103. Saeed M, Berrouk AS, Al Wahedi YF, Alam K, Singh MP, Siddiqui MS, et al. A machine learning-based study of sCO2 cycle precooler's design and performance with straight and zigzag channels. Appl Therm Eng 2024;236:121522. [CrossRef]
  • 104. Goto T, Jige D, Inoue N, Sagawa K. Condensation flow visualization, heat transfer, and pressure drop in printed circuit heat exchangers with straight and wavy microchannels. Int J Refrig 2023;152:234–240. [CrossRef]
  • 105. Ahmed MM, Ehsan MM. Design and off-design performance analysis of a zigzag channeled precooler for indirect cooling system of supercritical CO2 recompression cycle incorporated with a flow-bypass system. Appl Therm Eng 2023;226:120321. [CrossRef]
  • 106. Liu S, Gao C, Liu M, Chen Y, Tang J, Huang Y, et al. An improved zigzag-type printed circuit heat exchanger for supercritical CO2 Brayton cycles. Ann Nucl Energy 2023;183:109653. [CrossRef]
  • 107. Khan MA, Sohail SA, Waheed K, Siddique W, Ilyas M, Aydogan F, et al. Numerical investigation of thermal-hydraulic design of a printed circuit steam generator. Ann Nucl Energy 2023;186:109736. [CrossRef]
  • 108. Wang J, Yan XP, Boersma BJ, Lu MJ, Liu X. Numerical investigation on the thermal-hydraulic performance of the modified channel supercritical CO2 printed circuit heat exchanger. Appl Therm Eng 2023;221:119678. [CrossRef]
  • 109. Liu H, Zhang Z, Yang S, Chen G, Cong T, Du H. Numerical investigation on flow and heat transfer characteristics of a PCHE with liquid lead–bismuth eutectic and sCO2 as working fluids. Ann Nucl Energy 2024;200:110367. [CrossRef]
  • 110. Aakre SR, Anderson MH. Pressure drop and heat transfer characteristics of nitrate salt and supercritical CO2 in a diffusion-bonded heat exchanger. Int J Heat Mass Transf 2022;189:122691. [CrossRef]
  • 111. Samarmad AO, Jaffal HM. Examining the effect of backward/forward-facing wavy channels on the thermohydraulic performance of a printed circuit heat exchanger under the laminar flow regime. Int J Thermofluids 2023;20:100485. [CrossRef]
  • 112. Li XL, Li YF, Zhang ZD, Fan YH, Wang JY, Wang K, et al. Optimization of a wavy-channel compact solar receiver with supercritical carbon dioxide. Appl Therm Eng 2024;241:122373. [CrossRef]
  • 113. Samarmad AO, Jaffal HM. Performance evaluation of a printed circuit heat exchanger with a novel two-way corrugated channel. Results Eng 2023;19:101303. [CrossRef]
  • 114. Tu Y, Zeng Y. Numerical study on flow and heat transfer characteristics of supercritical CO2 in zigzag microchannels. Energies 2022;15:2099. [CrossRef]
  • 115. Park JH, Kim MH. Experimental investigation on comprehensive thermal-hydraulic performance of supercritical CO2 in a NACA 0020 airfoil fin printed circuit heat exchanger. Int J Heat Mass Transf 2024;220:124947. [CrossRef]
  • 116. Han Z, Cui X, Guo J, Zhang H, Zhou J, Cheng K, et al. Experimental and numerical studies on the thermal-hydraulic performance of a novel airfoil fins printed circuit heat exchanger. Int J Heat Mass Transf 2023;215:124655. [CrossRef]
  • 117. Chung S, Lee SW, Kim N, Shin SM, Kim MH, Jo H. Experimental study of printed-circuit heat exchangers with airfoil and straight channels for optimized recuperators in nitrogen Brayton cycle. Appl Therm Eng 2023;218:119100. [CrossRef]
  • 118. Li Z, Lu D, Wang Z, Cao Q. Analysis on flow and heat transfer performance of SCO2 in airfoil channels with different fin angles of attack. Energy 2023;282:128600. [CrossRef]
  • 119. Li Z, Lu D, Wang X, Cao Q. Analysis on the flow and heat transfer performance of SCO2 in airfoil channels with different structural parameters. Int J Heat Mass Transf 2024;219:124846. [CrossRef]
  • 120. Liu X, Zhao Z, Li C, Ding J, Pu X. Investigation of local flow and heat transfer of supercritical LNG in airfoil channels with different vortex generators using field synergy principle. Appl Therm Eng 2024;242:122424. [CrossRef]
  • 121. Wu J, Xiao J. Numerical study of crossed airfoil fins in a printed circuit heat exchanger. Appl Therm Eng 2023;230:120646. [CrossRef]
  • 122. Li Z, Lu D, Cao Q, Wang Y, Liu Y. Research on the enhanced heat transfer performance of SCO2 caused by vortex generators with different geometric dimensions in novel airfoil channels. Prog Nucl Energy 2024;169:105057. [CrossRef]
  • 123. Ke Z, Zhang Y. Heat transfer enhancement in a rectangular channel with flow-induced pitching, heaving or surging of an airfoil. Int Commun Heat Mass Transf 2023;142:106657. [CrossRef]
  • 124. Jin F, Chen D. Numerical study on flow distribution of supercritical CO2 in multiple channels of printed circuit heat exchanger. Appl Therm Eng 2023;234:121185. [CrossRef]
  • 125. Samykano M. Role of phase change materials in thermal energy storage: Potential, recent progress and technical challenges. Sustain Energy Technol Assess 2022;52:102234. [CrossRef]
  • 126. K Sunil, Muniamuthu S, Aandi M, Amirthalingam P, Muthuraja MA. Effect of charging and discharging process of PCM with paraffin and Al₂O₃ additive subjected to three point temperature locations. J Ecol Eng 2022;23:34–42. [CrossRef]
  • 127. Pignata A, Minuto FD, Lanzini A, Papurello D. A feasibility study of a tube bundle exchanger with phase change materials: A case study. J Build Eng 2023;78:107622. [CrossRef]
  • 128. Arqam M, Raffa LS, Clemon LM, Islam MS, Ryall M, Bennett NS. Numerical and experimental investigation of a phase change material radial fin heat sink for electronics cooling. J Energy Storage 2024;98:113113. [CrossRef]
  • 129. Taghavi M, Poikelispää M, Agrawal V, Syrjälä S, Joronen T. Numerical investigation of a plate heat exchanger thermal energy storage system with phase change material. J Energy Storage 2023;61:106785. [CrossRef]
  • 130. Abdulateef AM, Abdulateef J, Sopian K, Mat S, Ibrahim A. Optimal fin parameters used for enhancing the melting and solidification of phase-change material in a heat exchanger unit. Case Stud Therm Eng 2019;14:100487. [CrossRef]
  • 131. Mastani Joybari M, Selvnes H, Vingelsgård E, Sevault A, Hafner A. Parametric study of low-temperature thermal energy storage using carbon dioxide as the phase change material in pillow plate heat exchangers. Appl Therm Eng 2023;221:119796. [CrossRef]
  • 132. Khader MA, Ghavami M, Al-Zaili J, Sayma AI. Residential Micro-CHP system with integrated phase change material thermal energy storage. Energy 2024;300:131606. [CrossRef]
  • 133. Asgari M, Javidan M, Nozari M, Asgari A, Ganji DD. Simulation of solidification process of phase change materials in a heat exchanger using branch-shaped fins. Case Stud Therm Eng 2021;25:100835. [CrossRef]
  • 134. Yazdani MR, Lagerström A, Vuorinen V. Simultaneous effect of biochar-additive and lightweight heat exchanger on phase change material for low-grade thermal energy storage. J Energy Storage 2022;55:105478. [CrossRef]
  • 135. Zhang J, Cao Z, Huang S, Huang X, Han Y, Wen C, et al. Solidification performance improvement of phase change materials for latent heat thermal energy storage using novel branch-structured fins and nanoparticles. Appl Energy 2023;342:121158. [CrossRef]
  • 136. Fan M, Jiang H, Wang J, Li H, Jin F, Kong X. Study and optimization on heat storage and release characteristics of a cascaded sensible-latent heat composite energy storage heat sink. Energy Built Environ 2025;6:161–172. [CrossRef]
  • 137. Safari V, Kamkari B, Gharbi A. Wedge-shaped fins to enhance thermal performance of shell and tube heat exchangers containing phase change material: An experimental study. Therm Sci Eng Prog 2024;49:102474. [CrossRef]
There are 137 citations in total.

Details

Primary Language English
Subjects Aerodynamics (Excl. Hypersonic Aerodynamics)
Journal Section Reviews
Authors

Muhammad Ali Khan This is me 0009-0000-9656-7797

Muhammad Ilyas This is me 0000-0002-0457-535X

Khalid Waheed This is me 0000-0002-7612-4857

Inamul Haq This is me 0009-0009-0343-9186

Fatih Aydogan This is me 0000-0002-3865-7193

Publication Date July 31, 2025
Submission Date October 6, 2024
Acceptance Date October 31, 2024
Published in Issue Year 2025 Volume: 11 Issue: 4

Cite

APA Khan, M. A., Ilyas, M., Waheed, K., … Haq, I. (2025). Advances in passive heat transfer enhancement for heat exchangers: a comprehensive review. Journal of Thermal Engineering, 11(4), 1148-1159. https://doi.org/10.14744/thermal.0000972
AMA Khan MA, Ilyas M, Waheed K, Haq I, Aydogan F. Advances in passive heat transfer enhancement for heat exchangers: a comprehensive review. Journal of Thermal Engineering. July 2025;11(4):1148-1159. doi:10.14744/thermal.0000972
Chicago Khan, Muhammad Ali, Muhammad Ilyas, Khalid Waheed, Inamul Haq, and Fatih Aydogan. “Advances in Passive Heat Transfer Enhancement for Heat Exchangers: A Comprehensive Review”. Journal of Thermal Engineering 11, no. 4 (July 2025): 1148-59. https://doi.org/10.14744/thermal.0000972.
EndNote Khan MA, Ilyas M, Waheed K, Haq I, Aydogan F (July 1, 2025) Advances in passive heat transfer enhancement for heat exchangers: a comprehensive review. Journal of Thermal Engineering 11 4 1148–1159.
IEEE M. A. Khan, M. Ilyas, K. Waheed, I. Haq, and F. Aydogan, “Advances in passive heat transfer enhancement for heat exchangers: a comprehensive review”, Journal of Thermal Engineering, vol. 11, no. 4, pp. 1148–1159, 2025, doi: 10.14744/thermal.0000972.
ISNAD Khan, Muhammad Ali et al. “Advances in Passive Heat Transfer Enhancement for Heat Exchangers: A Comprehensive Review”. Journal of Thermal Engineering 11/4 (July2025), 1148-1159. https://doi.org/10.14744/thermal.0000972.
JAMA Khan MA, Ilyas M, Waheed K, Haq I, Aydogan F. Advances in passive heat transfer enhancement for heat exchangers: a comprehensive review. Journal of Thermal Engineering. 2025;11:1148–1159.
MLA Khan, Muhammad Ali et al. “Advances in Passive Heat Transfer Enhancement for Heat Exchangers: A Comprehensive Review”. Journal of Thermal Engineering, vol. 11, no. 4, 2025, pp. 1148-59, doi:10.14744/thermal.0000972.
Vancouver Khan MA, Ilyas M, Waheed K, Haq I, Aydogan F. Advances in passive heat transfer enhancement for heat exchangers: a comprehensive review. Journal of Thermal Engineering. 2025;11(4):1148-59.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering