Review
BibTex RIS Cite

Traditional and Technological Methods for Reducing the Glycemic Index

Year 2025, Volume: 30 Issue: 1, 363 - 376, 29.04.2025
https://doi.org/10.53433/yyufbed.1498470

Abstract

The prevalence of diabetes and other chronic diseases has encouraged the research of various methods for the prevention and management of these diseases. These methods include implementing a low-carbohydrate diet by reducing carbohydrate intake. Dietary interventions play an important role in the prevention and management of diabetes and aim to keep post-meal blood sugar levels low and stable. The glycemic index (GI) is an important measure that evaluates the effects of foods on blood sugar levels and contributes to blood sugar regulation. Foods with a low GI value (55 and below) raise blood sugar slowly, while foods with a high GI value (70 and above) raise it rapidly. A low GI value plays a critical role in the prevention of chronic diseases such as diabetes, obesity and cardiovascular diseases. In addition to traditional methods such as boiling, cooking and drying, modern technologies such as infrared energy, microwave technology and ultrasonication are also used to reduce the GI value. These methods help lower the GI value by changing the structure of foods and extending their digestion time. The aim of this review is to explain the role of GI value in healthy nutrition and disease management and to examine the traditional and technological methods used in the production of foods with low GI value. In addition, it is aimed to contribute to the awareness of healthy food preferences by presenting examples from scientific studies in this field.

References

  • Akyereko, Y. G., Wireko-Manu, F. D., & Oduro, I. (2020). Influence of processing methods on food components and glycaemic index of cassava-based traditional foods. Journal of Food and Nutrition Sciences, 8(1). https://doi.org/10.11648/j.jfns.20200801.12
  • Atkinson, F. S., Foster-Powell, K., & Brand-Miller, J. C. (2008). International tables of glycemic index and glycemic load values: 2008. Diabetes Care, 31(12), 2281-2283. https://doi.org/10.2337/dc08-1239
  • Babu, A. S., Mohan, R. J., & Parimalavalli, R. (2019). Effect of single and dual-modifications on stability and structural characteristics of foxtail millet starch. Food Chemistry, 271, 457-465. https://doi.org/10.1016/j.foodchem.2018.07.197
  • Bagchi, T. B., Das, B., Kumar, A., Kumar, G., Banerjee, J., Gain, H., Adhikari, A. A., & Chattopadhyay, K. (2023). Impact of cooking, parboiling and fermentation on nutritional components, predicted glycemic index and pasting properties of rice. Journal of Cereal Science, 114, 103763. https://doi.org/10.1016/j.jcs.2023.103763
  • Baggio, A., Federici, E., Gentilucci, V., Folloni, S., Dall'Asta, M., Bernini, V., Pellegrini, N., & Vittadini, E. (2023). Brown rice and pulses for the development of shelf-stable and low glycemic index ready-to-eat meals. Journal of Functional Foods, 100, 105364. https://doi.org/10.1016/j.jff.2022.105364
  • Barclay, A. W., Petocz, P., McMillan-Price, J., Flood, V. M., Prvan, T., Mitchell, P., & Brand-Miller, J. C. (2008). Glycemic index, glycemic load, and chronic disease risk—a meta-analysis of observational studies. The American Journal of Clinical Nutrition, 87(3), 627-637. https://doi.org/10.1093/ajcn/87.3.627
  • Behall, K. M., Scholfield, D. J., & Canary, J. (1988). Effect of starch structure on glucose and insulin responses in adults. The American Journal of Clinical Nutrition, 47(3), 428-432. https://doi.org/10.1093/ajcn/47.3.428
  • Brand-Miller, J. C. (2003). Glycemic load and chronic disease. Nutrition Reviews, 61, 49-55. https://doi.org/10.1301/nr.2003.may.S49-S55
  • Brand-Miller, J. C., Holt, S. H., Pawlak, D. B., & McMillan, J. (2002). Glycemic index and obesity. The American Journal of Clinical Nutrition, 76(1), 281S-285S. https://doi.org/10.1093/ajcn/76/1.281S
  • Brand-Miller, J., McMillan-Price, J., Steinbeck, K., & Caterson, I. (2009). Dietary glycemic index: health implications. Journal of the American College of Nutrition, 28(sup4), 446S-449S. https://doi.org/10.1080/07315724.2009.10718110
  • Ding, Y., Xiao, Y., Ouyang, Q., Luo, F., & Lin, Q. (2021). Modulating the in vitro digestibility of chemically modified starch ingredient by a non-thermal processing technology of ultrasonic treatment. Ultrasonics Sonochemistry, 70, 105350. https://doi.org/10.1016/j.ultsonch.2020.105350
  • Elizondo-Montemayor, L., Hernández-Brenes, C., Ramos-Parra, P. A., Moreno-Sánchez, D., Nieblas, B., Rosas-Pérez, A. M., & Lamadrid-Zertuche, A. C. (2015). High hydrostatic pressure processing reduces the glycemic index of fresh mango puree in healthy subjects. Food & Function, 6(4), 1352-1360. https://doi.org/10.1039/C4FO01005A
  • Fernandes, G., Velangi, A., & Wolever, T. M. (2005). Glycemic index of potatoes commonly consumed in North America. Journal of the American Dietetic Association, 105(4), 557-562. https://doi.org/10.1016/j.jada.2005.01.003
  • Foster-Powell, K., Holt, S. H., & Brand-Miller, J. C. (2002). International table of glycemic index and glycemic load values: 2002. The American Journal of Clinical Nutrition, 76(1), 5-56. https://doi.org/10.1093/ajcn/76.1.5
  • Frei, M., Siddhuraju, P., & Becker, K. (2003). Studies on the in vitro starch digestibility and the glycemic index of six different indigenous rice cultivars from the Philippines. Food Chemistry, 83(3), 395-402. https://doi.org/10.1016/S0308-8146(03)00101-8
  • Galanakis, C. M. (2021). Functionality of food components and emerging technologies. Foods, 10(1), 128. https://doi.org/10.3390/foods10010128
  • Gnagnarella, P., Gandini, S., La Vecchia, C., & Maisonneuve, P. (2008). Glycemic index, glycemic load, and cancer risk: a meta-analysis. The American Journal of Clinical Nutrition, 87(6), 1793-1801. https://doi.org/10.1093/ajcn/87.6.1793
  • Goel, C., Semwal, A. D., Khan, A., Kumar, S., & Sharma, G. K. (2020). Physical modification of starch: changes in glycemic index, starch fractions, physicochemical and functional properties of heat-moisture treated buckwheat starch. Journal of Food Science and Technology, 57, 2941-2948. https://doi.org/10.1007/s13197-020-04326-4
  • Hall, A. E., & Moraru, C. I. (2022). Comparative effects of high pressure processing and heat treatment on in vitro digestibility of pea protein and starch. npj Science of Food, 6(1), 2. https://doi.org/10.1038/s41538-021-00116-0
  • Harasym, J., & Olędzki, R. (2018). Comparison of conventional and microwave assisted heating on carbohydrate content, antioxidant capacity and postprandial glycemic response in oat meals. Nutrients, 10(2), 207. https://doi.org/10.3390/nu10020207
  • Hsiao, Y. T., & Wang, C. Y. (2020). Microbial shelf-life, starch physicochemical properties, and in vitro digestibility of pigeon pea Milk altered by high pressure processing. Molecules, 25(11), 2516. https://doi.org/10.3390/molecules25112516
  • Hu, P., Zhao, H., Duan, Z., Linlin, Z., & Wu, D. (2004). Starch digestibility and the estimated glycemic score of different types of rice differing in amylose contents. Journal of Cereal Science, 40(3), 231-237. https://doi.org/10.1016/j.jcs.2004.06.001
  • Huang, H., Wu, M., Wu, Y., & Ouyang, J. (2024). Preparation of low estimated glycemic index (eGI) chestnut flours using enzymatic debranching and heat moisture treatment. Journal of Food Composition and Analysis, 131, 106260. https://doi.org/10.1016/j.jfca.2024.106260
  • Jakobsen, M. U., O’Reilly, E. J., Heitmann, B. L., Pereira, M. A., Bälter, K., Fraser, G. E., ... & Ascherio, A. (2009). Major types of dietary fat and risk of coronary heart disease: a pooled analysis of 11 cohort studies. The American Journal of Clinical Nutrition, 89(5), 1425-1432. https://doi.org/10.3945/ajcn.2008.27124
  • Jakobsen, M. U., Dethlefsen, C., Joensen, A. M., Stegger, J., Tjønneland, A., Schmidt, E. B., & Overvad, K. (2010). Intake of carbohydrates compared with intake of saturated fatty acids and risk of myocardial infarction: importance of the glycemic index. The American Journal of Clinical Nutrition, 91(6), 1764-1768. https://doi.org/10.3945/ajcn.2009.29099
  • Jeevarathinam, G., Ramniwas, S., Singh, P., Rustagi, S., Asdaq, S. M. B., & Pandiselvam, R. (2024). Macromolecular, thermal, and nonthermal technologies for reduction of glycemic index in food-A review. Food Chemistry, 138742. https://doi.org/10.1016/j.foodchem.2024.138742
  • Jenkins, D. J., Kendall, C. W., Augustin, L. S., Franceschi, S., Hamidi, M., Marchie, A., Jenkins, A. L., & Axelsen, M. (2002). Glycemic index: overview of implications in health and disease. The American Journal of Clinical Nutrition, 76(1), 266S-273S. https://doi.org/10.1093/ajcn/76/1.266S
  • Jenkins, D. J., Kendall, C. W., McKeown-Eyssen, G., Josse, R. G., Silverberg, J., Booth, G. L., Vidgen, E., Josse, A. R., Nguyen, T. H., Corrigan, S., Banach, M. S., Ares, S., Mitchell, S., Emam, A., Augustin, L. S. A., Parker, T. L., & Leiter, L. A. (2008). Effect of a low–glycemic index or a high–cereal fiber diet on type 2 diabetes: a randomized trial. Jama, 300(23), 2742-2753. https://doi.org/10.1001/jama.2008.808
  • Jenkins, D. J., Kendall, C. W., Augustin, L. S., Mitchell, S., Sahye-Pudaruth, S., Mejia, S. B., ... & Josse, R. G. (2012). Effect of legumes as part of a low glycemic index diet on glycemic control and cardiovascular risk factors in type 2 diabetes mellitus: a randomized controlled trial. Archives of Internal Medicine, 172(21), 1653-1660. https://doi.org/10.1001/2013.jamainternmed.70
  • Jenkins, D. J., Wolever, T. M., Taylor, R. H., Barker, H., Fielden, H., Baldwin, J. M., Bowling, A. C., Newman, H. C., Jenkins, A. L., & Goff, D. V. (1981). Glycemic index of foods: a physiological basis for carbohydrate exchange. The American Journal of Clinical Nutrition, 34(3), 362-366. https://doi.org/10.1093/ajcn/34.3.362
  • Jenkins, D. J., Wolever, T. M., Thorne, M. J., Jenkins, A. L., Wong, G. S., Josse, R. G., & Csima, A. (1984). The relationship between glycemic response, digestibility, and factors influencing the dietary habits of diabetics. The American Journal of Clinical Nutrition, 40(6), 1175-1191. https://doi.org/10.1093/ajcn/40.6.1175
  • Jukanti, A. K., Pautong, P. A., Liu, Q., & Sreenivasulu, N. (2020). Low glycemic index rice—a desired trait in starchy staples. Trends in Food Science & Technology, 106, 132-149. https://doi.org/10.1016/j.tifs.2020.10.006
  • Kaur, B., Ranawana, V., & Henry, J. (2016). The glycemic index of rice and rice products: a review, and table of GI values. Critical Reviews in Food Science and Nutrition, 56(2), 215-236. https://doi.org/10.1080/10408398.2012.717976
  • Kirpitch, A. R., & Maryniuk, M. D. (2011). The 3 R's of glycemic index: recommendations, research, and the real world. Clinical Diabetes, 29(4), 155-160.
  • Kumar, A., Lal, M. K., Nayak, S., Sahoo, U., Behera, A., Bagchi, T. B., Parameswaran, C., Swain, P., & Sharma, S. (2022). Effect of parboiling on starch digestibility and mineral bioavailability in rice (Oryza sativa L.). Lwt, 156, 113026. https://doi.org/10.1016/j.lwt.2021.113026
  • Kunyanee, K., Van Ngo, T., Kusumawardani, S., & Lungsakul, N. (2022). Ultrasound-chilling assisted annealing treatment to produce a lower glycemic index of white rice grains with different amylose content. Ultrasonics Sonochemistry, 87, 106055. https://doi.org/10.1016/j.ultsonch.2022.106055
  • Lal, M. K., Singh, B., Sharma, S., Singh, M. P., & Kumar, A. (2021). Glycemic index of starchy crops and factors affecting its digestibility: A review. Trends in Food Science & Technology, 111, 741-755. https://doi.org/10.1016/j.tifs.2021.02.067
  • Leszczyński, W. (2004). Resistant starch-classification, structure, production. Polish Journal of Food and Nutrition Sciences, 54(1s), 37-50.
  • Lu, S., Cik, T. T., Lii, C. Y., Lai, P., & Chen, H. H. (2013). Effect of amylose content on structure, texture and α-amylase reactivity of cooked rice. LWT-Food Science and Technology, 54(1), 224-228. https://doi.org/10.1016/j.lwt.2013.05.028
  • Ludwig, D. S. (2003). Dietary glycemic index and the regulation of body weight. Lipids, 38(2), 117-121. https://doi.org/10.1007/s11745-003-1040-x
  • Mansoor, R., Ali, T. M., Arif, S., Saeed, M., & Hasnain, A. (2022). Impact of barley flour addition on dough rheology, glycemic index, textural and sensory characteristics of taftaan flat bread. Food Chemistry Advances, 1, 100148. https://doi.org/10.1016/j.focha.2022.100148
  • Mirrahimi, A., de Souza, R. J., Chiavaroli, L., Sievenpiper, J. L., Beyene, J., Hanley, A. J., ... & Jenkins, D. J. (2012). Associations of glycemic index and load with coronary heart disease events: a systematic review and meta‐analysis of prospective cohorts. Journal of the American Heart Association, 1(5), e000752. https://doi.org/10.1161/JAHA.112.000752
  • Nabb, S. L., & Benton, D. (2006). The effect of the interaction between glucose tolerance and breakfasts varying in carbohydrate and fibre on mood and cognition. Nutritional Neuroscience, 9(3-4), 161-168. https://doi.org/10.1080/10284150600955099
  • Olawoye, B., Gbadamosi, S. O., Otemuyiwa, I. O., & Akanbi, C. T. (2020). Gluten-free cookies with low glycemic index and glycemic load: optimization of the process variables via response surface methodology and artificial neural network. Heliyon, 6(10).
  • Panlasigui, L. N., & Thompson, L. U. (2006). Blood glucose lowering effects of brown rice in normal and diabetic subjects. International Journal of Food Sciences and Nutrition, 57(3-4), 151-158. https://doi.org/10.1080/09637480500410879
  • Priyadarshini, S. R., Moses, J. A., & Anandharamakrishnan, C. (2021). Prediction of in-vitro glycemic responses of biscuits in an engineered small intestine system. Food Research International, 147, 110459. https://doi.org/10.1016/j.foodres.2021.110459
  • Razzak, M., Rahman, M. A., Khan, R. A., & Huque, R. (2021). Gamma radiation application to rice: Reduced glycemic index in relation to modified carbohydrate observed in FTIR spectra. Current Research in Food Science, 4, 11-17. https://doi.org/10.1016/j.crfs.2020.12.002
  • Ren, X., Chen, J., Molla, M. M., Wang, C., Diao, X., & Shen, Q. (2016). In vitro starch digestibility and in vivo glycemic response of foxtail millet and its products. Food & Function, 7(1), 372-379. https://doi.org/10.1039/C5FO01074H
  • Rizkalla, S. W., Taghrid, L., Laromiguiere, M., Huet, D., Boillot, J., Rigoir, A., Elgrably, F., & Slama, G. (2004). Improved plasma glucose control, whole-body glucose utilization, and lipid profile on a low-glycemic index diet in type 2 diabetic men: a randomized controlled trial. Diabetes Care, 27(8), 1866-1872. https://doi.org/10.2337/diacare.27.8.1866
  • Sagili, V. S., Chakrabarti, P., Jayanty, S., Kardile, H., & Sathuvalli, V. (2022). The glycemic index and human health with an emphasis on potatoes. Foods, 11(15), 2302. https://doi.org/10.3390/foods11152302
  • Salmerón, J., Ascherio, A., Rimm, E. B., Colditz, G. A., Spiegelman, D., Jenkins, D. J., Stampfer, M. J., Wing, A. L., & Willett, W. C. (1997). Dietary fiber, glycemic load, and risk of NIDDM in men. Diabetes Care, 20(4), 545-550. https://doi.org/10.2337/diacare.20.4.545
  • Shanmugam, S., Mathiyazhagan, J., Parthasarathy, V., Jeevan, R. G., Gayathri, R., Karthikeyan, P., Bakshi, P., Malleshi, N. G., Anjana, R. M., Unnikrishnan, R., Krishnaswamy, K., Jamdar, S. N., Mohan, V., & Vasudevan, S. (2022). Effect of gamma irradiation on shelf life, nutritional, and glycemic properties of three indian brown rice varieties. Journal of Diabetology, 13(4), 368-376. https://doi.org/10.4103/jod.jod_83_22
  • Shridhar, G., Rajendra, N., Murigendra, H., Shridevi, P., Prasad, M., Mujeeb, M. A., Arun. S., Neeraj, D., Vikas, S.,Suneel, D., & Vijay, K. (2015). Modern diet and its impact on human health. Journal of Nutrition & Food Sciences, 5(6), 1. http://dx.doi.org/10.4172/2155-9600.1000430
  • Singh, N., Singh, J., Kaur, L., Sodhi, N. S., & Gill, B. S. (2003). Morphological, thermal and rheological properties of starches from different botanical sources. Food Chemistry, 81(2), 219-231. https://doi.org/10.1016/S0308-8146(02)00416-8
  • Sivakamasundari, S. K., Moses, J. A., & Anandharamakrishnan, C. (2020). Effect of parboiling methods on the physicochemical characteristics and glycemic index of rice varieties. Journal of Food Measurement and Characterization, 14, 3122-3137. https://doi.org/10.1007/s11694-020-00551-9
  • Slabber, M., Barnard, H. C., Kuyl, J. M., Dannhauser, A., & Schall, R. (1994). Effects of a low-insulin-response, energy-restricted diet on weight loss and plasma insulin concentrations in hyperinsulinemic obese females. The American Journal of Clinical Nutrition, 60(1), 48-53. https://doi.org/10.1093/ajcn/60.1.48
  • Subaitha, Z. A., Priyadarshini, S. R., Yoha, K. S., & Moses, J. A. (2024). Impact of post-harvest processing techniques on the glycemic index of millets. Food Chemistry Advances, 100636. https://doi.org/10.1016/j.focha.2024.100636
  • Sun, X., Saleh, A. S., Lu, Y., Sun, Z., Zhang, X., Ge, X., Shen, H., Yu, X., & Li, W. (2022). Effects of ultra-high pressure combined with cold plasma on structural, physicochemical, and digestive properties of proso millet starch. International Journal of Biological Macromolecules, 212, 146-154. https://doi.org/10.1016/j.ijbiomac.2022.05.128
  • Tekin-Cakmak, Z. H., Ozer, C., Ozkan, K., Yildirim, H., Sestili, F., Jilal, A., Sagdic, O., Ozgolet, M., & Koksel, H. (2024). High-beta-glucan and low-glycemic index functional bulgur produced from high-beta-glucan barley. Journal of Functional Foods, 112, 105939. https://doi.org/10.1016/j.jff.2023.105939
  • Triplitt, C. L. (2012). Examining the mechanisms of glucose regulation. American Journal of Managed Care, 18(1), S4.
  • Vidhyalakshmi, R., & Meera, M. S. (2023). Dry heat and ultrasonication treatment of pearl millet flour: effect on thermal, structural, and in-vitro digestibility properties of starch. Journal of Food Measurement and Characterization, 17(3), 2858-2868. https://doi.org/10.1007/s11694-023-01832-9
  • Wang, Q., Li, Y., Sun, D. W., & Zhu, Z. (2018). Enhancing food processing by pulsed and high voltage electric fields: Principles and applications. Critical Reviews in Food Science and Nutrition, 58(13), 2285-2298. https://doi.org/10.1080/10408398.2018.1434609
  • Wang, Y., Bai, Y., Dong, J., Liu, J., & Jin, Z. (2023). Deciphering the structural and functional characteristics of an innovative small cluster branched α–glucan produced by sequential enzymatic synthesis. Carbohydrate Polymers, 310, 120696. https://doi.org/10.1016/j.carbpol.2023.120696
  • Wolever, T. M., Jenkins, D. J., Jenkins, A. L., & Josse, R. G. (1991). The glycemic index: methodology and clinical implications. The American Journal of Clinical Nutrition, 54(5), 846-854. https://doi.org/10.1093/ajcn/54.5.846
  • Yao, F., Li, C., Li, J., Chang, G., Wang, Y., Campardelli, R., Perego, P., & Cai, C. (2023). Effects of different cooking methods on glycemic index, physicochemical indexes, and digestive characteristics of two kinds of rice. Processes, 11(7), 2167. https://doi.org/10.3390/pr11072167
  • Zafar, M. I., Mills, K. E., Zheng, J., Regmi, A., Hu, S. Q., Gou, L., & Chen, L. L. (2019). Low-glycemic index diets as an intervention for diabetes: a systematic review and meta-analysis. The American Journal of Clinical Nutrition, 110(4), 891-902. https://doi.org/10.1093/ajcn/nqz149
  • Zeng, F., Gao, Q. Y., Han, Z., Zeng, X. A., & Yu, S. J. (2016). Structural properties and digestibility of pulsed electric field treated waxy rice starch. Food Chemistry, 194, 1313-1319. https://doi.org/10.1016/j.foodchem.2015.08.104
  • Zhang, K., Dong, R., Hu, X., Ren, C., & Li, Y. (2021). Oat-based foods: Chemical constituents, glycemic index, and the effect of processing. Foods, 10(6), 1304. https://doi.org/10.3390/foods10061304

Glisemik İndeksin Azaltılmasında Geleneksel ve Teknolojik Yöntemler

Year 2025, Volume: 30 Issue: 1, 363 - 376, 29.04.2025
https://doi.org/10.53433/yyufbed.1498470

Abstract

Diyabet ve diğer kronik hastalıkların yaygınlaşması, bu hastalıkların önlenmesi ve yönetimi için çeşitli yöntemlerin araştırılmasını teşvik etmiştir. Bu yöntemler arasında karbonhidrat alımını azaltarak düşük karbonhidratlı diyet uygulamak bulunmaktadır. Diyet müdahaleleri, diyabetin önlenmesi ve yönetiminde önemli bir rol oynayarak yemek sonrası kan şekeri seviyelerini düşük ve stabil tutmayı hedeflemektedir. Glisemik indeks (GI), besinlerin kan şekeri seviyeleri üzerindeki etkilerini değerlendiren ve kan şekeri düzenlenmesine katkıda bulunan önemli bir ölçüttür. Düşük GI değerine sahip olan gıdalar (55 ve altı), kan şekerini yavaşça yükseltirken, yüksek GI değerine sahip olan gıdalar (70 ve üzeri) hızla yükseltmektedir. GI değerinin düşük olması, diyabet, obezite ve kardiyovasküler hastalıklar gibi kronik rahatsızlıkların önlenmesinde kritik bir rol oynamaktadır. GI değerini azaltmak için haşlama, pişirme ve kurutma gibi geleneksel yöntemlerin yanı sıra kızılötesi enerji, mikrodalga teknolojisi ve ultrasonikasyon gibi modern teknolojiler de kullanılmaktadır. Bu yöntemler, yiyeceklerin yapısını değiştirerek ve sindirim sürelerini uzatarak GI değerini düşürmeye yardımcı olmaktadır. Derlemenin amacı, GI değerinin sağlıklı beslenme ve hastalık yönetimindeki rolünü açıklamak ve düşük GI değerine sahip gıdaların üretiminde kullanılan geleneksel ve teknolojik yöntemleri incelemektir. Ayrıca, bu alandaki bilimsel çalışmalardan örnekler sunularak sağlıklı gıda tercihlerine yönelik bilinçlendirmeye katkı sağlanması hedeflenmektedir.

References

  • Akyereko, Y. G., Wireko-Manu, F. D., & Oduro, I. (2020). Influence of processing methods on food components and glycaemic index of cassava-based traditional foods. Journal of Food and Nutrition Sciences, 8(1). https://doi.org/10.11648/j.jfns.20200801.12
  • Atkinson, F. S., Foster-Powell, K., & Brand-Miller, J. C. (2008). International tables of glycemic index and glycemic load values: 2008. Diabetes Care, 31(12), 2281-2283. https://doi.org/10.2337/dc08-1239
  • Babu, A. S., Mohan, R. J., & Parimalavalli, R. (2019). Effect of single and dual-modifications on stability and structural characteristics of foxtail millet starch. Food Chemistry, 271, 457-465. https://doi.org/10.1016/j.foodchem.2018.07.197
  • Bagchi, T. B., Das, B., Kumar, A., Kumar, G., Banerjee, J., Gain, H., Adhikari, A. A., & Chattopadhyay, K. (2023). Impact of cooking, parboiling and fermentation on nutritional components, predicted glycemic index and pasting properties of rice. Journal of Cereal Science, 114, 103763. https://doi.org/10.1016/j.jcs.2023.103763
  • Baggio, A., Federici, E., Gentilucci, V., Folloni, S., Dall'Asta, M., Bernini, V., Pellegrini, N., & Vittadini, E. (2023). Brown rice and pulses for the development of shelf-stable and low glycemic index ready-to-eat meals. Journal of Functional Foods, 100, 105364. https://doi.org/10.1016/j.jff.2022.105364
  • Barclay, A. W., Petocz, P., McMillan-Price, J., Flood, V. M., Prvan, T., Mitchell, P., & Brand-Miller, J. C. (2008). Glycemic index, glycemic load, and chronic disease risk—a meta-analysis of observational studies. The American Journal of Clinical Nutrition, 87(3), 627-637. https://doi.org/10.1093/ajcn/87.3.627
  • Behall, K. M., Scholfield, D. J., & Canary, J. (1988). Effect of starch structure on glucose and insulin responses in adults. The American Journal of Clinical Nutrition, 47(3), 428-432. https://doi.org/10.1093/ajcn/47.3.428
  • Brand-Miller, J. C. (2003). Glycemic load and chronic disease. Nutrition Reviews, 61, 49-55. https://doi.org/10.1301/nr.2003.may.S49-S55
  • Brand-Miller, J. C., Holt, S. H., Pawlak, D. B., & McMillan, J. (2002). Glycemic index and obesity. The American Journal of Clinical Nutrition, 76(1), 281S-285S. https://doi.org/10.1093/ajcn/76/1.281S
  • Brand-Miller, J., McMillan-Price, J., Steinbeck, K., & Caterson, I. (2009). Dietary glycemic index: health implications. Journal of the American College of Nutrition, 28(sup4), 446S-449S. https://doi.org/10.1080/07315724.2009.10718110
  • Ding, Y., Xiao, Y., Ouyang, Q., Luo, F., & Lin, Q. (2021). Modulating the in vitro digestibility of chemically modified starch ingredient by a non-thermal processing technology of ultrasonic treatment. Ultrasonics Sonochemistry, 70, 105350. https://doi.org/10.1016/j.ultsonch.2020.105350
  • Elizondo-Montemayor, L., Hernández-Brenes, C., Ramos-Parra, P. A., Moreno-Sánchez, D., Nieblas, B., Rosas-Pérez, A. M., & Lamadrid-Zertuche, A. C. (2015). High hydrostatic pressure processing reduces the glycemic index of fresh mango puree in healthy subjects. Food & Function, 6(4), 1352-1360. https://doi.org/10.1039/C4FO01005A
  • Fernandes, G., Velangi, A., & Wolever, T. M. (2005). Glycemic index of potatoes commonly consumed in North America. Journal of the American Dietetic Association, 105(4), 557-562. https://doi.org/10.1016/j.jada.2005.01.003
  • Foster-Powell, K., Holt, S. H., & Brand-Miller, J. C. (2002). International table of glycemic index and glycemic load values: 2002. The American Journal of Clinical Nutrition, 76(1), 5-56. https://doi.org/10.1093/ajcn/76.1.5
  • Frei, M., Siddhuraju, P., & Becker, K. (2003). Studies on the in vitro starch digestibility and the glycemic index of six different indigenous rice cultivars from the Philippines. Food Chemistry, 83(3), 395-402. https://doi.org/10.1016/S0308-8146(03)00101-8
  • Galanakis, C. M. (2021). Functionality of food components and emerging technologies. Foods, 10(1), 128. https://doi.org/10.3390/foods10010128
  • Gnagnarella, P., Gandini, S., La Vecchia, C., & Maisonneuve, P. (2008). Glycemic index, glycemic load, and cancer risk: a meta-analysis. The American Journal of Clinical Nutrition, 87(6), 1793-1801. https://doi.org/10.1093/ajcn/87.6.1793
  • Goel, C., Semwal, A. D., Khan, A., Kumar, S., & Sharma, G. K. (2020). Physical modification of starch: changes in glycemic index, starch fractions, physicochemical and functional properties of heat-moisture treated buckwheat starch. Journal of Food Science and Technology, 57, 2941-2948. https://doi.org/10.1007/s13197-020-04326-4
  • Hall, A. E., & Moraru, C. I. (2022). Comparative effects of high pressure processing and heat treatment on in vitro digestibility of pea protein and starch. npj Science of Food, 6(1), 2. https://doi.org/10.1038/s41538-021-00116-0
  • Harasym, J., & Olędzki, R. (2018). Comparison of conventional and microwave assisted heating on carbohydrate content, antioxidant capacity and postprandial glycemic response in oat meals. Nutrients, 10(2), 207. https://doi.org/10.3390/nu10020207
  • Hsiao, Y. T., & Wang, C. Y. (2020). Microbial shelf-life, starch physicochemical properties, and in vitro digestibility of pigeon pea Milk altered by high pressure processing. Molecules, 25(11), 2516. https://doi.org/10.3390/molecules25112516
  • Hu, P., Zhao, H., Duan, Z., Linlin, Z., & Wu, D. (2004). Starch digestibility and the estimated glycemic score of different types of rice differing in amylose contents. Journal of Cereal Science, 40(3), 231-237. https://doi.org/10.1016/j.jcs.2004.06.001
  • Huang, H., Wu, M., Wu, Y., & Ouyang, J. (2024). Preparation of low estimated glycemic index (eGI) chestnut flours using enzymatic debranching and heat moisture treatment. Journal of Food Composition and Analysis, 131, 106260. https://doi.org/10.1016/j.jfca.2024.106260
  • Jakobsen, M. U., O’Reilly, E. J., Heitmann, B. L., Pereira, M. A., Bälter, K., Fraser, G. E., ... & Ascherio, A. (2009). Major types of dietary fat and risk of coronary heart disease: a pooled analysis of 11 cohort studies. The American Journal of Clinical Nutrition, 89(5), 1425-1432. https://doi.org/10.3945/ajcn.2008.27124
  • Jakobsen, M. U., Dethlefsen, C., Joensen, A. M., Stegger, J., Tjønneland, A., Schmidt, E. B., & Overvad, K. (2010). Intake of carbohydrates compared with intake of saturated fatty acids and risk of myocardial infarction: importance of the glycemic index. The American Journal of Clinical Nutrition, 91(6), 1764-1768. https://doi.org/10.3945/ajcn.2009.29099
  • Jeevarathinam, G., Ramniwas, S., Singh, P., Rustagi, S., Asdaq, S. M. B., & Pandiselvam, R. (2024). Macromolecular, thermal, and nonthermal technologies for reduction of glycemic index in food-A review. Food Chemistry, 138742. https://doi.org/10.1016/j.foodchem.2024.138742
  • Jenkins, D. J., Kendall, C. W., Augustin, L. S., Franceschi, S., Hamidi, M., Marchie, A., Jenkins, A. L., & Axelsen, M. (2002). Glycemic index: overview of implications in health and disease. The American Journal of Clinical Nutrition, 76(1), 266S-273S. https://doi.org/10.1093/ajcn/76/1.266S
  • Jenkins, D. J., Kendall, C. W., McKeown-Eyssen, G., Josse, R. G., Silverberg, J., Booth, G. L., Vidgen, E., Josse, A. R., Nguyen, T. H., Corrigan, S., Banach, M. S., Ares, S., Mitchell, S., Emam, A., Augustin, L. S. A., Parker, T. L., & Leiter, L. A. (2008). Effect of a low–glycemic index or a high–cereal fiber diet on type 2 diabetes: a randomized trial. Jama, 300(23), 2742-2753. https://doi.org/10.1001/jama.2008.808
  • Jenkins, D. J., Kendall, C. W., Augustin, L. S., Mitchell, S., Sahye-Pudaruth, S., Mejia, S. B., ... & Josse, R. G. (2012). Effect of legumes as part of a low glycemic index diet on glycemic control and cardiovascular risk factors in type 2 diabetes mellitus: a randomized controlled trial. Archives of Internal Medicine, 172(21), 1653-1660. https://doi.org/10.1001/2013.jamainternmed.70
  • Jenkins, D. J., Wolever, T. M., Taylor, R. H., Barker, H., Fielden, H., Baldwin, J. M., Bowling, A. C., Newman, H. C., Jenkins, A. L., & Goff, D. V. (1981). Glycemic index of foods: a physiological basis for carbohydrate exchange. The American Journal of Clinical Nutrition, 34(3), 362-366. https://doi.org/10.1093/ajcn/34.3.362
  • Jenkins, D. J., Wolever, T. M., Thorne, M. J., Jenkins, A. L., Wong, G. S., Josse, R. G., & Csima, A. (1984). The relationship between glycemic response, digestibility, and factors influencing the dietary habits of diabetics. The American Journal of Clinical Nutrition, 40(6), 1175-1191. https://doi.org/10.1093/ajcn/40.6.1175
  • Jukanti, A. K., Pautong, P. A., Liu, Q., & Sreenivasulu, N. (2020). Low glycemic index rice—a desired trait in starchy staples. Trends in Food Science & Technology, 106, 132-149. https://doi.org/10.1016/j.tifs.2020.10.006
  • Kaur, B., Ranawana, V., & Henry, J. (2016). The glycemic index of rice and rice products: a review, and table of GI values. Critical Reviews in Food Science and Nutrition, 56(2), 215-236. https://doi.org/10.1080/10408398.2012.717976
  • Kirpitch, A. R., & Maryniuk, M. D. (2011). The 3 R's of glycemic index: recommendations, research, and the real world. Clinical Diabetes, 29(4), 155-160.
  • Kumar, A., Lal, M. K., Nayak, S., Sahoo, U., Behera, A., Bagchi, T. B., Parameswaran, C., Swain, P., & Sharma, S. (2022). Effect of parboiling on starch digestibility and mineral bioavailability in rice (Oryza sativa L.). Lwt, 156, 113026. https://doi.org/10.1016/j.lwt.2021.113026
  • Kunyanee, K., Van Ngo, T., Kusumawardani, S., & Lungsakul, N. (2022). Ultrasound-chilling assisted annealing treatment to produce a lower glycemic index of white rice grains with different amylose content. Ultrasonics Sonochemistry, 87, 106055. https://doi.org/10.1016/j.ultsonch.2022.106055
  • Lal, M. K., Singh, B., Sharma, S., Singh, M. P., & Kumar, A. (2021). Glycemic index of starchy crops and factors affecting its digestibility: A review. Trends in Food Science & Technology, 111, 741-755. https://doi.org/10.1016/j.tifs.2021.02.067
  • Leszczyński, W. (2004). Resistant starch-classification, structure, production. Polish Journal of Food and Nutrition Sciences, 54(1s), 37-50.
  • Lu, S., Cik, T. T., Lii, C. Y., Lai, P., & Chen, H. H. (2013). Effect of amylose content on structure, texture and α-amylase reactivity of cooked rice. LWT-Food Science and Technology, 54(1), 224-228. https://doi.org/10.1016/j.lwt.2013.05.028
  • Ludwig, D. S. (2003). Dietary glycemic index and the regulation of body weight. Lipids, 38(2), 117-121. https://doi.org/10.1007/s11745-003-1040-x
  • Mansoor, R., Ali, T. M., Arif, S., Saeed, M., & Hasnain, A. (2022). Impact of barley flour addition on dough rheology, glycemic index, textural and sensory characteristics of taftaan flat bread. Food Chemistry Advances, 1, 100148. https://doi.org/10.1016/j.focha.2022.100148
  • Mirrahimi, A., de Souza, R. J., Chiavaroli, L., Sievenpiper, J. L., Beyene, J., Hanley, A. J., ... & Jenkins, D. J. (2012). Associations of glycemic index and load with coronary heart disease events: a systematic review and meta‐analysis of prospective cohorts. Journal of the American Heart Association, 1(5), e000752. https://doi.org/10.1161/JAHA.112.000752
  • Nabb, S. L., & Benton, D. (2006). The effect of the interaction between glucose tolerance and breakfasts varying in carbohydrate and fibre on mood and cognition. Nutritional Neuroscience, 9(3-4), 161-168. https://doi.org/10.1080/10284150600955099
  • Olawoye, B., Gbadamosi, S. O., Otemuyiwa, I. O., & Akanbi, C. T. (2020). Gluten-free cookies with low glycemic index and glycemic load: optimization of the process variables via response surface methodology and artificial neural network. Heliyon, 6(10).
  • Panlasigui, L. N., & Thompson, L. U. (2006). Blood glucose lowering effects of brown rice in normal and diabetic subjects. International Journal of Food Sciences and Nutrition, 57(3-4), 151-158. https://doi.org/10.1080/09637480500410879
  • Priyadarshini, S. R., Moses, J. A., & Anandharamakrishnan, C. (2021). Prediction of in-vitro glycemic responses of biscuits in an engineered small intestine system. Food Research International, 147, 110459. https://doi.org/10.1016/j.foodres.2021.110459
  • Razzak, M., Rahman, M. A., Khan, R. A., & Huque, R. (2021). Gamma radiation application to rice: Reduced glycemic index in relation to modified carbohydrate observed in FTIR spectra. Current Research in Food Science, 4, 11-17. https://doi.org/10.1016/j.crfs.2020.12.002
  • Ren, X., Chen, J., Molla, M. M., Wang, C., Diao, X., & Shen, Q. (2016). In vitro starch digestibility and in vivo glycemic response of foxtail millet and its products. Food & Function, 7(1), 372-379. https://doi.org/10.1039/C5FO01074H
  • Rizkalla, S. W., Taghrid, L., Laromiguiere, M., Huet, D., Boillot, J., Rigoir, A., Elgrably, F., & Slama, G. (2004). Improved plasma glucose control, whole-body glucose utilization, and lipid profile on a low-glycemic index diet in type 2 diabetic men: a randomized controlled trial. Diabetes Care, 27(8), 1866-1872. https://doi.org/10.2337/diacare.27.8.1866
  • Sagili, V. S., Chakrabarti, P., Jayanty, S., Kardile, H., & Sathuvalli, V. (2022). The glycemic index and human health with an emphasis on potatoes. Foods, 11(15), 2302. https://doi.org/10.3390/foods11152302
  • Salmerón, J., Ascherio, A., Rimm, E. B., Colditz, G. A., Spiegelman, D., Jenkins, D. J., Stampfer, M. J., Wing, A. L., & Willett, W. C. (1997). Dietary fiber, glycemic load, and risk of NIDDM in men. Diabetes Care, 20(4), 545-550. https://doi.org/10.2337/diacare.20.4.545
  • Shanmugam, S., Mathiyazhagan, J., Parthasarathy, V., Jeevan, R. G., Gayathri, R., Karthikeyan, P., Bakshi, P., Malleshi, N. G., Anjana, R. M., Unnikrishnan, R., Krishnaswamy, K., Jamdar, S. N., Mohan, V., & Vasudevan, S. (2022). Effect of gamma irradiation on shelf life, nutritional, and glycemic properties of three indian brown rice varieties. Journal of Diabetology, 13(4), 368-376. https://doi.org/10.4103/jod.jod_83_22
  • Shridhar, G., Rajendra, N., Murigendra, H., Shridevi, P., Prasad, M., Mujeeb, M. A., Arun. S., Neeraj, D., Vikas, S.,Suneel, D., & Vijay, K. (2015). Modern diet and its impact on human health. Journal of Nutrition & Food Sciences, 5(6), 1. http://dx.doi.org/10.4172/2155-9600.1000430
  • Singh, N., Singh, J., Kaur, L., Sodhi, N. S., & Gill, B. S. (2003). Morphological, thermal and rheological properties of starches from different botanical sources. Food Chemistry, 81(2), 219-231. https://doi.org/10.1016/S0308-8146(02)00416-8
  • Sivakamasundari, S. K., Moses, J. A., & Anandharamakrishnan, C. (2020). Effect of parboiling methods on the physicochemical characteristics and glycemic index of rice varieties. Journal of Food Measurement and Characterization, 14, 3122-3137. https://doi.org/10.1007/s11694-020-00551-9
  • Slabber, M., Barnard, H. C., Kuyl, J. M., Dannhauser, A., & Schall, R. (1994). Effects of a low-insulin-response, energy-restricted diet on weight loss and plasma insulin concentrations in hyperinsulinemic obese females. The American Journal of Clinical Nutrition, 60(1), 48-53. https://doi.org/10.1093/ajcn/60.1.48
  • Subaitha, Z. A., Priyadarshini, S. R., Yoha, K. S., & Moses, J. A. (2024). Impact of post-harvest processing techniques on the glycemic index of millets. Food Chemistry Advances, 100636. https://doi.org/10.1016/j.focha.2024.100636
  • Sun, X., Saleh, A. S., Lu, Y., Sun, Z., Zhang, X., Ge, X., Shen, H., Yu, X., & Li, W. (2022). Effects of ultra-high pressure combined with cold plasma on structural, physicochemical, and digestive properties of proso millet starch. International Journal of Biological Macromolecules, 212, 146-154. https://doi.org/10.1016/j.ijbiomac.2022.05.128
  • Tekin-Cakmak, Z. H., Ozer, C., Ozkan, K., Yildirim, H., Sestili, F., Jilal, A., Sagdic, O., Ozgolet, M., & Koksel, H. (2024). High-beta-glucan and low-glycemic index functional bulgur produced from high-beta-glucan barley. Journal of Functional Foods, 112, 105939. https://doi.org/10.1016/j.jff.2023.105939
  • Triplitt, C. L. (2012). Examining the mechanisms of glucose regulation. American Journal of Managed Care, 18(1), S4.
  • Vidhyalakshmi, R., & Meera, M. S. (2023). Dry heat and ultrasonication treatment of pearl millet flour: effect on thermal, structural, and in-vitro digestibility properties of starch. Journal of Food Measurement and Characterization, 17(3), 2858-2868. https://doi.org/10.1007/s11694-023-01832-9
  • Wang, Q., Li, Y., Sun, D. W., & Zhu, Z. (2018). Enhancing food processing by pulsed and high voltage electric fields: Principles and applications. Critical Reviews in Food Science and Nutrition, 58(13), 2285-2298. https://doi.org/10.1080/10408398.2018.1434609
  • Wang, Y., Bai, Y., Dong, J., Liu, J., & Jin, Z. (2023). Deciphering the structural and functional characteristics of an innovative small cluster branched α–glucan produced by sequential enzymatic synthesis. Carbohydrate Polymers, 310, 120696. https://doi.org/10.1016/j.carbpol.2023.120696
  • Wolever, T. M., Jenkins, D. J., Jenkins, A. L., & Josse, R. G. (1991). The glycemic index: methodology and clinical implications. The American Journal of Clinical Nutrition, 54(5), 846-854. https://doi.org/10.1093/ajcn/54.5.846
  • Yao, F., Li, C., Li, J., Chang, G., Wang, Y., Campardelli, R., Perego, P., & Cai, C. (2023). Effects of different cooking methods on glycemic index, physicochemical indexes, and digestive characteristics of two kinds of rice. Processes, 11(7), 2167. https://doi.org/10.3390/pr11072167
  • Zafar, M. I., Mills, K. E., Zheng, J., Regmi, A., Hu, S. Q., Gou, L., & Chen, L. L. (2019). Low-glycemic index diets as an intervention for diabetes: a systematic review and meta-analysis. The American Journal of Clinical Nutrition, 110(4), 891-902. https://doi.org/10.1093/ajcn/nqz149
  • Zeng, F., Gao, Q. Y., Han, Z., Zeng, X. A., & Yu, S. J. (2016). Structural properties and digestibility of pulsed electric field treated waxy rice starch. Food Chemistry, 194, 1313-1319. https://doi.org/10.1016/j.foodchem.2015.08.104
  • Zhang, K., Dong, R., Hu, X., Ren, C., & Li, Y. (2021). Oat-based foods: Chemical constituents, glycemic index, and the effect of processing. Foods, 10(6), 1304. https://doi.org/10.3390/foods10061304
There are 68 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Review Articles / Derleme Makaleler
Authors

Emine Nakilcioğlu 0000-0003-4334-2900

Gizem Tiryaki 0000-0001-5608-9815

Semih Ötleş 0000-0003-4571-8764

Publication Date April 29, 2025
Submission Date June 11, 2024
Acceptance Date November 20, 2024
Published in Issue Year 2025 Volume: 30 Issue: 1

Cite

APA Nakilcioğlu, E., Tiryaki, G., & Ötleş, S. (2025). Glisemik İndeksin Azaltılmasında Geleneksel ve Teknolojik Yöntemler. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 30(1), 363-376. https://doi.org/10.53433/yyufbed.1498470