Evaluation of miR-145 and miR-146a as potential biomarkers for diagnosis of Myelodysplastic Syndrome
Yıl 2022,
Cilt: 5 Sayı: 2, 61 - 66, 27.06.2022
Seda Süsgün
,
Onur Baykara
,
Emrah Yücesan
,
R. Dilhan Kuru
,
Başak Aslaneli Çakmak
,
Ayşegül Yabacı
,
Şeniz Öngören
,
Ayhan Deviren
,
Yelda Tarkan Argüden
Öz
Objective: Myelodysplastic syndromes (MDS) are a group of heterogeneous hematopoietic stem cell disorders characterized by ineffective hematopoiesis, bone marrow dysplasia, and peripheral cytopenias. microRNAs (miRNAs) are small non-coding RNAs that play key roles in post-transcriptional regulation of gene expression and have been determined potential in disease diagnostics and therapeutics owing to their stability. Recent evidence suggests that haploinsufficiency of the miR-145 and miR-146a, encoded from 5q Common Deleted Region (CDR) may contribute to the phenotype in MDS. Although, interstitial del(5q) is the most common chromosomal abnormality in MDS, these findings are inconsistent in Turkish patients. Therefore, we aimed to investigate assess the diagnostic value of miR-145/miR-146a and their relation with del(5q) or monosomy 5 in MDS. Methods: In order to determine the association between del(5q) and expression miR-145/miR-146a, conventional cytogenetics (CC), FISH, and qRT-PCR methods were performed for 24 patients with MDS and 20 healthy individuals. Additionally, ROC curves were generated to evaluate putative diagnostic value of miRNAs. Results: Cytogenetic examination revealed clonal cytogenetic abnormalities in 43.4% of cases. miR-146a decreased in 23 of 24 patients regardless of chromosome 5 abnormalities (p<0.0001), expression level of miR-145 was statistically nonsignificant. miR-146a levels performed well as a diagnostic biomarker, discriminating MDS patients from controls with an area under the ROC curve (AUC) of 0.942, 83.3% sensitivity. Conclusion: miR-146a may be used as a biomarker in diagnosis of MDS and may help to identify new treatment targets. In addition, we suggest that CC and FISH methods should be performed together in MDS.
Destekleyen Kurum
This work was supported by the grants of Scientific Research Projects Coordination Unit of Istanbul University (no: 24461) and Turkish Society of Hematology (no: 2017/1).
Kaynakça
- 1. Campbell LJ. Cancer cytogenetics: methods and protocols. Humana Press; 2011.
- 2. Garcia-Manero G. Myelodysplastic syndromes: 2014 update on diagnosis, risk-stratification, and management. Am J Hematol. 2014;89(1):97-108.
- 3. Zahid MF, Malik UA, Sohail M, Hassan IN, Ali S, Shaukat MHS. Cytogenetic Abnormalities in Myelodysplastic Syndromes: An Overview. Int J Hematol Oncol Stem Cell Res. 2017;11(3):231-239.
- 4. Corey SJ, Minden MD, Barber DL, Kantarjian H, Wang JC, Schimmer AD. Myelodysplastic syndromes: the complexity of stem-cell diseases. Nat Rev Cancer. 2007;7(2):118-129.
- 5. Charles Wiener M, Kasper DL, Fauci AS, et al. Harrison's Principles of Internal Medicine Self-Assessment and Board Review. 2012.
- 6. Hoffman R, Benz Jr EJ, Silberstein LE, Heslop H, Anastasi J, Weitz J. Hematology: basic principles and practice. Elsevier Health Sciences; 2013.
- 7. Bernasconi P. Molecular pathways in myelodysplastic syndromes and acute myeloid leukemia: relationships and distinctions-a review. Br J Haematol. 2008;142(5):695-708.
- 8. Haase D, Germing U, Schanz J, et al. New insights into the prognostic impact of the karyotype in MDS and correlation with subtypes: evidence from a core dataset of 2124 patients. Blood. 2007;110(13):4385-4395.
- 9. Kawankar N, Vundinti BR. Cytogenetic abnormalities in myelodysplastic syndrome: an overview. Hematology. 2011;16(3):131-138.
- 10. Giagounidis AA, Germing U, Aul C. Biological and prognostic significance of chromosome 5q deletions in myeloid malignancies. Clin Cancer Res. 2006;12(1):5-10.
- 11. Visconte V, Tiu RV, Rogers HJ. Pathogenesis of myelodysplastic syndromes: an overview of molecular and non-molecular aspects of the disease. Blood Res. 2014;49(4):216-227.
- 12. Starczynowski DT, Kuchenbauer F, Argiropoulos B, et al. Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. Nat Med. 2010;16(1):49-58.
- 13. McGowan-Jordan J. ISCN 2016: An International System for Human Cytogenomic Nomenclature (2016): Recommendations of the International Standing Committee on Human Cytogenomic Nomenclature Including New Sequence-based Cytogenetic Nomenclature Developed in Collaboration with the Human Genome Variation Society (HGVS) Sequence Variant Description Working Group. Karger; 2016.
- 14. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402-408.
- 15. Wang J, Zhu X, Xiong X, et al. Identification of potential urine proteins and microRNA biomarkers for the diagnosis of pulmonary tuberculosis patients. Emerg Microbes Infect. 2018;7(1):63.
- 16. Martins-Ferreira R, Chaves J, Carvalho C, et al. Circulating microRNAs as potential biomarkers for genetic generalized epilepsies: a three microRNA panel. Eur J Neurol. 2020;27(4):660-666.
- 17. Pires-Luis AS, Costa-Pinheiro P, Ferreira MJ, et al. Identification of clear cell renal cell carcinoma and oncocytoma using a three-gene promoter methylation panel. J Transl Med. 2017;15(1):149.
- 18. Arsham MS, Barch MJ, Lawce HJ. The AGT cytogenetics laboratory manual. John Wiley & Sons; 2017.
- 19. Loken MR, van de Loosdrecht A, Ogata K, Orfao A, Wells DA. Flow cytometry in myelodysplastic syndromes: report from a working conference. Leuk Res. 2008;32(1):5-17.
- 20. Pellagatti A, Boultwood J. The molecular pathogenesis of the myelodysplastic syndromes. Eur J Haematol. 2015;95(1):3-15.
- 21. Macedo LC, Silvestre AP, Rodrigues C, et al. Genetics factors associated with myelodysplastic syndromes. Blood Cells Mol Dis. 2015;55(1):76-81.
- 22. Yilmaz Z, Sahin FI, Kizilkilic E, Karakus S, Boga C, Ozdogu H. Conventional and molecular cytogenetic findings of myelodysplastic syndrome patients. Clin Exp Med. 2005;5(2):55-59.
- 23. Deviren A, Gursel IM, Yılmaz S, Hacıhanefioglu S. Cytogenetic Evaluation in 221 Untreated Patients with Myelodysplastic Syndrome/Tedavi Almamis 221 Miyelodisplastik Sendromlu Hastada Sitogenetik Degerlendirme. J Türkiye Klinikleri Tip Bilimleri Dergisi. 2012;32(1):15.
- 24. Kokate P, Dalvi R, Koppaka N, Mandava S. Prognostic classification of MDS is improved by the inclusion of FISH panel testing with conventional cytogenetics. Cancer Genet. 2017;216-217:120-127.
- 25. Li J. Myelodysplastic syndrome hematopoietic stem cell. Int J Cancer. 2013;133(3):525-533.
- 26. Varney ME, Niederkorn M, Konno H, et al. Loss of Tifab, a del(5q) MDS gene, alters hematopoiesis through derepression of Toll-like receptor-TRAF6 signaling. J Exp Med. 2015;212(11):1967-1985.
- 27. Varney ME, Choi K, Bolanos L, et al. Epistasis between TIFAB and miR-146a: neighboring genes in del(5q) myelodysplastic syndrome. Leukemia. 2017;31(2):491-495.
- 28. Barreyro L, Chlon TM, Starczynowski DT. Chronic immune response dysregulation in MDS pathogenesis. Blood. 2018;132(15):1553-1560.
- 29. Starczynowski DT, Morin R, McPherson A, et al. Genome-wide identification of human microRNAs located in leukemia-associated genomic alterations. Blood. 2011;117(2):595-607.
- 30. Sokol L, Caceres G, Volinia S, et al. Identification of a risk dependent microRNA expression signature in myelodysplastic syndromes. Br J Haematol. 2011;153(1):24-32.
- 31. Hydbring P, Badalian-Very G. Clinical applications of microRNAs. F1000Res. 2013;2:136.
- 32. Hsu MJ, Chang YC, Hsueh HM. Biomarker selection for medical diagnosis using the partial area under the ROC curve. BMC Res Notes. 2014;7:25.
Miyelodisplastik Sendrom tanısında miR-145 ve miR-146a’nın potansiyel biyobelirteç olarak değerlendirilmesi
Yıl 2022,
Cilt: 5 Sayı: 2, 61 - 66, 27.06.2022
Seda Süsgün
,
Onur Baykara
,
Emrah Yücesan
,
R. Dilhan Kuru
,
Başak Aslaneli Çakmak
,
Ayşegül Yabacı
,
Şeniz Öngören
,
Ayhan Deviren
,
Yelda Tarkan Argüden
Öz
Amaç: Miyelodisplastik sendrom (MDS), verimsiz hematopoez, kemik iliği displazisi ve periferik sitopeni ile karakterize edilen heterojen bir grup hematopoetik kök hücre bozukluğudur. mikroRNA'lar (miRNA'lar), gen ifadesinin post-transkripsiyonel düzenlenmesinde kilit rol oynayan küçük kodlamayan RNA’lardır ve stabiliteleri sayesinde hastalık tanısında ve tedavisinde potansiyelleri belirlenmiştir. Son çalışmalar, 5q Yayın Delesyon Bölgesi’nden (YDB) kodlanan miR-145 ve miR-146a'nın haplo-yetmezliğinin MDS'deki fenotipe katkıda bulunabileceğini düşündürmektedir. MDS'de en sık gözlenen kromozom anomalisi interstisyel del(5q) olmasına rağmen, bu bulgular Türkiye popülasyonundaki örnekler ile tutarsızdır. Bu nedenle, MDS'de miR-145/miR-146a'nın tanısal kullanım değerini ve bu miRNA’ların del(5q) ve/veya monozomi 5 ile ilişkisini değerlendirmeyi amaçladık. Yöntem: del(5q) ile miR-145/miR-146a ekspresyonu arasındaki ilişkiyi belirlemek için MDS'li 24 hasta ve 20 sağlıklı kontrol için konvansiyonel sitogenetik (CC), FISH ve qRT-PCR yöntemleri uygulanmıştır. Ek olarak, miRNA'ların tanısal değerini değerlendirmek için ROC eğrileri oluşturulmuştur. Bulgular: Sitogenetik incelemeler, vakaların %43,4'ünde klonal sitogenetik anomali olduğunu gösterdi. miR-146a ifadesi, 5. kromozom anomalilerinden bağımsız olarak 24 hastanın 23'ünde azalmaktaydı (p<0,0001), miR-145'in ekspresyon düzeyi istatistiksel olarak anlamlı değildi. miR-146a ifade seviyesi, MDS hastalarını kontrollerden ayırmada 0,942 ROC eğrisi altında kalan alan (AUC) değeri ve %83,3 hassasiyet değeri ile iyi bir tanısal biyobelirteç performansı sergiledi. Sonuç: miR-146a, MDS tanısında bir biyobelirteç olarak kullanılabilir ve yeni tedavi hedeflerinin belirlenmesine yardımcı olabilir. Ayrıca MDS'de CC ve FISH yöntemlerinin birlikte yapılmasını öneriyoruz.
Kaynakça
- 1. Campbell LJ. Cancer cytogenetics: methods and protocols. Humana Press; 2011.
- 2. Garcia-Manero G. Myelodysplastic syndromes: 2014 update on diagnosis, risk-stratification, and management. Am J Hematol. 2014;89(1):97-108.
- 3. Zahid MF, Malik UA, Sohail M, Hassan IN, Ali S, Shaukat MHS. Cytogenetic Abnormalities in Myelodysplastic Syndromes: An Overview. Int J Hematol Oncol Stem Cell Res. 2017;11(3):231-239.
- 4. Corey SJ, Minden MD, Barber DL, Kantarjian H, Wang JC, Schimmer AD. Myelodysplastic syndromes: the complexity of stem-cell diseases. Nat Rev Cancer. 2007;7(2):118-129.
- 5. Charles Wiener M, Kasper DL, Fauci AS, et al. Harrison's Principles of Internal Medicine Self-Assessment and Board Review. 2012.
- 6. Hoffman R, Benz Jr EJ, Silberstein LE, Heslop H, Anastasi J, Weitz J. Hematology: basic principles and practice. Elsevier Health Sciences; 2013.
- 7. Bernasconi P. Molecular pathways in myelodysplastic syndromes and acute myeloid leukemia: relationships and distinctions-a review. Br J Haematol. 2008;142(5):695-708.
- 8. Haase D, Germing U, Schanz J, et al. New insights into the prognostic impact of the karyotype in MDS and correlation with subtypes: evidence from a core dataset of 2124 patients. Blood. 2007;110(13):4385-4395.
- 9. Kawankar N, Vundinti BR. Cytogenetic abnormalities in myelodysplastic syndrome: an overview. Hematology. 2011;16(3):131-138.
- 10. Giagounidis AA, Germing U, Aul C. Biological and prognostic significance of chromosome 5q deletions in myeloid malignancies. Clin Cancer Res. 2006;12(1):5-10.
- 11. Visconte V, Tiu RV, Rogers HJ. Pathogenesis of myelodysplastic syndromes: an overview of molecular and non-molecular aspects of the disease. Blood Res. 2014;49(4):216-227.
- 12. Starczynowski DT, Kuchenbauer F, Argiropoulos B, et al. Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. Nat Med. 2010;16(1):49-58.
- 13. McGowan-Jordan J. ISCN 2016: An International System for Human Cytogenomic Nomenclature (2016): Recommendations of the International Standing Committee on Human Cytogenomic Nomenclature Including New Sequence-based Cytogenetic Nomenclature Developed in Collaboration with the Human Genome Variation Society (HGVS) Sequence Variant Description Working Group. Karger; 2016.
- 14. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402-408.
- 15. Wang J, Zhu X, Xiong X, et al. Identification of potential urine proteins and microRNA biomarkers for the diagnosis of pulmonary tuberculosis patients. Emerg Microbes Infect. 2018;7(1):63.
- 16. Martins-Ferreira R, Chaves J, Carvalho C, et al. Circulating microRNAs as potential biomarkers for genetic generalized epilepsies: a three microRNA panel. Eur J Neurol. 2020;27(4):660-666.
- 17. Pires-Luis AS, Costa-Pinheiro P, Ferreira MJ, et al. Identification of clear cell renal cell carcinoma and oncocytoma using a three-gene promoter methylation panel. J Transl Med. 2017;15(1):149.
- 18. Arsham MS, Barch MJ, Lawce HJ. The AGT cytogenetics laboratory manual. John Wiley & Sons; 2017.
- 19. Loken MR, van de Loosdrecht A, Ogata K, Orfao A, Wells DA. Flow cytometry in myelodysplastic syndromes: report from a working conference. Leuk Res. 2008;32(1):5-17.
- 20. Pellagatti A, Boultwood J. The molecular pathogenesis of the myelodysplastic syndromes. Eur J Haematol. 2015;95(1):3-15.
- 21. Macedo LC, Silvestre AP, Rodrigues C, et al. Genetics factors associated with myelodysplastic syndromes. Blood Cells Mol Dis. 2015;55(1):76-81.
- 22. Yilmaz Z, Sahin FI, Kizilkilic E, Karakus S, Boga C, Ozdogu H. Conventional and molecular cytogenetic findings of myelodysplastic syndrome patients. Clin Exp Med. 2005;5(2):55-59.
- 23. Deviren A, Gursel IM, Yılmaz S, Hacıhanefioglu S. Cytogenetic Evaluation in 221 Untreated Patients with Myelodysplastic Syndrome/Tedavi Almamis 221 Miyelodisplastik Sendromlu Hastada Sitogenetik Degerlendirme. J Türkiye Klinikleri Tip Bilimleri Dergisi. 2012;32(1):15.
- 24. Kokate P, Dalvi R, Koppaka N, Mandava S. Prognostic classification of MDS is improved by the inclusion of FISH panel testing with conventional cytogenetics. Cancer Genet. 2017;216-217:120-127.
- 25. Li J. Myelodysplastic syndrome hematopoietic stem cell. Int J Cancer. 2013;133(3):525-533.
- 26. Varney ME, Niederkorn M, Konno H, et al. Loss of Tifab, a del(5q) MDS gene, alters hematopoiesis through derepression of Toll-like receptor-TRAF6 signaling. J Exp Med. 2015;212(11):1967-1985.
- 27. Varney ME, Choi K, Bolanos L, et al. Epistasis between TIFAB and miR-146a: neighboring genes in del(5q) myelodysplastic syndrome. Leukemia. 2017;31(2):491-495.
- 28. Barreyro L, Chlon TM, Starczynowski DT. Chronic immune response dysregulation in MDS pathogenesis. Blood. 2018;132(15):1553-1560.
- 29. Starczynowski DT, Morin R, McPherson A, et al. Genome-wide identification of human microRNAs located in leukemia-associated genomic alterations. Blood. 2011;117(2):595-607.
- 30. Sokol L, Caceres G, Volinia S, et al. Identification of a risk dependent microRNA expression signature in myelodysplastic syndromes. Br J Haematol. 2011;153(1):24-32.
- 31. Hydbring P, Badalian-Very G. Clinical applications of microRNAs. F1000Res. 2013;2:136.
- 32. Hsu MJ, Chang YC, Hsueh HM. Biomarker selection for medical diagnosis using the partial area under the ROC curve. BMC Res Notes. 2014;7:25.