Derleme
BibTex RIS Kaynak Göster

Novel Utilization of Fish By-Products and Wastes: Protein Hydrolysates

Yıl 2022, , 283 - 294, 01.06.2022
https://doi.org/10.22392/actaquatr.1031442

Öz

The rapid growth of the world's population, urbanization, and increasing prosperity require better utilization of available protein resources. In addition, the development of new and sustainable resources is also very important. By 2050, the increase in protein demand in the world will cause it to double not only due to population pressure but also to the increasing awareness of the importance of proteins in a healthy diet for the elderly population. Fish and other aquatic products are important sources of protein. However, depending on the raw materials and the processes applied in the seafood processing sector, waste and by-products are generated at rates ranging from 20% to 75%. Many studies have shown that these products are important protein sources. However, the inadequate management of waste and by-products in the seafood processing sector is one of the biggest challenges facing the fish industry today. Various processes have been developed for the use of these products. An effective way to add value to these products is the production of protein hydrolyzates. Protein hydrolysates allow the release of peptides of different sizes with functional properties, various bioactivities such as antioxidant, antimicrobial, antihypertensive, anti-inflammatory, or antihyperglycemic. In this article, proteins belonging to fish by-products and wastes, their functional and technological properties, hydrolysis process, technological use of hydrolysates in the food industry have been reviewed.

Teşekkür

This study is a part of the Ph.D. thesis of Gulsum Balcik Misir, the author thanks to my supervisor Assoc. Prof. Serkan Koral for valuable contributions.

Kaynakça

  • Aaslyng, M.D., Martens, M., Poll, L., Nielsen, P.M., Flyge, H. & Larsen L.M. (1998). Chemical and sensory characterization of hydrolyzed vegetable protein, a savory flavoring. Journal of Agriculture and Food Chemistry, 46(2), 481-489. https://doi.org/10.1021/jf970556e
  • Abbey, L., Glover-Amengor, M., Atikpo, M.O., Atter, A. & Toppe, J. (2017). Nutrient content of fish powder from low value fish and fish byproducts. Food Science and Nutrition, 5(3), 374-379. https://doi.org/10.1002/fsn3.402
  • Adler-Nissen, J. (1993). Proteases. In Enzymes in food processing, Nagodawithana, T., Reed, G. (Eds.), Academic Press, San Diego, 480 s., 159-203.
  • Aider, M. (2010). Chitosan application for active bio-based films production and potential in the food industry: Review. LWT- Food Science and Technology, 43(6) 837-842. https://doi:10.1016/j.lwt.2010.01.021
  • Alavi, F., Jamshidian, M., Rezaei, K., Applying native proteases from melon to hydrolyze kilka fish proteins ( Clupeonella cultriventris caspia ) compared to commercial enzyme Alcalase, Food Chemistry (2018), https://doi.org/10.1016/j.foodchem.2018.10.122
  • Arfat, Y.A., Benjakul, S., Vongkamjan, K., Sumpavapol, P. & Yarnpakdee, S. (2015). Shelf life extension of refrigerated sea bass slices wrapped with fish protein isolate/fish skin gelatin ZnO nanocomposite film incorporated with basil leaf essential oil. Journal of Food Science and Technology, 52, 10, https://doi:6182-6193.10.1007/s13197-014-1706-y
  • Balcik Misir, G. & Koral, S. (2019). Effects of ultrasound treatment on biochemical, structural, functional properties and antioxidant activity of protein hydrolysate of rainbow trout (Oncorhynchus mykiss) by-products. Italian Journal of Food Science, 31, 2, https://doi.10.14674/IJFS-1218
  • Balçık Mısır, G. & Koral, S. (2021). The impacts of ultrasound-assisted protein hydrolysate coating on the quality parameters and shelf life of smoked bonito fillets stored at 4±1ºC. Ege Journal of Fisheries and Aquatic Sciences, 38(4), 427-435. https://doi.10.12714/egejfas.38.4.04
  • Barbana, C. & Boye, J.I. (2011). Angiotensin I-converting enzyme inhibitory properties of lentil protein hydrolysates: Determination of the kinetics of inhibition. Food Chemistry, 127(1), 94-101. https://doi.org/10.1016/j.foodchem.2010.12.093
  • Beaulieu, L., Thibodeau, J., Bryl, P. & Carbonneau, M.E. (2009). Proteolytic processing of herring (Clupea harengus): Biochemical and nutritional characterisation of hydrolysates. International Journal of Food Science and Technology, 44, 2113-2119. https://doi.org/10.1111/j.1365-2621.2009.02046.x
  • Benjakul, S. & Morrissey, M.T. (1997). Protein hydrolysates from Pacific whiting solid wastes. Journal of Agricultural and Food Chemistry, 45(9), 3423-3430. https://doi.org/10.1021/jf970294g
  • Bourtoom, T. (2008). Edible films and coatings: characteristics and properties, Review Article. International Food Research Journal, 15(3), 237-248.
  • Cai, L., Wu, X., Dong, Z., Li, X., Yi, S. & Li, J. (2014). Physicochemical responses and quality changes of red sea bream (Pagrosomus major) to gum arabic coating enriched with ergothioneine treatment during refrigerated storage. Food Chemistry, 160, 82-89. https://doi.org/10.1016/j.foodchem.2014.03.093
  • Caklı, S., Kılınc, B., Dıncer, T. & Tolasa, S. (2008). Shelf life of new culture species (Diplodus puntazzo) in refrigerator. Journal of Muscle Foods, 19, 315-332. https://doi.org/10.1111/j.1745-4573.2008.00121.x
  • Chalamaiah M, Dinesh Kumar B, Hemalatha R, & Jyothirmayi T. (2012). Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: A review. Food Chemistry.135(4), 3020-38. http://dx.doi.org/10.1016/j.foodchem.2012.06.100
  • Chalamaiah, M., Narsing, R.G., Rao, D.G. & Jyothirmayi, T. (2010). Protein hydrolysates from meriga (Cirrhinus mrigala) egg and evaluation of their functional properties, Food Chemistry, 120, 652-657. https://doi.org/10.1016/j.foodchem.2009.10.057
  • Cheung, I.W.Y., Liceaga, A.M. & Li Chan E.C.Y. (2009). Pacific hake (Merluccius productus) hydrolysates as cryoprotective agents in frozen pacific cod fillet mince. Journal of Food Science, 74(8), 588-594. https://doi.org/10.1111/j.1750-3841.2009.01307.x
  • Chi, C.F., Wang, B., Hu, F.Y., Wang, Y.M., Zhang, B., Deng, S.G. & Wu, C.W. (2015). Purification and identification of three novel antioxidant peptides from protein hydrolysate of bluefin leatherjacket (Navodon septentrionalis) skin. Food Research International, 73, 124-129. https://doi.org/10.1016/j.foodres.2014.08.038
  • Dehghani, S., Hosseini, S.V. & Regenstein, J.M. (2018). Edible films and coatings in seafood preservation: A review. Food Chemistry, 240, 505-513. https://doi.org/10.1016/j.foodchem.2017.07.034
  • Dekkers, E., Raghavan, S., Kristinsson, H.G. & Marshall, M.R. (2011). Oxidative stability of mahi mahi red muscle dipped in tilapia protein hydrolysates. Food Chemistry, 124(2), 640-645. https://doi.org/10.1016/j.foodchem.2010.06.088
  • Diniz, F.M. & Martin, A.M. (1997). Effects of the extend of enzymatic hydrolysis on the functional properties of shark protein hydrolysate. LWT-Food Science and Technology, 30(3), 266-272. https://doi.org/10.1006/fstl.1996.0184
  • Disney, J.G., Tatterson, I.N. & Oley, J. (1977). Recent development in fish silage. Conference on the Handling, Processing and Marketing of Tropical Fish. London, 5-7 June 1976, 273- 275.
  • Donhowe, I.G. & Fennema, O.R. (1993). The effects of plasticizers on crystallinity, permeability, and mechanical properties of methylcellulose films. Journal of Food Processing and Preservation, 17, 247-257. https://doi.org/10.1111/j.1745-4549.1993.tb00729.x
  • Dursun, S. & Erkan, N. (2014). The effect of edible coating on the quality of smoked fish. Italian Journal of Food Science, 26(4), 370-382.
  • Egerton, S., Culloty, S., Whooley, J., Stanton, C., & Ross, P.R. (2018). Characterization of protein hydrolysates from blue whiting (Micromesistius poutassou) and their application in beverage fortifcation. Food Chemistry, 245, 698–706
  • Embuscado ME, & Huber KC. (2009). Edible films and coatings for food applications. New York: Springer. Esteban, M.B. García, A.J. Ramos, P. M. & Márquez, C. (2007). Evaluation of fruit–vegetable and fish wastes as alternative feedstuffs in pig diets, Waste Management, e 27, 2193-200, https://doi.org/10.1016/j.wasman.2006.01.004
  • FAO, (2017). Committee on fisheries, sub-committee on fish trade, Sixteenth Session Busan, Republic of Korea, 4-8 September, 2017, Reduction of Fish Food Loss and Waste.
  • FAO, (2020). The State of World Fisheries and Aquaculture 2020, Citation Address: http://www.fao.org/state-of-fisheries-aquaculture (13.06.2021).
  • Forghani, B., Ebrahimpour, A., Bakar, J., Abdul-Hamid, A., Hassan, Z. & Saari, N. (2012). Enzyme hydrolysates from stichopus horrens as a new source for angiotensin-converting enzyme inhibitory peptides. Evidence-Based Complementary and Alternative Medicine, 9, 21-24. https://doi.org/10.1155/2012/236384
  • Friedman, M. (1978). Inhibition of lysinoalanine synthesis by protein acylation. In: Nutritional Improvement of Food and Feed Proteins vol. 105, Friedman, M. (Ed.), Plenum Press, New York, ISBN: 978-1-4684-3366-1, 865 s., 613-648.
  • Giannetto A, Esposito E, Lanza M et al. (2020). Protein hydrolysates from anchovy (Engraulis encrasicolus) waste: in vitro and in vivo biological activities. Marine Drugs, 18, 86. https://doi.org/10.3390/md18020086
  • Grossbier, D., Minneapolis, M.N., Bermea, M., Claremont, M.N., Rao, S. & Omaha, C. Low sodium salt composition. United States Patent Application, US 8,802,181 B2, 2014.
  • Gu, R.Z., Li, C.Y., Liu, W.Y., Yi, W.X. & Cai, M.Y. (2011). Angiotensin I-converting enzyme inhibitory activity of low-molecular-weight peptides from Atlantic salmon (Salmo salar L.) skin. Food Research International, 44(5), 1536-1540. https://doi.org/10.1016/j.foodres.2011.04.006
  • Hamzeh, A. & Rezaei, M. (2012). The effects of sodium alginate on quality of rainbow trout (Oncorhynchus mykiss) fillets stored at 4±2 °C. Journal of Aquatic Food Product Technology, 21, 14-21. https://doi.org/10.1080/10498850.2011.579384
  • Hanmoungjai, P., Pyle, D. & Niranjan, K. (2002), Enzyme-assisted water-extraction of oil and protein from rice bran. Journal of Chemical Technology and Biotechnology, 77, 771-776. https://doi.org/10.1002/jctb.635
  • Haque, Z.U. & Mozaffar, Z. (1992). Casein hydrolysate II. functional properties of peptides. Journal of Food Hydrocolloids, 5, 559-571. https://doi.org/10.1016/S0268-005X(09)80125-2
  • Harald, H. & Kjartan, S. (2004). Process for improvement of meat quality in fish, protein hydrolysate and method of producing a protein hydrolysate. Norway Patent Application, WO/2004/071202
  • He, S., Franco, C., and Zhang, W. 2013. Functions, applications and production of protein hydrolysates from fish processing co-products (FPCP), Food Research International, 50(1), 289-297. https://doi.org/10.1016/j.foodres.2012.10.031
  • Helfman, G., Collette, B.B., Facey, D.E. & Bowen, B.W. (2009). Functional morphology of locomotion and feeding (2nd Ed.). In The Diversity of Fishes: Biology, Evolution, and Ecology. Wiley-Blackwell. 111-127.
  • Herpandi, N.H., Rosma, A. & Wan Nadiah, W.A. (2011). The tuna fishing industry: a new outlook on fish protein hydrolysates. Comprehensive Reviews in Food Science and Food Safety, 10, 195-207. https://doi.org/10.1111/j.1541-4337.2011.00155.x
  • Hsu, K. 2010. Purification of antioxidative peptides prepared from enzymatic hydrolysates of tuna dark muscle by-product. Food Chemistry, 122, 42-48. https://doi.org/10.1016/j.foodchem.2010.02.013
  • Idowu, A.T., Benjakul, S., Sinthusamran, S., Pongsetkul, J., Sae-Leaw, T. and Sookchoo, P. (2019). Whole wheat cracker fortifed with biocalcium and protein hydrolysate powders from salmon frame: characteristics and nutritional value. Food Quality and Safety, 3(3):191-199
  • Ishak, N.H. & Sarbon, N.M. (2017). Optimization of the enzymatic hydrolysis conditions of waste from shortfin scad (Decapterus macrosoma) for the production of angiotensin-I-converting enzyme (ACE) inhibitory peptides using response surface methodology. International Food Resources, 24, 1735-1743.
  • Je, J,. Lee, Y.K.H., Lee, M.H. & Ahn, C.B. (2009). Antioxidant and antihypertensive protein hydrolysates produced from tuna liver by enzymatic hydrolysis. Food Research International, 42(9), 1266-1272. https://doi.org/10.1016/j.foodres.2009.06.013
  • Jenkelunas, P.J., and Li-Chan, E.C.Y. (2018). Production and assessment of Pacific hake (Merluccius productus) hydrolysates as cryoprotectants for frozen fish mince, Food Chemistry, 239, 535-543. https://doi.org/10.1016/j.foodchem.2017.06.148
  • Jumeri, SM., 2011. Antioxidant and anticancer activities of enzymatic hydrolysates of solitary tunicate (Styela clava). Food Science and Biotechnology, 20(4) 1075-85. https://doi.10.1007/s10068-011-0146-y
  • Khiari, Z., Rico, D., Martin-Diana, A.B. & Barry-Ryan, C. (2015). Valorization of fish by-products: rheological, textural and microstructural properties of mackerel skin gelatins. Journal of Material Cycles and Waste Management, 19(1), 180-191. https://doi.10.1007/s10163-015-0399-2
  • Kilincceker, O., Dogan, I.S. & Kucukoner, E. (2009). Effect of edible coatings on the quality of frozen fish fillets. LWT- Food Science and Technology, 42(2), 868-873. https://doi.org/10.1016/j.lwt.2008.11.003
  • Kim, S.K. & Mendis, E. (2006). Bioactive compounds from marine processing byproducts-a review. Food Research International, 39(4), 383-93. https://doi.org/10.1016/j.foodres.2005.10.010
  • Korkmaz K. & Tokur B., (2021). Optimization of hydrolysis conditions for the production of protein hydrolysates from fish wastes using response surface methodology, Food Bioscience https://doi.org/10.1016/j.fbio.2021.101312
  • Kristinsson, H.G. & Rasco, B.A. (2000a). Fish protein hydrolysates: production, biochemical, and functional properties. Critical Reviews in Food Science and Nutrition, 40(1), 43-81. https://doi.org/10.1080/10408690091189266
  • Kristinsson, H.G. & Rasco, B.A. (2000b). Biochemical and functional properties of Atlantic salmon (Salmo salar) muscle protein hydrolyzed with various alkaline proteases. Journal of Agriculture and Food Chemistry, 48, 657-666. https://doi.org/10.1021/jf990447v
  • Lee, B., Lopez‐Ferrer, D., Kim, B.C., Na, H.B., Park, Y.I., Weitz, K.K., Warner, M.G., Hyeon, T., Lee, S., Smith, R.D. & Kim, J. (2011). Rapid and efficient protein digestion using trypsin-coated magnetic nanoparticles under pressure cycles. Proteomics, 11, 309-318. https://doi.org/10.1002/pmic.201000378
  • Lin, L., Wang, B. & Weng, Y. (2011). Quality preservation of commercial fish balls with antimicrobial zein coatings. Journal of Food Quality, 34, 81-87. https://doi.org/10.1111/j.1745-4557.2011.00370.x
  • López-Pedrouso M, Lorenzo JM, Cantalapiedra J, Zapata C, Franco & JM, Franco D. (2020). Aquaculture and by-products: challenges and opportunities in the use of alternative protein sources and bioactive compounds. Advances in Food and Nutrition Research, 92, 127– 185.
  • Marchbank, T., Limdi, J.K., Mahmood, A., Elia, G. & Playford, R.J. (2008). Clinical trial: protective effect of a commercial fish protein hydrolysate against indomethacin (nsaid)‐induced small intestinal injury, alimentary pharmacology and therapeutics. Journal of Compilation Aliment Pharmacology and Therapeutics, 28, 799-804. https://doi.org/10.1111/j.1365-2036.2008.03783.x
  • Mirzapour-Kouhdasht, A. & Moosavi-Nasab, M. 2020. Shelf-life extension of whole shrimp using an active coating containing fish skin gelatin hydrolysates produced by a natural protease. Food Science and Nutrition, 8, 214-223. https://doi.org/10.1002/fsn3.1293
  • Moreno, M.M.C. & Cuadrado, F.V. (1993). Enzymatic hydrolysis of vegetable proteins: mechanism and kinetics. Process Biochemistry, 28, 481-90. https://doi.org/10.1016/0032-9592(93)85032-B
  • Motalebi, A.A. & Seyfzadeh, M. (2012). Effects of whey protein edible coating on bacterial, chemical and sensory characteristics of frozen common kilka (Clupeonellia delitula). Iranian Journal of Fisheries Sciences, 11(1), 132-144.
  • Ngo, D.H., Vo, T.S., Ngo, D.N., Wıjesekara, I. & Kim, S.K. (2012). Biological activities and potential health benefits of bioactive peptides derived from marine organisms. International Journal of Biological Macromolecules, 51(4), 378-383. https://doi.10.1016/j.ijbiomac.2012.06.001
  • Nurilmala, M., Hizbullah, HH., Karnia, E., Kusumaningtyas, E., & Ochiai, Y. (2020). Effects of Fish Collagen Hydrolysate (FCH) as Fat Replacer in the Production of Buffalo Patties. Journal of Advanced Research in Applied Sciences and Engineering Technology, 11(1), 108–117. https://doi.org/10.3390/md18020098
  • Olsen, R.L., Toppe, J. & Karunasagar, I. (2014). Challenges and realistic opportunities in the use of by-products from processing of fish and shellfish. Trends in Food Science & Technology, 36(2), 144-151. https://doi.org/10.1016/j.tifs.2014.01.007
  • Pal, G.K. & Suresh, P.V. (2016). Sustainable valorisation of seafood by-products: Recovery of collagen and development of collagen- based novel functional food ingredients. Innovative Food Science & Emerging Technologies, 37, 201-215. https://doi.org/10.1016/j.ifset.2016.03.015
  • Raghavan, S., Kristinsson, H.G. & Leeuwenburgh, C. (2008). Radical scavenging and reducing ability of tilapia (Oreochromis niloticus) protein hydrolysates. Journal of Agriculture and Food Chemistry, 56(21), 10359-10367. https://doi.org/10.1021/jf8017194
  • Rodriguez-Turienzo, L., Cobos, A. & Diaz, O. (2012). Effects of edible coatings based on ultrasound-treated whey proteins in quality attributes of frozen Atlantic salmon (Salmo salar). Innovative Food Science and Emerging Technologies, 14, 92-98. https://doi.org/10.1016/j.ifset.2011.12.003
  • Rodriguez-Turienzo, L., Cobos, A., Moreno, V., Caride, A., Vieites, J.M. & Diaz, O. (2011). Whey protein-based coatings on frozen Atlantic salmon (Salmo salar): Influence of the plasticiser and the moment of coating on quality preservation. Food Chemistry, 128, 187-194. https://doi.org/10.1016/j.foodchem.2011.03.026
  • Roslan, J., Yunos, K.F.M., Abdullah, N. & Kamal, S.M.M. (2014). Characterization of fish protein hydrolysate from tilapia (Oreochromis Niloticus) by-product. Agriculture and Agricultural Science Procedia, 2, 312-319. https://doi.org/10.1016/j.aaspro.2014.11.044
  • Sánchez-Ortega, I., García-Almendárez, B.E., Santos-López, E.M., Amaro-Reyes, A., Barboza-Corona, J.E. & Regalado, C. (2014). Antimicrobial edible films and coatings for meat and meat products preservation. The Scientific World Journal, 2014, 1-18. https://doi.org/10.1155/2014/248935
  • Sathivel, S., Bechtel, P.J., Crapo, S., Reppond, K.D. & Prinnyawatkul, W. (2003). Biochemical and functional properties of herring (Clupea haregus). Journal of Food Science, 68, 2196-2200. https://doi.org/10.1111/j.1365-2621.2003.tb05746.x
  • Seyfzadeh, M., Motalebi, A.A., Kakoolaki, S. & Gholipour, H. (2013). Chemical, microbiological and sensory evaluation of gutted kilka coated with whey protein based edible film incorporated with sodium alginate during frozen storage. Iranian Journal of Fisheries Sciences, 12, 140-153.
  • Shahidi, F., Han X.Q. & Syniwiecki, J. (1995). Production and characteristics of protein hydrolysates from capelin (Mallotus villosus). Food Chemistry, 53, 285-293. https://doi.org/10.1016/0308-8146(95)93934-J
  • Shaviklo, G.R,, Thorkelsson, G., Sveinsdottir, K., & Rafipour, F. (2011). Chemical properties and sensory quality of ice cream fortifed with fsh protein. Journal of the Science of Food and Agriculture, 91(7), 1199-1204
  • Shiku, Y., Hamaguchi, P.Y., Benjakul, S., Visessanguan, W. & Tanaka, M. (2004). Effect of surimi quality on properties of edible films based on Alaska pollack. Food Chemistry, 86, 493-499. https://doi.org/10.1016/j.foodchem.2003.09.022
  • Shirai, K. & Ramirez-Ramirez, J.C. (2011). Utilization of fish processing by-products for bioactive compounds, In: Hall, G.M., Ed. Fish Processing-Sustainability and New Opportunities. Wiley-Blackwell, Preston, 236-258.
  • Sohail Khan, Abdur Rehman, Haroon Shah, Rana Muhammad Aadil, Ahmad Ali, Qayyum Shehzad, Waqas Ashraf, Fang Yang, Aiman Karim, Adnan Khaliq & Wenshui Xia (2020). Fish Protein and Its Derivatives: The Novel Applications, Bioactivities, and Their Functional Significance in Food Products, Food Reviews International, https://doi.org/10.1080/87559129.2020.1828452
  • Song, Y., Liu, L., Shen, H., You, J. & Luo, Y. (2011). Effect of sodium alginate-based edible coating containing different anti-oxidants on quality and shelf life of refrigerated bream (Megalobrama amblycephala). Food Control, 22, 608-615. https://doi.org/10.1016/j.foodcont.2010.10.012
  • Tahergorabi, R., Matak, K.E. & Jaczynski, J. (2015). Fish protein isolate: Development of functional foods with nutraceutical ingredients. Journal of Functional Foods, 18, 746–756. https://doi.org/10.1016/j.jff.2014.05.006 URL-1. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=172.385 (05.07.2021)
  • Vareltzis, K., Soultos, N., Zetou, F. & Tsiaras, I. (1990). Proximate composition and quality of a hamburger type product made from minced beef and fish protein concentrate. Lebensmittel-Wissenschaft & Technologie, 23(2), 112-116.
  • Vijaykrishnaraj, M., Roopa, B. & Prabhasankar, P. (2016). Preparation of gluten free bread enriched with green mussel (Perna canaliculus) protein hydrolysates and characterization of peptides responsible for mussel favour. Food Chemistry, 211, 715-725
  • Yıldız S. (2007). Enzimler. Fakülte Kitabevi Yayınları, 1. Baskı, Isparta, 200 s. (In Turkish)
  • Zhang, H., Zhang, Y., Javed, M., Cheng, M., Xiong, S. and Liu, Y. (2022). Gelatin hydrolysates from sliver carp (Hypophthalmichthys molitrix) improve the antioxidant and cryoprotective properties of unwashed frozen fish mince. International Journal of Food Science and Technology. https://doi.org/10.1111/ijfs.15121

Balık Yan Ürünlerinin ve Atıklarının Yeni Kullanımı: Protein Hidrolizatları

Yıl 2022, , 283 - 294, 01.06.2022
https://doi.org/10.22392/actaquatr.1031442

Öz

Dünya nüfusunun hızla artması, kentleşme ve artan refah, mevcut protein kaynaklarının daha iyi kullanılmasını gerektirmektedir. Ayrıca yeni ve sürdürülebilir kaynakların geliştirilmesi de oldukça önemlidir. 2050 yılına gelindiğinde, dünyadaki protein talebindeki artış, sadece nüfus baskısı nedeniyle değil, aynı zamanda yaşlı nüfus için sağlıklı beslenmede proteinlerin öneminin artan farkındalığı nedeniyle bunun iki katına çıkmasına neden olacaktır. Balık ve diğer su ürünleri önemli protein kaynaklarıdır. Ancak su ürünleri işleme sektöründe hammadde ve uygulanan işlemlere bağlı olarak %20 ila %75 arasında değişen oranlarda atık ve yan ürün açığa çıkmaktadır. Bu ürünlerin önemli protein kaynakları olduğu birçok araştırma ile ortaya konmuştur. Buna rağmen balık işleme sektöründe atık ve yan ürünlerin yetersiz yönetimi, günümüzde balık endüstrisinin yüzleşmek zorunda olduğu en büyük sorunlardan biridir. Bu ürünlerin kullanımına yönelik çeşitli süreçler geliştirilmiştir. Bu ürünlere değer katmanın etkili bir yolu protein hidrolizatı üretimidir. Protein hidrolizatları, fonksiyonel özellikleri, antioksidan, antimikrobiyal, antihipertansif, antiinflamatuar veya antihiperglisemik gibi çeşitli biyoaktivitelere sahip farklı boyutlardaki peptitlerin açığa çıkmasına izin verir. Bu makalede, balık yan ürünleri ve atıklarına ait proteinler, fonksiyonel ve teknolojik özellikleri ile hidroliz işlemi, hidrolizatların gıda sektöründe teknolojik kullanım olanakları derlenmiştir.

Kaynakça

  • Aaslyng, M.D., Martens, M., Poll, L., Nielsen, P.M., Flyge, H. & Larsen L.M. (1998). Chemical and sensory characterization of hydrolyzed vegetable protein, a savory flavoring. Journal of Agriculture and Food Chemistry, 46(2), 481-489. https://doi.org/10.1021/jf970556e
  • Abbey, L., Glover-Amengor, M., Atikpo, M.O., Atter, A. & Toppe, J. (2017). Nutrient content of fish powder from low value fish and fish byproducts. Food Science and Nutrition, 5(3), 374-379. https://doi.org/10.1002/fsn3.402
  • Adler-Nissen, J. (1993). Proteases. In Enzymes in food processing, Nagodawithana, T., Reed, G. (Eds.), Academic Press, San Diego, 480 s., 159-203.
  • Aider, M. (2010). Chitosan application for active bio-based films production and potential in the food industry: Review. LWT- Food Science and Technology, 43(6) 837-842. https://doi:10.1016/j.lwt.2010.01.021
  • Alavi, F., Jamshidian, M., Rezaei, K., Applying native proteases from melon to hydrolyze kilka fish proteins ( Clupeonella cultriventris caspia ) compared to commercial enzyme Alcalase, Food Chemistry (2018), https://doi.org/10.1016/j.foodchem.2018.10.122
  • Arfat, Y.A., Benjakul, S., Vongkamjan, K., Sumpavapol, P. & Yarnpakdee, S. (2015). Shelf life extension of refrigerated sea bass slices wrapped with fish protein isolate/fish skin gelatin ZnO nanocomposite film incorporated with basil leaf essential oil. Journal of Food Science and Technology, 52, 10, https://doi:6182-6193.10.1007/s13197-014-1706-y
  • Balcik Misir, G. & Koral, S. (2019). Effects of ultrasound treatment on biochemical, structural, functional properties and antioxidant activity of protein hydrolysate of rainbow trout (Oncorhynchus mykiss) by-products. Italian Journal of Food Science, 31, 2, https://doi.10.14674/IJFS-1218
  • Balçık Mısır, G. & Koral, S. (2021). The impacts of ultrasound-assisted protein hydrolysate coating on the quality parameters and shelf life of smoked bonito fillets stored at 4±1ºC. Ege Journal of Fisheries and Aquatic Sciences, 38(4), 427-435. https://doi.10.12714/egejfas.38.4.04
  • Barbana, C. & Boye, J.I. (2011). Angiotensin I-converting enzyme inhibitory properties of lentil protein hydrolysates: Determination of the kinetics of inhibition. Food Chemistry, 127(1), 94-101. https://doi.org/10.1016/j.foodchem.2010.12.093
  • Beaulieu, L., Thibodeau, J., Bryl, P. & Carbonneau, M.E. (2009). Proteolytic processing of herring (Clupea harengus): Biochemical and nutritional characterisation of hydrolysates. International Journal of Food Science and Technology, 44, 2113-2119. https://doi.org/10.1111/j.1365-2621.2009.02046.x
  • Benjakul, S. & Morrissey, M.T. (1997). Protein hydrolysates from Pacific whiting solid wastes. Journal of Agricultural and Food Chemistry, 45(9), 3423-3430. https://doi.org/10.1021/jf970294g
  • Bourtoom, T. (2008). Edible films and coatings: characteristics and properties, Review Article. International Food Research Journal, 15(3), 237-248.
  • Cai, L., Wu, X., Dong, Z., Li, X., Yi, S. & Li, J. (2014). Physicochemical responses and quality changes of red sea bream (Pagrosomus major) to gum arabic coating enriched with ergothioneine treatment during refrigerated storage. Food Chemistry, 160, 82-89. https://doi.org/10.1016/j.foodchem.2014.03.093
  • Caklı, S., Kılınc, B., Dıncer, T. & Tolasa, S. (2008). Shelf life of new culture species (Diplodus puntazzo) in refrigerator. Journal of Muscle Foods, 19, 315-332. https://doi.org/10.1111/j.1745-4573.2008.00121.x
  • Chalamaiah M, Dinesh Kumar B, Hemalatha R, & Jyothirmayi T. (2012). Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: A review. Food Chemistry.135(4), 3020-38. http://dx.doi.org/10.1016/j.foodchem.2012.06.100
  • Chalamaiah, M., Narsing, R.G., Rao, D.G. & Jyothirmayi, T. (2010). Protein hydrolysates from meriga (Cirrhinus mrigala) egg and evaluation of their functional properties, Food Chemistry, 120, 652-657. https://doi.org/10.1016/j.foodchem.2009.10.057
  • Cheung, I.W.Y., Liceaga, A.M. & Li Chan E.C.Y. (2009). Pacific hake (Merluccius productus) hydrolysates as cryoprotective agents in frozen pacific cod fillet mince. Journal of Food Science, 74(8), 588-594. https://doi.org/10.1111/j.1750-3841.2009.01307.x
  • Chi, C.F., Wang, B., Hu, F.Y., Wang, Y.M., Zhang, B., Deng, S.G. & Wu, C.W. (2015). Purification and identification of three novel antioxidant peptides from protein hydrolysate of bluefin leatherjacket (Navodon septentrionalis) skin. Food Research International, 73, 124-129. https://doi.org/10.1016/j.foodres.2014.08.038
  • Dehghani, S., Hosseini, S.V. & Regenstein, J.M. (2018). Edible films and coatings in seafood preservation: A review. Food Chemistry, 240, 505-513. https://doi.org/10.1016/j.foodchem.2017.07.034
  • Dekkers, E., Raghavan, S., Kristinsson, H.G. & Marshall, M.R. (2011). Oxidative stability of mahi mahi red muscle dipped in tilapia protein hydrolysates. Food Chemistry, 124(2), 640-645. https://doi.org/10.1016/j.foodchem.2010.06.088
  • Diniz, F.M. & Martin, A.M. (1997). Effects of the extend of enzymatic hydrolysis on the functional properties of shark protein hydrolysate. LWT-Food Science and Technology, 30(3), 266-272. https://doi.org/10.1006/fstl.1996.0184
  • Disney, J.G., Tatterson, I.N. & Oley, J. (1977). Recent development in fish silage. Conference on the Handling, Processing and Marketing of Tropical Fish. London, 5-7 June 1976, 273- 275.
  • Donhowe, I.G. & Fennema, O.R. (1993). The effects of plasticizers on crystallinity, permeability, and mechanical properties of methylcellulose films. Journal of Food Processing and Preservation, 17, 247-257. https://doi.org/10.1111/j.1745-4549.1993.tb00729.x
  • Dursun, S. & Erkan, N. (2014). The effect of edible coating on the quality of smoked fish. Italian Journal of Food Science, 26(4), 370-382.
  • Egerton, S., Culloty, S., Whooley, J., Stanton, C., & Ross, P.R. (2018). Characterization of protein hydrolysates from blue whiting (Micromesistius poutassou) and their application in beverage fortifcation. Food Chemistry, 245, 698–706
  • Embuscado ME, & Huber KC. (2009). Edible films and coatings for food applications. New York: Springer. Esteban, M.B. García, A.J. Ramos, P. M. & Márquez, C. (2007). Evaluation of fruit–vegetable and fish wastes as alternative feedstuffs in pig diets, Waste Management, e 27, 2193-200, https://doi.org/10.1016/j.wasman.2006.01.004
  • FAO, (2017). Committee on fisheries, sub-committee on fish trade, Sixteenth Session Busan, Republic of Korea, 4-8 September, 2017, Reduction of Fish Food Loss and Waste.
  • FAO, (2020). The State of World Fisheries and Aquaculture 2020, Citation Address: http://www.fao.org/state-of-fisheries-aquaculture (13.06.2021).
  • Forghani, B., Ebrahimpour, A., Bakar, J., Abdul-Hamid, A., Hassan, Z. & Saari, N. (2012). Enzyme hydrolysates from stichopus horrens as a new source for angiotensin-converting enzyme inhibitory peptides. Evidence-Based Complementary and Alternative Medicine, 9, 21-24. https://doi.org/10.1155/2012/236384
  • Friedman, M. (1978). Inhibition of lysinoalanine synthesis by protein acylation. In: Nutritional Improvement of Food and Feed Proteins vol. 105, Friedman, M. (Ed.), Plenum Press, New York, ISBN: 978-1-4684-3366-1, 865 s., 613-648.
  • Giannetto A, Esposito E, Lanza M et al. (2020). Protein hydrolysates from anchovy (Engraulis encrasicolus) waste: in vitro and in vivo biological activities. Marine Drugs, 18, 86. https://doi.org/10.3390/md18020086
  • Grossbier, D., Minneapolis, M.N., Bermea, M., Claremont, M.N., Rao, S. & Omaha, C. Low sodium salt composition. United States Patent Application, US 8,802,181 B2, 2014.
  • Gu, R.Z., Li, C.Y., Liu, W.Y., Yi, W.X. & Cai, M.Y. (2011). Angiotensin I-converting enzyme inhibitory activity of low-molecular-weight peptides from Atlantic salmon (Salmo salar L.) skin. Food Research International, 44(5), 1536-1540. https://doi.org/10.1016/j.foodres.2011.04.006
  • Hamzeh, A. & Rezaei, M. (2012). The effects of sodium alginate on quality of rainbow trout (Oncorhynchus mykiss) fillets stored at 4±2 °C. Journal of Aquatic Food Product Technology, 21, 14-21. https://doi.org/10.1080/10498850.2011.579384
  • Hanmoungjai, P., Pyle, D. & Niranjan, K. (2002), Enzyme-assisted water-extraction of oil and protein from rice bran. Journal of Chemical Technology and Biotechnology, 77, 771-776. https://doi.org/10.1002/jctb.635
  • Haque, Z.U. & Mozaffar, Z. (1992). Casein hydrolysate II. functional properties of peptides. Journal of Food Hydrocolloids, 5, 559-571. https://doi.org/10.1016/S0268-005X(09)80125-2
  • Harald, H. & Kjartan, S. (2004). Process for improvement of meat quality in fish, protein hydrolysate and method of producing a protein hydrolysate. Norway Patent Application, WO/2004/071202
  • He, S., Franco, C., and Zhang, W. 2013. Functions, applications and production of protein hydrolysates from fish processing co-products (FPCP), Food Research International, 50(1), 289-297. https://doi.org/10.1016/j.foodres.2012.10.031
  • Helfman, G., Collette, B.B., Facey, D.E. & Bowen, B.W. (2009). Functional morphology of locomotion and feeding (2nd Ed.). In The Diversity of Fishes: Biology, Evolution, and Ecology. Wiley-Blackwell. 111-127.
  • Herpandi, N.H., Rosma, A. & Wan Nadiah, W.A. (2011). The tuna fishing industry: a new outlook on fish protein hydrolysates. Comprehensive Reviews in Food Science and Food Safety, 10, 195-207. https://doi.org/10.1111/j.1541-4337.2011.00155.x
  • Hsu, K. 2010. Purification of antioxidative peptides prepared from enzymatic hydrolysates of tuna dark muscle by-product. Food Chemistry, 122, 42-48. https://doi.org/10.1016/j.foodchem.2010.02.013
  • Idowu, A.T., Benjakul, S., Sinthusamran, S., Pongsetkul, J., Sae-Leaw, T. and Sookchoo, P. (2019). Whole wheat cracker fortifed with biocalcium and protein hydrolysate powders from salmon frame: characteristics and nutritional value. Food Quality and Safety, 3(3):191-199
  • Ishak, N.H. & Sarbon, N.M. (2017). Optimization of the enzymatic hydrolysis conditions of waste from shortfin scad (Decapterus macrosoma) for the production of angiotensin-I-converting enzyme (ACE) inhibitory peptides using response surface methodology. International Food Resources, 24, 1735-1743.
  • Je, J,. Lee, Y.K.H., Lee, M.H. & Ahn, C.B. (2009). Antioxidant and antihypertensive protein hydrolysates produced from tuna liver by enzymatic hydrolysis. Food Research International, 42(9), 1266-1272. https://doi.org/10.1016/j.foodres.2009.06.013
  • Jenkelunas, P.J., and Li-Chan, E.C.Y. (2018). Production and assessment of Pacific hake (Merluccius productus) hydrolysates as cryoprotectants for frozen fish mince, Food Chemistry, 239, 535-543. https://doi.org/10.1016/j.foodchem.2017.06.148
  • Jumeri, SM., 2011. Antioxidant and anticancer activities of enzymatic hydrolysates of solitary tunicate (Styela clava). Food Science and Biotechnology, 20(4) 1075-85. https://doi.10.1007/s10068-011-0146-y
  • Khiari, Z., Rico, D., Martin-Diana, A.B. & Barry-Ryan, C. (2015). Valorization of fish by-products: rheological, textural and microstructural properties of mackerel skin gelatins. Journal of Material Cycles and Waste Management, 19(1), 180-191. https://doi.10.1007/s10163-015-0399-2
  • Kilincceker, O., Dogan, I.S. & Kucukoner, E. (2009). Effect of edible coatings on the quality of frozen fish fillets. LWT- Food Science and Technology, 42(2), 868-873. https://doi.org/10.1016/j.lwt.2008.11.003
  • Kim, S.K. & Mendis, E. (2006). Bioactive compounds from marine processing byproducts-a review. Food Research International, 39(4), 383-93. https://doi.org/10.1016/j.foodres.2005.10.010
  • Korkmaz K. & Tokur B., (2021). Optimization of hydrolysis conditions for the production of protein hydrolysates from fish wastes using response surface methodology, Food Bioscience https://doi.org/10.1016/j.fbio.2021.101312
  • Kristinsson, H.G. & Rasco, B.A. (2000a). Fish protein hydrolysates: production, biochemical, and functional properties. Critical Reviews in Food Science and Nutrition, 40(1), 43-81. https://doi.org/10.1080/10408690091189266
  • Kristinsson, H.G. & Rasco, B.A. (2000b). Biochemical and functional properties of Atlantic salmon (Salmo salar) muscle protein hydrolyzed with various alkaline proteases. Journal of Agriculture and Food Chemistry, 48, 657-666. https://doi.org/10.1021/jf990447v
  • Lee, B., Lopez‐Ferrer, D., Kim, B.C., Na, H.B., Park, Y.I., Weitz, K.K., Warner, M.G., Hyeon, T., Lee, S., Smith, R.D. & Kim, J. (2011). Rapid and efficient protein digestion using trypsin-coated magnetic nanoparticles under pressure cycles. Proteomics, 11, 309-318. https://doi.org/10.1002/pmic.201000378
  • Lin, L., Wang, B. & Weng, Y. (2011). Quality preservation of commercial fish balls with antimicrobial zein coatings. Journal of Food Quality, 34, 81-87. https://doi.org/10.1111/j.1745-4557.2011.00370.x
  • López-Pedrouso M, Lorenzo JM, Cantalapiedra J, Zapata C, Franco & JM, Franco D. (2020). Aquaculture and by-products: challenges and opportunities in the use of alternative protein sources and bioactive compounds. Advances in Food and Nutrition Research, 92, 127– 185.
  • Marchbank, T., Limdi, J.K., Mahmood, A., Elia, G. & Playford, R.J. (2008). Clinical trial: protective effect of a commercial fish protein hydrolysate against indomethacin (nsaid)‐induced small intestinal injury, alimentary pharmacology and therapeutics. Journal of Compilation Aliment Pharmacology and Therapeutics, 28, 799-804. https://doi.org/10.1111/j.1365-2036.2008.03783.x
  • Mirzapour-Kouhdasht, A. & Moosavi-Nasab, M. 2020. Shelf-life extension of whole shrimp using an active coating containing fish skin gelatin hydrolysates produced by a natural protease. Food Science and Nutrition, 8, 214-223. https://doi.org/10.1002/fsn3.1293
  • Moreno, M.M.C. & Cuadrado, F.V. (1993). Enzymatic hydrolysis of vegetable proteins: mechanism and kinetics. Process Biochemistry, 28, 481-90. https://doi.org/10.1016/0032-9592(93)85032-B
  • Motalebi, A.A. & Seyfzadeh, M. (2012). Effects of whey protein edible coating on bacterial, chemical and sensory characteristics of frozen common kilka (Clupeonellia delitula). Iranian Journal of Fisheries Sciences, 11(1), 132-144.
  • Ngo, D.H., Vo, T.S., Ngo, D.N., Wıjesekara, I. & Kim, S.K. (2012). Biological activities and potential health benefits of bioactive peptides derived from marine organisms. International Journal of Biological Macromolecules, 51(4), 378-383. https://doi.10.1016/j.ijbiomac.2012.06.001
  • Nurilmala, M., Hizbullah, HH., Karnia, E., Kusumaningtyas, E., & Ochiai, Y. (2020). Effects of Fish Collagen Hydrolysate (FCH) as Fat Replacer in the Production of Buffalo Patties. Journal of Advanced Research in Applied Sciences and Engineering Technology, 11(1), 108–117. https://doi.org/10.3390/md18020098
  • Olsen, R.L., Toppe, J. & Karunasagar, I. (2014). Challenges and realistic opportunities in the use of by-products from processing of fish and shellfish. Trends in Food Science & Technology, 36(2), 144-151. https://doi.org/10.1016/j.tifs.2014.01.007
  • Pal, G.K. & Suresh, P.V. (2016). Sustainable valorisation of seafood by-products: Recovery of collagen and development of collagen- based novel functional food ingredients. Innovative Food Science & Emerging Technologies, 37, 201-215. https://doi.org/10.1016/j.ifset.2016.03.015
  • Raghavan, S., Kristinsson, H.G. & Leeuwenburgh, C. (2008). Radical scavenging and reducing ability of tilapia (Oreochromis niloticus) protein hydrolysates. Journal of Agriculture and Food Chemistry, 56(21), 10359-10367. https://doi.org/10.1021/jf8017194
  • Rodriguez-Turienzo, L., Cobos, A. & Diaz, O. (2012). Effects of edible coatings based on ultrasound-treated whey proteins in quality attributes of frozen Atlantic salmon (Salmo salar). Innovative Food Science and Emerging Technologies, 14, 92-98. https://doi.org/10.1016/j.ifset.2011.12.003
  • Rodriguez-Turienzo, L., Cobos, A., Moreno, V., Caride, A., Vieites, J.M. & Diaz, O. (2011). Whey protein-based coatings on frozen Atlantic salmon (Salmo salar): Influence of the plasticiser and the moment of coating on quality preservation. Food Chemistry, 128, 187-194. https://doi.org/10.1016/j.foodchem.2011.03.026
  • Roslan, J., Yunos, K.F.M., Abdullah, N. & Kamal, S.M.M. (2014). Characterization of fish protein hydrolysate from tilapia (Oreochromis Niloticus) by-product. Agriculture and Agricultural Science Procedia, 2, 312-319. https://doi.org/10.1016/j.aaspro.2014.11.044
  • Sánchez-Ortega, I., García-Almendárez, B.E., Santos-López, E.M., Amaro-Reyes, A., Barboza-Corona, J.E. & Regalado, C. (2014). Antimicrobial edible films and coatings for meat and meat products preservation. The Scientific World Journal, 2014, 1-18. https://doi.org/10.1155/2014/248935
  • Sathivel, S., Bechtel, P.J., Crapo, S., Reppond, K.D. & Prinnyawatkul, W. (2003). Biochemical and functional properties of herring (Clupea haregus). Journal of Food Science, 68, 2196-2200. https://doi.org/10.1111/j.1365-2621.2003.tb05746.x
  • Seyfzadeh, M., Motalebi, A.A., Kakoolaki, S. & Gholipour, H. (2013). Chemical, microbiological and sensory evaluation of gutted kilka coated with whey protein based edible film incorporated with sodium alginate during frozen storage. Iranian Journal of Fisheries Sciences, 12, 140-153.
  • Shahidi, F., Han X.Q. & Syniwiecki, J. (1995). Production and characteristics of protein hydrolysates from capelin (Mallotus villosus). Food Chemistry, 53, 285-293. https://doi.org/10.1016/0308-8146(95)93934-J
  • Shaviklo, G.R,, Thorkelsson, G., Sveinsdottir, K., & Rafipour, F. (2011). Chemical properties and sensory quality of ice cream fortifed with fsh protein. Journal of the Science of Food and Agriculture, 91(7), 1199-1204
  • Shiku, Y., Hamaguchi, P.Y., Benjakul, S., Visessanguan, W. & Tanaka, M. (2004). Effect of surimi quality on properties of edible films based on Alaska pollack. Food Chemistry, 86, 493-499. https://doi.org/10.1016/j.foodchem.2003.09.022
  • Shirai, K. & Ramirez-Ramirez, J.C. (2011). Utilization of fish processing by-products for bioactive compounds, In: Hall, G.M., Ed. Fish Processing-Sustainability and New Opportunities. Wiley-Blackwell, Preston, 236-258.
  • Sohail Khan, Abdur Rehman, Haroon Shah, Rana Muhammad Aadil, Ahmad Ali, Qayyum Shehzad, Waqas Ashraf, Fang Yang, Aiman Karim, Adnan Khaliq & Wenshui Xia (2020). Fish Protein and Its Derivatives: The Novel Applications, Bioactivities, and Their Functional Significance in Food Products, Food Reviews International, https://doi.org/10.1080/87559129.2020.1828452
  • Song, Y., Liu, L., Shen, H., You, J. & Luo, Y. (2011). Effect of sodium alginate-based edible coating containing different anti-oxidants on quality and shelf life of refrigerated bream (Megalobrama amblycephala). Food Control, 22, 608-615. https://doi.org/10.1016/j.foodcont.2010.10.012
  • Tahergorabi, R., Matak, K.E. & Jaczynski, J. (2015). Fish protein isolate: Development of functional foods with nutraceutical ingredients. Journal of Functional Foods, 18, 746–756. https://doi.org/10.1016/j.jff.2014.05.006 URL-1. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=172.385 (05.07.2021)
  • Vareltzis, K., Soultos, N., Zetou, F. & Tsiaras, I. (1990). Proximate composition and quality of a hamburger type product made from minced beef and fish protein concentrate. Lebensmittel-Wissenschaft & Technologie, 23(2), 112-116.
  • Vijaykrishnaraj, M., Roopa, B. & Prabhasankar, P. (2016). Preparation of gluten free bread enriched with green mussel (Perna canaliculus) protein hydrolysates and characterization of peptides responsible for mussel favour. Food Chemistry, 211, 715-725
  • Yıldız S. (2007). Enzimler. Fakülte Kitabevi Yayınları, 1. Baskı, Isparta, 200 s. (In Turkish)
  • Zhang, H., Zhang, Y., Javed, M., Cheng, M., Xiong, S. and Liu, Y. (2022). Gelatin hydrolysates from sliver carp (Hypophthalmichthys molitrix) improve the antioxidant and cryoprotective properties of unwashed frozen fish mince. International Journal of Food Science and Technology. https://doi.org/10.1111/ijfs.15121
Toplam 81 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Mühendisliği
Bölüm Derleme Makaleler
Yazarlar

Gülsüm Balçık Mısır 0000-0001-8675-8768

Yayımlanma Tarihi 1 Haziran 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Balçık Mısır, G. (2022). Novel Utilization of Fish By-Products and Wastes: Protein Hydrolysates. Acta Aquatica Turcica, 18(2), 283-294. https://doi.org/10.22392/actaquatr.1031442