Araştırma Makalesi
BibTex RIS Kaynak Göster

Antibacterial Activity of Thyme (Thymus vulgaris L.), Laurel (Lauris nobilis L.), Rosemary (Rosmarinus officinalis L.) and Parsley (Petroselinum crispum L.) Essential Oils against Some Fish Pathogenic Bacteria

Yıl 2019, , 440 - 447, 16.12.2019
https://doi.org/10.22392/actaquatr.549380

Öz

In this study, the antibacterial activity of thyme (TEO), laurel (LEO), rosemary (REO) and parsley essential oils (POE) against different fish pathogens such as Yersinia ruckeri (a, b), Lactococcus garvieae, Pseudomonas fluorescens, Aeromonas sobria, Aeromonas salmonicida and Aeromonas veronii was investigated. The essential oils were extracted by hydro-distillation using a Clevenger apparatus, and their antibacterial activities were measured by paper disk diffusion method. Significant differences in the antibacterial activity of essential oils, depending on plant source and on bacterial strain, were detected. All essential oils showed inhibitory effect against fish pathogenic bacteria (except PEO against Y. ruckeri (b)), and the inhibition zones ranged from 6.00 to 36.00 mm. The highest antibacterial activity against all tested bacteria was determined in TEO with a diameter of inhibition zone ranging from 26.50 to 36.0 mm, while LEO and REO showed a moderate activity with a diameter of inhibition zone ranging from 9.50 to 18.50 mm. The PEO illustrated the lowest diameter of inhibition zone against all the test bacteria. Among the tested bacteria, A. veronii was the most sensitive to the inhibitory activity of TEO, LEO and REO, while P. fluorescens was the most resistant. The results suggested that essential oils from thyme, laurel and rosemary can be used as natural antibacterial agents against fish pathogenic bacteria.

Kaynakça

  • Altunbaş, M., & Türel, İ. (2009). Petroselinum crispum (maydanoz) tohumu uçucu yağ özütünün letal doz düzeyleri ve antienflamatuvar aktivitesinin deney hayvanları üzerinde araştırılması. Yüzüncü Yıl Üniversitesi Veteriner Fakültesi Dergisi, 20, 21-25.
  • Bansemir, A., Just, N., Michalik, M., Lindequist, U., & Lalk, M. (2004). Extracts and sesquiterpene derivatives from the red alga Laurencia chondrioides with antibacterial activity against fish and human pathogenic bacteria. Chemistry & Biodiversity, 1, 463-467.
  • Bozin. B., Mimica-Dukic, N., Simin, N., & Anackov, G. (2006). Characterization of the volatile composition of essential oils of some Lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils. Journal of Agricultural and Food Chemistry, 54, 1822-1828.
  • Bulfon, C., Volpatti, D., & Galeotti, M. (2014). In vitro antibacterial activity of plant ethanolic extracts against fish pathogens. Journal of the World Aquaculture Society, 45, 545-557.
  • Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods-a review. International Journal of Food Microbiology, 94, 223-253.
  • Castro, S.B.R., Leal, C.A.G., Freire, F.R., Carvalho, D.A., Oliveira, D.F., & Figueiredo, H.C.P. (2008). Antibacterial activity of plant extracts from Brazil against fish pathogenic bacteria. Brazilian Journal of Microbiology, 39, 756-760.
  • Celikel, N., & Kavas, G. (2008). Antimicrobial properties of some essential oils against some pathogenic microorganisms. Czech Journal of Food Sciences, 26, 174-181.
  • Choudhury, S., Sree, A., Mukherjee, S.C., Pattnaik, P., & Bapuji, M. (2005). In vitro antibacterial activity of extracts of selected marine algae and mangroves against fish pathogens. Asian Fisheries Science, 18, 285-294.
  • Dubber, D., & Harder, T. (2008). Extracts of Ceramium rubrum, Mastocarpus stellatus and Laminaria digitata inhibit growth of marine and fish pathogenic bacteria at ecologically realistic concentrations. Aquaculture, 274, 196-200.
  • Ekren, S., Yerlikaya, O., Tokul, H.E., Akpınar, A., & Açu, M. (2013). Chemical composition, antimicrobial activity and antioxidant capacity of some medicinal and aromatic plant extracts. African Journal of Microbiology Research, 7, 383-388.
  • Genena, A.K., Hense, H., Smania Junior, A., & Souza, S.M.D. (2008). Rosemary (Rosmarinus officinalis) - a study of the composition, antioxidant and antimicrobial activities of extracts obtained with supercritical carbon dioxide. Ciencia e Tecnologia de Alimentos, 28, 463-469.
  • Ghabraie, M., Vu, K.D., Tata, L., Salmieri, S., & Lacroix, M. (2016). Antimicrobial effect of essential oils in combinations against five bacteria and their effect on sensorial quality of ground meat. LWT-Food Science and Technology, 66, 332-339.
  • Gibriel, A.Y., Al‐Sayed, H.M.A., Rady, A.H., & Abdelaleem, M.A. (2013). Synergistic antibacterial activity of irradiated and nonirradiated cumin, thyme and rosemary essential oils. Journal of Food Safety, 33, 222-228.
  • Iturriaga, L., Olabarrieta, I., & de Maranon, I. M. (2012). Antimicrobial assays of natural extracts and their inhibitory effect against Listeria innocua and fish spoilage bacteria, after incorporation into biopolymer edible films. International Journal of Food Microbiology, 158, 58-64.
  • Jouki, M., Mortazavi, S.A., Yazdi, F.T., & Koocheki, A. (2014). Characterization of antioxidant-antibacterial quince seed mucilage films containing thyme essential oil. Carbohydrate Polymers, 99, 537-546.
  • Kurowska, A., & Gałązka, I. (2006). Essential oil composition of the parsley seed of cultivars marketed in Poland. Flavour and Fragrance Journal, 21, 143-147.
  • Metin, S., Didinen, B.I., Mercimek, E.B., & Ersoy, A.T. (2017). Bazı bakteriyel balık patojenlerine karşı bazı bitkisel uçucu yağlarının antibakteriyel aktivitesi. Yunus Araştırma Bülteni, 1, 59-69.
  • Miladi, H., Slama, R.B., Mili, D., Zouari, S., Bakhrouf, A., & Ammar, E. (2013). Essential oil of Thymus vulgaris L. and Rosmarinus officinalis L.: Gas chromatography-mass spectrometry analysis, cytotoxicity and antioxidant properties and antibacterial activities against foodborne pathogens. Natural Science, 5, 729-739.
  • Nabavi, S.M., Marchese, A., Izadi, M., Curti, V., Daglia, M., & Nabavi, S.F. (2015). Plants belonging to the genus Thymus as antibacterial agents: From farm to pharmacy. Food Chemistry, 173, 339-347.
  • Nazzaro, F., Fratianni, F., De Martino, L., Coppola, R., & de Feo, V. (2013). Effect of essential oils on pathogenic bacteria. Pharmaceuticals, 6, 1451-1474.
  • Nowak, A., Kalemba, D., Krala, L., Piotrowska, M., & Czyzowska, A. (2012). The effects of thyme (Thymus vulgaris) and rosemary (Rosmarinus officinalis) essential oils on Brochothrix thermosphacta and on the shelf life of beef packaged in high-oxygen modified atmosphere. Food Microbiology, 32, 212-216.
  • Omonijo, F.A., Ni, L., Gong, J., Wang, Q., Lahaye, L., & Yang, C. (2018). Essential oils as alternatives to antibiotics in swine production. Animal Nutrition, 4, 126-136.
  • Önenç, S.S., & Açıkgöz, Z. (2005). Aromatik bitkilerin hayvansal ürünlerde antioksidan etkileri. Hayvansal Üretim, 46, 50-55.
  • Öntaş, C., Baba, E., Kaplaner, E., Küçükaydin, S., Öztürk, M., & Ercan, M.D. (2016). Antibacterial activity of citrus limon peel essential oil and argania spinosa oil against fish pathogenic bacteria. Kafkas Universitesi Veteriner Fakultesi Dergisi, 22, 741-749.
  • Özcan, M.M., & Chalchat, J.C. (2008). Chemical composition and antifungal activity of rosemary (Rosmarinus officinalis L.) oil from Turkey. International Journal of Food Science and Nutrition, 59, 691-698.
  • Park, J.W., Wendt, M., & Heo, G.J. (2016). Antimicrobial activity of essential oil of Eucalyptus globulus against fish pathogenic bacteria. Laboratory Animal Research, 32, 87-90.
  • Peng, Y., & Li, Y. (2014). Combined effects of two kinds of essential oils on physical, mechanical and structural properties of chitosan films. Food Hydrocolloids, 36, 287-293.
  • Perez, M.B., Calderon, N.L, & Croci, C.A. (2007). Radiation-induced enhancement of antioxidant activity in extracts of rosemary (Rosmarinus officinalis L.). Food Chemistry, 104, 585-592.
  • Ramos, C., Teixeira, B., Batista, I., Matos, O., Serrano, C., Neng, N.R., Nogueira, J.M.F., Nunes, M.L., & Marques, A. (2012). Antioxidant and antibacterial activity of essential oil and extracts of bay laurel Laurus nobilis Linnaeus (Lauraceae) from Portugal. Natural Product Research, 26, 518-529.
  • Saricaoglu, F.T., & Turhan, S. (2018). Antimicrobial activity and antioxidant capacity of thyme, rosemary and clove essential oils and their mixtures. Journal of Innovative Science and Engineering, 2, 25-33.
  • Snuossi, M., Trabelsi, N., Ben Taleb, S., Dehmeni, A., Flamini, G., & De Feo, V. (2016). Laurus nobilis, Zingiber officinale and Anethum graveolens essential oils: composition, antioxidant and antibacterial activities against bacteria isolated from fish and shellfish. Molecules, 21, 1-20.
  • Soltani, M., Ghodratnema, M., Ahari, H., Ebrahimzadeh Mousavi, H.A., Atee, M., Dastmalchi, F., & Rahmanya, J. (2009). The inhibitory effect of silver nanoparticles on the bacterial fish pathogens, Streptococcus iniae, Lactococcus garvieae, Yersinia ruckeri and Eeromonas hydrophila. International Journal of Veterinary Research, 3, 137-142.
  • Starliper, C.E., Ketola, H.G., Noyes, A.D., Schill, W.B., Henson, F.G., Chalupnicki, M.A., & Dittman, D.E. (2015). An investigation of the bactericidal activity of selected essential oils to Aeromonas spp. Journal of Advanced Research, 6, 89-97.
  • Stratev, D., Zhelyazkov, G., Noundou, X.S., & Krause, R.W.M. (2018). Beneficial effects of medicinal plants in fish diseases. Aquaculture International, 26, 289-308.
  • Teixeira, B., Marques, A., Ramos, C., Neng, N.R., Nogueira, J.M., Saraiva, J.A., & Nunes, M.L. (2013). Chemical composition and antibacterial and antioxidant properties of commercial essential oils. Industrial Crops and Products, 43, 587-595.
  • Toroğlu, S., & Çenet, M. (2006). Tedavi amaçlı kullanılan bazı bitkilerin kullanım alanları ve antimikrobiyal aktivitelerinin belirlenmesi için kullanılan metodlar. KSÜ Fen ve Mühendislik Dergisi, 9, 12-20.
  • Tural, S., & Turhan, S. (2017). Antimicrobial and antioxidant properties of thyme (Thymus vulgaris L.), rosemary (Rosmarinus officinalis L.) and laurel (Lauris nobilis L.) essential oils and their mixtures. Gıda, 42, 588-596.
  • Vergis, J., Gokulakrishnan, P., Agarwal, R.K., & Kumar, A. (2015). Essential oils as natural food antimicrobial agents: a review. Critical Reviews in Food Science and Nutrition, 55, 1320-1323.
  • Wei, A., & Shibamoto, T. (2007). Antioxidant activities and volatile constituents of various essential oils. Journal of Agricultural and Food Chemistry, 55, 1737-1742.
  • Wong, P.Y.Y., & Kitts, D.D. (2006). Studies on the dual antioxidant and antibacterial properties of parsley (Petroselinum crispum) and cilantro (Coriandrum sativum) extracts. Food Chemistry, 97, 505-515.
  • Yilmaz, E.S., Timur, M., & Aslim, B. (2013). Antimicrobial, antioxidant activity of the essential oil of bay laurel from Hatay, Turkey. Journal of Essential Oil Bearing Plants, 16, 108-116.
  • Zaouali, Y., Bouzaine, T., & Boussaid, M. (2010). Essential oils composition in two Rosmarinus officinalis L. varieties and incidence for antimicrobial and antioxidant activities. Food and Chemical Toxicology, 48, 3144-3152.
  • Zhang, H., Chen, F., Wang, X., & Yao, H.Y. (2006). Evaluation of antioxidant activity of parsley (Petroselinum crispum) essential oil and identification of its antioxidant constituents. Food Research International, 39, 833-839.

Kekik, Defne, Biberiye ve Maydanoz Uçucu Yağlarının Bazı Bakteriyel Balık Patojenlerine Karşı Antibakteriyel Aktivites

Yıl 2019, , 440 - 447, 16.12.2019
https://doi.org/10.22392/actaquatr.549380

Öz

Bu çalışmada, kekik (Thymus vulgaris L.) (KUY), defne (Laurus nobilis L.) (DUY), biberiye (Rosmarinus officinalis L.)
(BUY) ve maydanoz (Petroselinum crispum L.) uçucu yağlarının (MUY) Yersinia ruckeri (a ve b), Lactococcus garvieae,
Pseudomonas fluorescens, Aeromonas sobria, Aeromonas salmonicida and Aeromonas veronii gibi farklı balık patojenlerine
karşı antibakteriyel aktiviteleri incelenmiştir. Uçucu yağlar Clevenger cihazı kullanılarak hidro-destilasyon yöntemi ile elde
edilmiş ve antibakteriyel aktiviteleri kâğıt disk difüzyon metodu ile belirlenmiştir. Uçucu yağların antibakteriyel aktivitesi,
bitki kaynağı ve bakteri türüne bağlı olarak önemli farklılıklar göstermiştir. Tüm uçucu yağlar balık patojen bakterilerine (Y.
ruckeri (b)’ye karşı MUY hariç) karşı inhibitör etki göstermiş ve inhibisyon zonları 6,00 ile 36,00 mm arasında değişmiştir.
Test edilen tüm bakterilere karşı en yüksek antibakteriyel aktivite, 26.50 ile 36,0 mm arasında değişen bir inhibisyon zon çapı
ile KUY'da belirlenirken, DUY ve BUY, 9,50 ile 18,50 mm arasında değişen inhibisyon zon çapı ile orta düzeyde bir aktivite
göstermiştir. MUY, tüm test bakterilerine karşı en düşük inhibisyon zon çapı sergilemiştir. Test edilen bakteriler arasında, A.
veronii, KUY, DUY ve BUY'un inhibitör aktivitesine en duyarlı bakteri olurken, P. fluorescens, en dirençli bakteri olmuştur.
Bu sonuçlar kekik, defne ve biberiyeden elde edilen uçucu yağların bakteriyel balık patojenlerine karşı doğal antibakteriyel
ajan olarak kullanılabileceğini ortaya koymuştur. 

Kaynakça

  • Altunbaş, M., & Türel, İ. (2009). Petroselinum crispum (maydanoz) tohumu uçucu yağ özütünün letal doz düzeyleri ve antienflamatuvar aktivitesinin deney hayvanları üzerinde araştırılması. Yüzüncü Yıl Üniversitesi Veteriner Fakültesi Dergisi, 20, 21-25.
  • Bansemir, A., Just, N., Michalik, M., Lindequist, U., & Lalk, M. (2004). Extracts and sesquiterpene derivatives from the red alga Laurencia chondrioides with antibacterial activity against fish and human pathogenic bacteria. Chemistry & Biodiversity, 1, 463-467.
  • Bozin. B., Mimica-Dukic, N., Simin, N., & Anackov, G. (2006). Characterization of the volatile composition of essential oils of some Lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils. Journal of Agricultural and Food Chemistry, 54, 1822-1828.
  • Bulfon, C., Volpatti, D., & Galeotti, M. (2014). In vitro antibacterial activity of plant ethanolic extracts against fish pathogens. Journal of the World Aquaculture Society, 45, 545-557.
  • Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods-a review. International Journal of Food Microbiology, 94, 223-253.
  • Castro, S.B.R., Leal, C.A.G., Freire, F.R., Carvalho, D.A., Oliveira, D.F., & Figueiredo, H.C.P. (2008). Antibacterial activity of plant extracts from Brazil against fish pathogenic bacteria. Brazilian Journal of Microbiology, 39, 756-760.
  • Celikel, N., & Kavas, G. (2008). Antimicrobial properties of some essential oils against some pathogenic microorganisms. Czech Journal of Food Sciences, 26, 174-181.
  • Choudhury, S., Sree, A., Mukherjee, S.C., Pattnaik, P., & Bapuji, M. (2005). In vitro antibacterial activity of extracts of selected marine algae and mangroves against fish pathogens. Asian Fisheries Science, 18, 285-294.
  • Dubber, D., & Harder, T. (2008). Extracts of Ceramium rubrum, Mastocarpus stellatus and Laminaria digitata inhibit growth of marine and fish pathogenic bacteria at ecologically realistic concentrations. Aquaculture, 274, 196-200.
  • Ekren, S., Yerlikaya, O., Tokul, H.E., Akpınar, A., & Açu, M. (2013). Chemical composition, antimicrobial activity and antioxidant capacity of some medicinal and aromatic plant extracts. African Journal of Microbiology Research, 7, 383-388.
  • Genena, A.K., Hense, H., Smania Junior, A., & Souza, S.M.D. (2008). Rosemary (Rosmarinus officinalis) - a study of the composition, antioxidant and antimicrobial activities of extracts obtained with supercritical carbon dioxide. Ciencia e Tecnologia de Alimentos, 28, 463-469.
  • Ghabraie, M., Vu, K.D., Tata, L., Salmieri, S., & Lacroix, M. (2016). Antimicrobial effect of essential oils in combinations against five bacteria and their effect on sensorial quality of ground meat. LWT-Food Science and Technology, 66, 332-339.
  • Gibriel, A.Y., Al‐Sayed, H.M.A., Rady, A.H., & Abdelaleem, M.A. (2013). Synergistic antibacterial activity of irradiated and nonirradiated cumin, thyme and rosemary essential oils. Journal of Food Safety, 33, 222-228.
  • Iturriaga, L., Olabarrieta, I., & de Maranon, I. M. (2012). Antimicrobial assays of natural extracts and their inhibitory effect against Listeria innocua and fish spoilage bacteria, after incorporation into biopolymer edible films. International Journal of Food Microbiology, 158, 58-64.
  • Jouki, M., Mortazavi, S.A., Yazdi, F.T., & Koocheki, A. (2014). Characterization of antioxidant-antibacterial quince seed mucilage films containing thyme essential oil. Carbohydrate Polymers, 99, 537-546.
  • Kurowska, A., & Gałązka, I. (2006). Essential oil composition of the parsley seed of cultivars marketed in Poland. Flavour and Fragrance Journal, 21, 143-147.
  • Metin, S., Didinen, B.I., Mercimek, E.B., & Ersoy, A.T. (2017). Bazı bakteriyel balık patojenlerine karşı bazı bitkisel uçucu yağlarının antibakteriyel aktivitesi. Yunus Araştırma Bülteni, 1, 59-69.
  • Miladi, H., Slama, R.B., Mili, D., Zouari, S., Bakhrouf, A., & Ammar, E. (2013). Essential oil of Thymus vulgaris L. and Rosmarinus officinalis L.: Gas chromatography-mass spectrometry analysis, cytotoxicity and antioxidant properties and antibacterial activities against foodborne pathogens. Natural Science, 5, 729-739.
  • Nabavi, S.M., Marchese, A., Izadi, M., Curti, V., Daglia, M., & Nabavi, S.F. (2015). Plants belonging to the genus Thymus as antibacterial agents: From farm to pharmacy. Food Chemistry, 173, 339-347.
  • Nazzaro, F., Fratianni, F., De Martino, L., Coppola, R., & de Feo, V. (2013). Effect of essential oils on pathogenic bacteria. Pharmaceuticals, 6, 1451-1474.
  • Nowak, A., Kalemba, D., Krala, L., Piotrowska, M., & Czyzowska, A. (2012). The effects of thyme (Thymus vulgaris) and rosemary (Rosmarinus officinalis) essential oils on Brochothrix thermosphacta and on the shelf life of beef packaged in high-oxygen modified atmosphere. Food Microbiology, 32, 212-216.
  • Omonijo, F.A., Ni, L., Gong, J., Wang, Q., Lahaye, L., & Yang, C. (2018). Essential oils as alternatives to antibiotics in swine production. Animal Nutrition, 4, 126-136.
  • Önenç, S.S., & Açıkgöz, Z. (2005). Aromatik bitkilerin hayvansal ürünlerde antioksidan etkileri. Hayvansal Üretim, 46, 50-55.
  • Öntaş, C., Baba, E., Kaplaner, E., Küçükaydin, S., Öztürk, M., & Ercan, M.D. (2016). Antibacterial activity of citrus limon peel essential oil and argania spinosa oil against fish pathogenic bacteria. Kafkas Universitesi Veteriner Fakultesi Dergisi, 22, 741-749.
  • Özcan, M.M., & Chalchat, J.C. (2008). Chemical composition and antifungal activity of rosemary (Rosmarinus officinalis L.) oil from Turkey. International Journal of Food Science and Nutrition, 59, 691-698.
  • Park, J.W., Wendt, M., & Heo, G.J. (2016). Antimicrobial activity of essential oil of Eucalyptus globulus against fish pathogenic bacteria. Laboratory Animal Research, 32, 87-90.
  • Peng, Y., & Li, Y. (2014). Combined effects of two kinds of essential oils on physical, mechanical and structural properties of chitosan films. Food Hydrocolloids, 36, 287-293.
  • Perez, M.B., Calderon, N.L, & Croci, C.A. (2007). Radiation-induced enhancement of antioxidant activity in extracts of rosemary (Rosmarinus officinalis L.). Food Chemistry, 104, 585-592.
  • Ramos, C., Teixeira, B., Batista, I., Matos, O., Serrano, C., Neng, N.R., Nogueira, J.M.F., Nunes, M.L., & Marques, A. (2012). Antioxidant and antibacterial activity of essential oil and extracts of bay laurel Laurus nobilis Linnaeus (Lauraceae) from Portugal. Natural Product Research, 26, 518-529.
  • Saricaoglu, F.T., & Turhan, S. (2018). Antimicrobial activity and antioxidant capacity of thyme, rosemary and clove essential oils and their mixtures. Journal of Innovative Science and Engineering, 2, 25-33.
  • Snuossi, M., Trabelsi, N., Ben Taleb, S., Dehmeni, A., Flamini, G., & De Feo, V. (2016). Laurus nobilis, Zingiber officinale and Anethum graveolens essential oils: composition, antioxidant and antibacterial activities against bacteria isolated from fish and shellfish. Molecules, 21, 1-20.
  • Soltani, M., Ghodratnema, M., Ahari, H., Ebrahimzadeh Mousavi, H.A., Atee, M., Dastmalchi, F., & Rahmanya, J. (2009). The inhibitory effect of silver nanoparticles on the bacterial fish pathogens, Streptococcus iniae, Lactococcus garvieae, Yersinia ruckeri and Eeromonas hydrophila. International Journal of Veterinary Research, 3, 137-142.
  • Starliper, C.E., Ketola, H.G., Noyes, A.D., Schill, W.B., Henson, F.G., Chalupnicki, M.A., & Dittman, D.E. (2015). An investigation of the bactericidal activity of selected essential oils to Aeromonas spp. Journal of Advanced Research, 6, 89-97.
  • Stratev, D., Zhelyazkov, G., Noundou, X.S., & Krause, R.W.M. (2018). Beneficial effects of medicinal plants in fish diseases. Aquaculture International, 26, 289-308.
  • Teixeira, B., Marques, A., Ramos, C., Neng, N.R., Nogueira, J.M., Saraiva, J.A., & Nunes, M.L. (2013). Chemical composition and antibacterial and antioxidant properties of commercial essential oils. Industrial Crops and Products, 43, 587-595.
  • Toroğlu, S., & Çenet, M. (2006). Tedavi amaçlı kullanılan bazı bitkilerin kullanım alanları ve antimikrobiyal aktivitelerinin belirlenmesi için kullanılan metodlar. KSÜ Fen ve Mühendislik Dergisi, 9, 12-20.
  • Tural, S., & Turhan, S. (2017). Antimicrobial and antioxidant properties of thyme (Thymus vulgaris L.), rosemary (Rosmarinus officinalis L.) and laurel (Lauris nobilis L.) essential oils and their mixtures. Gıda, 42, 588-596.
  • Vergis, J., Gokulakrishnan, P., Agarwal, R.K., & Kumar, A. (2015). Essential oils as natural food antimicrobial agents: a review. Critical Reviews in Food Science and Nutrition, 55, 1320-1323.
  • Wei, A., & Shibamoto, T. (2007). Antioxidant activities and volatile constituents of various essential oils. Journal of Agricultural and Food Chemistry, 55, 1737-1742.
  • Wong, P.Y.Y., & Kitts, D.D. (2006). Studies on the dual antioxidant and antibacterial properties of parsley (Petroselinum crispum) and cilantro (Coriandrum sativum) extracts. Food Chemistry, 97, 505-515.
  • Yilmaz, E.S., Timur, M., & Aslim, B. (2013). Antimicrobial, antioxidant activity of the essential oil of bay laurel from Hatay, Turkey. Journal of Essential Oil Bearing Plants, 16, 108-116.
  • Zaouali, Y., Bouzaine, T., & Boussaid, M. (2010). Essential oils composition in two Rosmarinus officinalis L. varieties and incidence for antimicrobial and antioxidant activities. Food and Chemical Toxicology, 48, 3144-3152.
  • Zhang, H., Chen, F., Wang, X., & Yao, H.Y. (2006). Evaluation of antioxidant activity of parsley (Petroselinum crispum) essential oil and identification of its antioxidant constituents. Food Research International, 39, 833-839.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapısal Biyoloji
Bölüm Araştırma Makaleleri
Yazarlar

Serpil Tural 0000-0002-9360-3446

Yüksel Durmaz 0000-0003-1347-5278

Eda Urçar Bu kişi benim 0000-0003-0277-8847

Sadettin Turhan 0000-0002-3510-4382

Yayımlanma Tarihi 16 Aralık 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Tural, S., Durmaz, Y., Urçar, E., Turhan, S. (2019). Antibacterial Activity of Thyme (Thymus vulgaris L.), Laurel (Lauris nobilis L.), Rosemary (Rosmarinus officinalis L.) and Parsley (Petroselinum crispum L.) Essential Oils against Some Fish Pathogenic Bacteria. Acta Aquatica Turcica, 15(4), 440-447. https://doi.org/10.22392/actaquatr.549380