Araştırma Makalesi
BibTex RIS Kaynak Göster

İnek ve Deve Sütlerinin Yağ Asitleri ve Uçucu Bileşen Profillerinin Karşılaştırılması

Yıl 2023, Cilt: 20 Sayı: 1, 159 - 166, 30.06.2023
https://doi.org/10.25308/aduziraat.1296859

Öz

Bu çalışmada inek ve deve sütlerinin yağ asitleri içeriği ve uçucu bileşenleri belirlenmiş ve birbiri ile karşılaştırılması yapılmıştır. Deve sütünde C4 ve C6 gibi kısa zincirli yağ asitleri tespit edilemezken, inek sütünde sırasıyla %1.66 ve %1.69 oranında tespit edilmiştir. Bununla birlikte, deve sütünde C14, C16 ve C18 gibi uzun zincirli yağ asitleri daha fazla oranda saptanmıştır.. Süt örneklerinin palmitik asit (C16) içerikleri birbirine benzer çıkarken palmitoleik asit (C16:1) içerikleri inek sütünde %1.30 deve sütünde ise %9.82 olarak belirlenmiştir. Deve sütlerinde kısa zincirli yağ asitleri miktarı daha düşük olduğu için doymuş yağ asitleri oranı da inek sütüne göre daha düşük çıkmıştır (p˂0,05). Doymamış yağ asitleri bakımından inek sütü ve deve sütü birbirine benzerken, tekli doymamış yağ asitleri oranı deve sütünde (%39,07) daha fazla çıkmıştır. Çoklu doymamış yağ asidi miktarı ise inek sütünde (%6,61) fazla tespit edilmiştir. Her iki süt türünde de baskın aroma bileşeni oksimene olmuştur. Deve sütünde oksimene miktarı 28,37 µg/g'dir. Yağ asitleri bakımından inek sütü ve deve sütü arasında önemli bir fark vardır (p<0,05). Deve sütünün, inek sütüne göre daha yüksek miktarda yağ asidi içerdiği görülmüştür (p<0,05). Bununla birlikte deve sütünde hidrokarbon grubu uçucu bileşenler bulunamamıştır.

Destekleyen Kurum

Aydın adnan menderes üniversitesi

Proje Numarası

SBF-20003

Teşekkür

Aydın Adnan Menderes Üniversitesi Bilimsel Araştırma Projeler Birimi'ne teşekkür ederiz.

Kaynakça

  • Abu-Lehia I H (1989). Physical and chemical characteristics of camel milk fat and its fractions. Food Chemistry, 34(4): 261–271.
  • Ackman R G (1998). Remarks on official methods employing boron trifluoride in the preparation of methyl esters of the fatty acids of fish oils. J. Am. Oil Chem. Soc. 75: 541–545.
  • Alhaj O A, Taufik E, Handa Y, Fukuda K, Saito T, Urashima T (2013). Chemical characterisation of oligosaccharides in commercially pasteurised dromedary camel (Camelus dromedarius) milk. International Dairy Journal, 28(2): 70-75.
  • Ametaj B N (2020). Introducing dairy: A transdisciplinary journal to advance understanding of dairy nutrition, health and productivity, welfare and well-being as well as milk synthesis-composition and health effects of its products. Dairy, 1(1):1–5.
  • Arora G, Cormier F, Lee B (1995). Analysis of odor active volatiles in Cheddar cheese headspace by multidimensional GC/ MS/Sniffing. J. Agric. Food Chem. 43: 748–752.
  • Barbieri G, Bolzoni L, Careri M, Mangia A, Paroları G, Spagnoli S, Virgili R (1994). Study of the Volatile Fraction of Parmesan Cheese. J. Agric. Food Chem, 42: 1170-1176.
  • Bontinis T G, Mallatou H, Pappaa E C, Massouras T, Alichanidis E (2012). Study of proteolysis, lipolysis and volatile profile of a traditional Greek goat cheese (Xinotyri) during ripening. Small Rumin. Research, 105: 193–201. Brezovečki A, Antunac N, Čagalj M, Dermit Z F, Mikulec N, Ljoljić D B, Antunac N (2015). Camel milk and milk products. Mljekarstvo, 65(2):81–90.
  • Cecil D, John B D, Ngo C, Hai T, Harper N L, O'Rourke K L (1982). Analysis of fatty acid methyl esters with high accuracy and reliability : II. Methylation of fats and oils with boron trifluoride-methanol . Journal of Chromatography A. Volume 247, Issue 1, pages 63-69.
  • Collins Y F, McSweeney P L H, Wilkinson M G (2003). Lipolysis and free fatty acid catabolism in cheese: a review of current knowledge. Int. Dairy Journal, 13: 841–866.
  • Devendra K, Verma K A, Chatli M K, Singh R, Kumar P, Mehta N, Malav O P (2016). Camel’s milk: alternative milk for human consumption and its health benefits. Nutritional Food Science, 46: 217–227.
  • Dreiucker J, Vetter W (2011). Fatty acids patterns in camel, moose, cow and human milk as determined with GC/MS after silver ion solid phase extraction. Food Chemistry, 126(2): 762–771.
  • Dubey U S, Lal M, Mittal A, Kapur S (2016). Therapeutic potential of camel milk, Emirate Journal of Food Agriculture, 28 (3): 164–176.
  • El-Agamy E I (2008). Camel Milk; Handbook of Milk of NonBovine Mammals, 2008. FAO (2019). Food and Agricultural Organisations. http://www.fao.org/faostat/en/#data/QL. Erişim tarihi: 08.11.2019 Hagrass A E, Hassan A A, Soryal K A, Mervat A S, ElShabrawy S A (1987). Chemical composition of fat and butter of camel’s milk. Egyptian Journal of Food Science, 15:15-25.
  • Hanus O, Samková E, Křížová L, Hasoňová L, Kala R (2018). The role of fatty acids in milk fat and the influence of selected farmer factors on their variability – a review. Molecules, 23: 1636. Heaven M W, Nash D (2012). Recent analyses using solid phase microextraction in industries related to food made into or from liquids. Food Control, 27: 214–227.
  • Hashim W M, Yousif G M, Majid A A, Kalafalla A I S, Abdalla H S, Ahmed S E (2015). Dromedary camels in Sudan, types and sub types, distribution and movement International Journal of Pharmaceutical Research and Analysis, 5:8– 12.
  • Ho T, Zou Z, Bansal N (2022). Camel milk: A review of its nutritional value, heat stability, and potential food products. Food Research International 153: 110870.
  • Izadi A, Khedmat L, Mojtahedi S Y (2019). Nutritional and therapeutic perspectives of camel’s milk and its protein hydrolysates: A review on versatile biofunctional properties. Journal of Functional Foods, 60: 1034. Liu S Q, Holland R, Crow V L (2004). Esters and their biosynthesis in fermented dairy products: a review. International Dairy Journal, 14: 923–945.
  • Khalesi M, Salami M, Moslehishad M, Winterburn J, Moosavi-Movahedi A A (2017). Biomolecular content of camel milk: A traditional superfood towards future healthcare industry. Trends in Food Science & Technology, 62: 49-58. Kaskous S (2016). Importance of camel milk for human health. Emirates Journal of Food and Agriculture, 28(3): 158–163. doi:10.9755/ejfa.2015-05-296.
  • Mahala N, Mittal A, Lal M, Dubey U S (2022). Isolation and characterization of bioactive lactoferrin from camel milk by novel pH-dependent method for large scale production. Biotechnology Reports 36: e00765.
  • Månsson, H. L. (2008). Fatty acids in bovine milk fat. Food & nutrition research, 52. doi:10.3402/fnr.v52i0.1821 Miller J (2002). Review of nature’s perfect food: How milk became America’s drink, by E. M. Du Puis. New York History, 83(3): 344–346.
  • Mullaicharam A R (2014). A review on medicinal properties of camel milk. World J Pharm Sci, 2: 237-242. Munoz N, Ortigosa M, Torre P, Izco J M (2003). Free amino acids and volatile compounds in ewe’s milk cheese as affected by seasonal and cheese-making plant variations. Food Chemistry, 83: 329–338.
  • Nogueira M C L, Lubachevsky G, Rankin S A (2005). A study of the volatile composition of Minas cheese. LWT, 38: 555–563.
  • Ortigosa M, Torre P, Izco J M (2001). Effect of pasteurization of ewe’s milk and use of a native starter culture on the volatile components and sensory characteristics of Roncal cheese. Journal of Dairy Science, 84:1320–1330. Park Y W, Haenlein G F W (2013). Milk and Dairy Products in Human Nutrition. John Wiley & Sons, Chichester, West Sussex, UK. https://doi.org/10.1002/ 9781118534168
  • Schroeder M, Vetter W (2013). Detection of 430 Fatty acid methyl esters from transesterified butter sample. Journal of the American Oil Chemists Society, 90: 771–790.
  • Shingfield K J, Bonnet M, Scollan N D (2013). Recent developments in altering the fatty acid composition of ruminant-derived foods. Animal, 7: 132–162.
  • Stashenko E E, Martínez J R (2007). Sampling volatile compounds from natural products with headspace/solid-phase micro-extraction. Journal of Biochemical and Biophysical Methods, 70(2): 235–242.
  • Tahmas-Kahyaoglu D, Cakmakci S, Hayaloglu A A (2022). Changes during storage in volatile compounds of butter produced using cow, sheep or goat’s milk. Small Ruminant Research 211: 106691.
  • Whetstine C M E, Karagül-Yüceer Y, Avşar Y K, Drake M A (2003). Identification and Quantification of Character Aroma Components in Fres Chevre-Style Goat Cheese. Journal of Food Science, 68(8): 2441-2447.
  • Wolf I V, Perotti M C, Bernal S M, Zalazar C A (2010). Study of the chemical composition, proteolysis, lipolysis and volatile compounds profile of commercial Reggianito Argentino cheese: characterization of Reggianito Argentino cheese. Food Res. Int. 43: 1204–1211.
  • Yerlikaya O, Saygılı D, Karagözlü C (2016). Deve Sütü: Bileşimi, Sağlık Üzerine Etkileri, Deve Sütü Ürünleri. First International Symposium On Culture Of Camel-Dealing And Camel Wrestling. içinde (ss. 31–40).
  • Zengin G, Aktumsek A (2010). Fatty Acid Composition and Conjugated Linoleic Acid (CLA) Content of Some Commercial Milk in Turkey. https://www.researchgate.net/publication/234034811 adresinden erişildi.
  • Zeineb J, Nadia O, Isabelle A, Touhami K, Pascal D, Halima E H (2015). Camel colostrum: Nutritional composition and improvement of the antimicrobial activity after enzymatic hydrolysis. Emirates Journal of Food and Agriculture, 27(4): 384–389.

Comparison of Fatty Acids and Volatile Component Profiles of Bovine and Camel Milk

Yıl 2023, Cilt: 20 Sayı: 1, 159 - 166, 30.06.2023
https://doi.org/10.25308/aduziraat.1296859

Öz

In this study, fatty acids content and volatile aroma components of bovine and camel milk were determined and compared with each other. While C4 and C6 of short-chain fatty acids could not be determined in camel milk, they were detected in bovine milk at a rate of 1.66% and 1.69%, respectively. Long chain fatty acids C14, C16, C18 were found to be higher in camel milk. While the palmitic acid (C16) contents of the milk samples were similar, the palmitoleic acid (C16:1) contents were determined as 1.30% in bovine milk and 9.82% in camel milk. Since the amount of short-chain fatty acids is lower in camel milk, the ratio of saturated fatty acids was lower than that of bovine milk (p˂0.05). Bovine milk and camel milk were similar in terms of unsaturated fatty acids, while the ratio of monounsaturated fatty acids was higher in camel milk (39.07%), while the amount of polyunsaturated fatty acids was higher in bovine milk (6.61%). In both milk groups, the dominant flavor component is oximen. The amount of oximene in camel milk is 28.37 µg/g. There is a significant difference between bovine milk and camel milk in terms of fatty acids (p<0.05). It was observed that camel milk contains higher amount of fatty acids than bovine milk (p<0.05). However, hydrocarbon group volatile components were not found in camel milk.

Proje Numarası

SBF-20003

Kaynakça

  • Abu-Lehia I H (1989). Physical and chemical characteristics of camel milk fat and its fractions. Food Chemistry, 34(4): 261–271.
  • Ackman R G (1998). Remarks on official methods employing boron trifluoride in the preparation of methyl esters of the fatty acids of fish oils. J. Am. Oil Chem. Soc. 75: 541–545.
  • Alhaj O A, Taufik E, Handa Y, Fukuda K, Saito T, Urashima T (2013). Chemical characterisation of oligosaccharides in commercially pasteurised dromedary camel (Camelus dromedarius) milk. International Dairy Journal, 28(2): 70-75.
  • Ametaj B N (2020). Introducing dairy: A transdisciplinary journal to advance understanding of dairy nutrition, health and productivity, welfare and well-being as well as milk synthesis-composition and health effects of its products. Dairy, 1(1):1–5.
  • Arora G, Cormier F, Lee B (1995). Analysis of odor active volatiles in Cheddar cheese headspace by multidimensional GC/ MS/Sniffing. J. Agric. Food Chem. 43: 748–752.
  • Barbieri G, Bolzoni L, Careri M, Mangia A, Paroları G, Spagnoli S, Virgili R (1994). Study of the Volatile Fraction of Parmesan Cheese. J. Agric. Food Chem, 42: 1170-1176.
  • Bontinis T G, Mallatou H, Pappaa E C, Massouras T, Alichanidis E (2012). Study of proteolysis, lipolysis and volatile profile of a traditional Greek goat cheese (Xinotyri) during ripening. Small Rumin. Research, 105: 193–201. Brezovečki A, Antunac N, Čagalj M, Dermit Z F, Mikulec N, Ljoljić D B, Antunac N (2015). Camel milk and milk products. Mljekarstvo, 65(2):81–90.
  • Cecil D, John B D, Ngo C, Hai T, Harper N L, O'Rourke K L (1982). Analysis of fatty acid methyl esters with high accuracy and reliability : II. Methylation of fats and oils with boron trifluoride-methanol . Journal of Chromatography A. Volume 247, Issue 1, pages 63-69.
  • Collins Y F, McSweeney P L H, Wilkinson M G (2003). Lipolysis and free fatty acid catabolism in cheese: a review of current knowledge. Int. Dairy Journal, 13: 841–866.
  • Devendra K, Verma K A, Chatli M K, Singh R, Kumar P, Mehta N, Malav O P (2016). Camel’s milk: alternative milk for human consumption and its health benefits. Nutritional Food Science, 46: 217–227.
  • Dreiucker J, Vetter W (2011). Fatty acids patterns in camel, moose, cow and human milk as determined with GC/MS after silver ion solid phase extraction. Food Chemistry, 126(2): 762–771.
  • Dubey U S, Lal M, Mittal A, Kapur S (2016). Therapeutic potential of camel milk, Emirate Journal of Food Agriculture, 28 (3): 164–176.
  • El-Agamy E I (2008). Camel Milk; Handbook of Milk of NonBovine Mammals, 2008. FAO (2019). Food and Agricultural Organisations. http://www.fao.org/faostat/en/#data/QL. Erişim tarihi: 08.11.2019 Hagrass A E, Hassan A A, Soryal K A, Mervat A S, ElShabrawy S A (1987). Chemical composition of fat and butter of camel’s milk. Egyptian Journal of Food Science, 15:15-25.
  • Hanus O, Samková E, Křížová L, Hasoňová L, Kala R (2018). The role of fatty acids in milk fat and the influence of selected farmer factors on their variability – a review. Molecules, 23: 1636. Heaven M W, Nash D (2012). Recent analyses using solid phase microextraction in industries related to food made into or from liquids. Food Control, 27: 214–227.
  • Hashim W M, Yousif G M, Majid A A, Kalafalla A I S, Abdalla H S, Ahmed S E (2015). Dromedary camels in Sudan, types and sub types, distribution and movement International Journal of Pharmaceutical Research and Analysis, 5:8– 12.
  • Ho T, Zou Z, Bansal N (2022). Camel milk: A review of its nutritional value, heat stability, and potential food products. Food Research International 153: 110870.
  • Izadi A, Khedmat L, Mojtahedi S Y (2019). Nutritional and therapeutic perspectives of camel’s milk and its protein hydrolysates: A review on versatile biofunctional properties. Journal of Functional Foods, 60: 1034. Liu S Q, Holland R, Crow V L (2004). Esters and their biosynthesis in fermented dairy products: a review. International Dairy Journal, 14: 923–945.
  • Khalesi M, Salami M, Moslehishad M, Winterburn J, Moosavi-Movahedi A A (2017). Biomolecular content of camel milk: A traditional superfood towards future healthcare industry. Trends in Food Science & Technology, 62: 49-58. Kaskous S (2016). Importance of camel milk for human health. Emirates Journal of Food and Agriculture, 28(3): 158–163. doi:10.9755/ejfa.2015-05-296.
  • Mahala N, Mittal A, Lal M, Dubey U S (2022). Isolation and characterization of bioactive lactoferrin from camel milk by novel pH-dependent method for large scale production. Biotechnology Reports 36: e00765.
  • Månsson, H. L. (2008). Fatty acids in bovine milk fat. Food & nutrition research, 52. doi:10.3402/fnr.v52i0.1821 Miller J (2002). Review of nature’s perfect food: How milk became America’s drink, by E. M. Du Puis. New York History, 83(3): 344–346.
  • Mullaicharam A R (2014). A review on medicinal properties of camel milk. World J Pharm Sci, 2: 237-242. Munoz N, Ortigosa M, Torre P, Izco J M (2003). Free amino acids and volatile compounds in ewe’s milk cheese as affected by seasonal and cheese-making plant variations. Food Chemistry, 83: 329–338.
  • Nogueira M C L, Lubachevsky G, Rankin S A (2005). A study of the volatile composition of Minas cheese. LWT, 38: 555–563.
  • Ortigosa M, Torre P, Izco J M (2001). Effect of pasteurization of ewe’s milk and use of a native starter culture on the volatile components and sensory characteristics of Roncal cheese. Journal of Dairy Science, 84:1320–1330. Park Y W, Haenlein G F W (2013). Milk and Dairy Products in Human Nutrition. John Wiley & Sons, Chichester, West Sussex, UK. https://doi.org/10.1002/ 9781118534168
  • Schroeder M, Vetter W (2013). Detection of 430 Fatty acid methyl esters from transesterified butter sample. Journal of the American Oil Chemists Society, 90: 771–790.
  • Shingfield K J, Bonnet M, Scollan N D (2013). Recent developments in altering the fatty acid composition of ruminant-derived foods. Animal, 7: 132–162.
  • Stashenko E E, Martínez J R (2007). Sampling volatile compounds from natural products with headspace/solid-phase micro-extraction. Journal of Biochemical and Biophysical Methods, 70(2): 235–242.
  • Tahmas-Kahyaoglu D, Cakmakci S, Hayaloglu A A (2022). Changes during storage in volatile compounds of butter produced using cow, sheep or goat’s milk. Small Ruminant Research 211: 106691.
  • Whetstine C M E, Karagül-Yüceer Y, Avşar Y K, Drake M A (2003). Identification and Quantification of Character Aroma Components in Fres Chevre-Style Goat Cheese. Journal of Food Science, 68(8): 2441-2447.
  • Wolf I V, Perotti M C, Bernal S M, Zalazar C A (2010). Study of the chemical composition, proteolysis, lipolysis and volatile compounds profile of commercial Reggianito Argentino cheese: characterization of Reggianito Argentino cheese. Food Res. Int. 43: 1204–1211.
  • Yerlikaya O, Saygılı D, Karagözlü C (2016). Deve Sütü: Bileşimi, Sağlık Üzerine Etkileri, Deve Sütü Ürünleri. First International Symposium On Culture Of Camel-Dealing And Camel Wrestling. içinde (ss. 31–40).
  • Zengin G, Aktumsek A (2010). Fatty Acid Composition and Conjugated Linoleic Acid (CLA) Content of Some Commercial Milk in Turkey. https://www.researchgate.net/publication/234034811 adresinden erişildi.
  • Zeineb J, Nadia O, Isabelle A, Touhami K, Pascal D, Halima E H (2015). Camel colostrum: Nutritional composition and improvement of the antimicrobial activity after enzymatic hydrolysis. Emirates Journal of Food and Agriculture, 27(4): 384–389.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği
Bölüm Araştırma
Yazarlar

Handenur Uzun 0000-0001-8327-0038

Filiz Yıldız-akgül 0000-0001-7894-6531

Serdal Öğüt 0000-0001-8863-7249

Proje Numarası SBF-20003
Yayımlanma Tarihi 30 Haziran 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 20 Sayı: 1

Kaynak Göster

APA Uzun, H., Yıldız-akgül, F., & Öğüt, S. (2023). İnek ve Deve Sütlerinin Yağ Asitleri ve Uçucu Bileşen Profillerinin Karşılaştırılması. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 20(1), 159-166. https://doi.org/10.25308/aduziraat.1296859
AMA Uzun H, Yıldız-akgül F, Öğüt S. İnek ve Deve Sütlerinin Yağ Asitleri ve Uçucu Bileşen Profillerinin Karşılaştırılması. ADÜ ZİRAAT DERG. Haziran 2023;20(1):159-166. doi:10.25308/aduziraat.1296859
Chicago Uzun, Handenur, Filiz Yıldız-akgül, ve Serdal Öğüt. “İnek Ve Deve Sütlerinin Yağ Asitleri Ve Uçucu Bileşen Profillerinin Karşılaştırılması”. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi 20, sy. 1 (Haziran 2023): 159-66. https://doi.org/10.25308/aduziraat.1296859.
EndNote Uzun H, Yıldız-akgül F, Öğüt S (01 Haziran 2023) İnek ve Deve Sütlerinin Yağ Asitleri ve Uçucu Bileşen Profillerinin Karşılaştırılması. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi 20 1 159–166.
IEEE H. Uzun, F. Yıldız-akgül, ve S. Öğüt, “İnek ve Deve Sütlerinin Yağ Asitleri ve Uçucu Bileşen Profillerinin Karşılaştırılması”, ADÜ ZİRAAT DERG, c. 20, sy. 1, ss. 159–166, 2023, doi: 10.25308/aduziraat.1296859.
ISNAD Uzun, Handenur vd. “İnek Ve Deve Sütlerinin Yağ Asitleri Ve Uçucu Bileşen Profillerinin Karşılaştırılması”. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi 20/1 (Haziran 2023), 159-166. https://doi.org/10.25308/aduziraat.1296859.
JAMA Uzun H, Yıldız-akgül F, Öğüt S. İnek ve Deve Sütlerinin Yağ Asitleri ve Uçucu Bileşen Profillerinin Karşılaştırılması. ADÜ ZİRAAT DERG. 2023;20:159–166.
MLA Uzun, Handenur vd. “İnek Ve Deve Sütlerinin Yağ Asitleri Ve Uçucu Bileşen Profillerinin Karşılaştırılması”. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, c. 20, sy. 1, 2023, ss. 159-66, doi:10.25308/aduziraat.1296859.
Vancouver Uzun H, Yıldız-akgül F, Öğüt S. İnek ve Deve Sütlerinin Yağ Asitleri ve Uçucu Bileşen Profillerinin Karşılaştırılması. ADÜ ZİRAAT DERG. 2023;20(1):159-66.