Derleme
BibTex RIS Kaynak Göster

Pseudocereals Used as Functional Products in Gastronomy

Yıl 2025, Cilt: 56 Sayı: 3, 256 - 268, 26.09.2025
https://doi.org/10.17097/agricultureatauni.1636831

Öz

In recent years, consumers have become increasingly conscious of adopting healthy lifestyles and demanding nutritious food products. This shift in consumer behavior has diversified interest in conventional agricultural products and led to a growing inclination toward alternative and functional food sources. In this context, pseudo-cereals—once regarded as secondary crops for many years—have been rediscovered and have started to gain prominence in agricultural production processes since the early 21st century. Pseudocereals are grains with an exceptional nutritional and phytochemical profile, rich in high-quality proteins. Promoted as gluten-free product alternatives, pseudocereals have been highlighted in recent studies for their potential to combat chronic diseases such as cancer, diabetes, hypertension, and cardiovascular diseases, owing to their dietary fibers, vitamins, minerals, phenolics, and other bioactive compounds. This review aims to evaluate the health effects of pseudocereals, focusing on their protein patterns and other bioactive compounds, alongside their use in gluten-free product development. Additionally, it seeks to assess their role in producing healthy products within sustainable gastronomy applications through a detailed literature review. The findings indicate that pseudocereals have higher total protein content, essential amino acid profiles, vitamins, minerals, and other bioactive components compared to grains. Moreover, sprouting processes enhance the bioavailability of nutrients in pseudocereals. Their consumption has been shown to improve parameters such as blood glucose, lipid profiles, and antioxidant capacity, offering protective effects against diseases. However, studies on changes in nutrient content during storage in sprouting applications of pseudocereals are limited. Future research could focus on addressing these gaps.

Kaynakça

  • Alan, O., Kinaci, G., Kinaci, E., Basciftci, Z. B., Sonmez, K., Evrenosoglu, Y., & Kutlu, I. (2014). Kernel quality of some sweet corn varieties in relation to processing. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 42(2), 414-419. https://doi.org/10.15835/nbha4229425
  • Abugoch James, L. E (2009). Quinoa (Chenopodium quinoa Willd.): composition, chemistry, nutritional and functional properties. Advances in Food and Nutrition Research, 58(1), 1-31. https://doi.org/10.1016/S1043-4526(09)58001-1
  • Ahmad, I., Rashid M. H. U., Nawaz, S., Asif M., Farooq T. H., Shahbaz Z., M., & Kashif, M. (2022). Effect of different compost concentrations on the growth yield of Bombax Ceiba (Simal). Natural Resources for Human Health 2(2), 222-227.
  • Ahmed, J., Thomas, L., Arfat, Y. A., & Joseph, A. (2018). Rheological, structural and functional properties of high-pressure treated quinoa starch in dispersions. Carbohydrate Polymers, 197, 649-657. https://doi.org/10.1016/j.carbpol.2018.05.081
  • Alasalvar, C., Chang, S. K., Bolling, B., Oh, W. Y., & Shahidi, F. (2021). Specialty seeds: Nutrients, bioactives, bioavailability, and health benefits: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 20(3), 2382-2427. https://doi.org/10.1111/1541-4337.12730
  • Alvarez-Jubete, L., Wijngaard, H., Arendt, E. K., & Gallagher, E. (2010). Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa, buckwheat and wheat as affected by sprouting and baking. Food Chemistry, 119(2), 770-778.
  • Arendt, E.K., Moroni, A., & Zannini, E. (2011). Medical nutrition therapy: use of sourdough lactic acid bacteria as a cell factory for delivering functional biomolecules and food ingredients in gluten free bread. Microbial Cell Factories, 10, 1-9. https://doi.org/10.1186/1475-2859-10-S1-S15
  • Beslenme Bilgi Sistemi (BeBiS). (2021). Versiyon 9, İstanbul.
  • Bekkering, C. S., & Tian, L. (2019). Thinking outside of the cereal box: breeding underutilized (pseudo) cereals for improved human nutrition. Frontiers in Genetics, 10, 1289.
  • Berti, C., Riso, P., Monti, L. D., & Porrini, M. (2004). In vitro starch digestibility and in vivo glucose response of gluten-free foods and their gluten counterparts. European Journal of Nutrition, 43(4), 198-204.
  • Coțovanu, I., Batariuc, A., & Mironeasa, S. (2020). Characterization of quinoa seeds milling fractions and their effect on the rheological properties of wheat flour dough. Applied Sciences, 10(20), 7225. https://doi.org/10.3390/app10207225
  • Cumbane, P., Estivila, A., & Magaia, I. (2022). A comparative study on the antioxidant activity of Gladiolus dalenii Van Geel and nine commonly used substances to compare the antioxidant activity of foods and medicinal plants. Natural Resources for Human Health 2(2), 228-235.
  • Da Silva Marineli, R., Moraes, É. A., Lenquiste, S. A., Godoy, A. T., Eberlin, M. N., & Maróstica Jr, M. R. (2014). Chemical characterization and antioxidant potential of Chilean chia seeds and oil (Salvia hispanica L.). LWT-Food Science and Technology, 59(2), 1304-1310. https://doi.org/10.1016/j.lwt.2014.04.014
  • Dizlek H., Özer M.S., Gül H., & İnaç E. (2009). Karabuğday'ın (Fagopyrum Esculentum Moench) Bileşimi ve Gıda Sanayiinde Kullanım Olanakları. Gıda Dergisi, 34(5), 317-324.
  • Dumitru, C., Dinica, R. M., Bahrim, G. E., Vizireanu, C., Baroiu, L., Iancu, A. V., & Draganescu, M. (2021). New insights into the antioxidant compounds of achenes and sprouted buckwheat cultivated in the Republic of Moldova. Applied Sciences, 11(21), 10230. https://doi.org/10.3390/app112110230
  • Graziano, S., Agrimonti, C., Marmiroli, N., & Gullì, M. (2022). Utilisation and limitations of pseudocereals (quinoa, amaranth, and buckwheat) in food production: A review. Trends in Food Science & Technology, 125, 154-165. https://doi.org/10.1016/j.tifs.2022.04.007
  • Hayıt, F., & Gül, H. (2015). Karabuğdayın Sağlık Açısından Önemi ve Unlu Mamüllerde Kullanımı. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 29(1), 123-131.
  • Hayıt, F., & Gül, H. (2017). Tam karabuğday unu ve transglutaminaz ilavesinin kısmi pişirilerek dondurulmuş ekşi mayalı ekmeklerin fiziksel ve tekstürel özellikleri üzerine etkisi. Mediterranean Agricultural Sciences, 30(2), 113-119.
  • Hayıt, F., & Gül, H. (2017). Çölyak ve çölyak hastaları için üretilen ekmeklerin kalite özellikleri. Journal of the Institute of Science and Technology, 7(1), 163-169.
  • Food and Agriculture Organization of the United Nations (FAOSTAT). 2015. Food security and the right to food. http://www.fao.org
  • Filho, A. M. M., Pirozi, M. R., Borges, J. T. D. S., Pinheiro Sant'Ana, H. M., Chaves, J. B. P., & Coimbra, J. S. D. R. (2017). Quinoa: Nutritional, functional, and antinutritional aspects. Critical Reviews in Food Science and Nutrition, 57(8), 1618-1630. https://doi.org/10.1080/10408398.2014.1001811
  • Jancurová, M., Minarovičová, L., & Dandár, A. (2009). Quinoa: A review. Czech Journal of Food Sciences 27(2), 71–79.
  • Kulczyński, B., Kobus-Cisowska, J., Taczanowski, M., Kmiecik, D., & Gramza-Michałowska, A. (2019). The chemical composition and nutritional value of chia seeds—Current state of knowledge. Nutrients, 11(6), 1242. https://doi.org/10.3390/nu11061242
  • Majzoobi, M., Wang, Z., Teimouri, S., Pematilleke, N., Brennan, C. S., & Farahnaky, A. (2023). Unlocking the Potential of Sprouted Cereals, Pseudocereals, and Pulses in Combating Malnutrition. Foods, 12(21), 3901. https://doi.org/10.3390/foods12213901
  • Morales, D., Miguel, M., & Garcés-Rimón, M. (2021). Pseudocereals: A novel source of biologically active peptides. Critical Reviews in Food Science and Nutrition, 61(9), 1537-1544. https://doi.org/10.1080/10408398.2020.1761774 Nandan, A., Koirala, P., Tripathi, A. D., Vikranta, U., Shah, K., Gupta, A. J., ... & Nirmal, N. (2024). Nutritional and functional perspectives of pseudocereals. Food Chemistry, 448(1), 139072. https://doi.org/10.1016/j.foodchem.2024.139072
  • Nsimba, R. Y., Kikuzaki, H., & Konishi, Y. (2008). Antioxidant activity of various extracts and fractions of Chenopodium quinoa and Amaranthus spp. seeds. Food Chemistry, 106(2), 760-766. https://doi.org/10.1016/j.foodchem.2007.06.004
  • Pirzadah, T. B., & Malik, B. (2020). Pseudocereals as super foods of 21st century: Recent technological interventions. Journal of Agriculture and Food Research, 2, 100052. https://doi.org/10.1016/j.jafr.2020.100052
  • Poshadri, A., Deshpande, H. W., Machewad, G. M., Kshirsagar, R. B., Gadhe, K. S., & Kadam, S. D. (2023). Functional properties of selected composite gluten-free pseudocereals flour. Food and Humanity, 1, 1200-1205. https://doi.org/10.1016/j.foohum.2023.09.015
  • Repo-Carrasco-Valencia, R. A. M., & Serna, L. A. (2011). Quinoa (Chenopodium quinoa, Willd.) as a source of dietary fiber and other functional components. Ciência e Tecnologia de Alimentos, 31(1), 225-230. https://doi.org/10.1590/S0101-20612011000100035
  • Rollán, G. C., Gerez, C. L., & LeBlanc, J. G. (2019). Lactic fermentation as a strategy to improve the nutritional and functional values of pseudocereals. Frontiers in Nutrition, 6, 98. https://doi.org/10.3389/fnut.2019.00098
  • Ruan, J., Zhou, Y., Yan, J., Zhou, M., Woo, S. H., Weng, W., ... & Zhang, K. (2022). Tartary buckwheat: An under-utilized edible and medicinal herb for food and nutritional security. Food Reviews International, 38(4), 440-454. https://doi.org/10.1080/87559129.2020.1734610
  • Ryan, E., Galvin, K., O'Connor, T. P., & Maguire, A. R. (2007). Phytosterol, squalene, tocopherol content and fatty acid profile of selected seeds, grains, and legumes. Plant Foods for Human Nutrition, 62(3), 85-91. Sarker, U., Hossain, M. M., & Oba, S. (2020). Nutritional and antioxidant components and antioxidant capacity in green morph Amaranthus leafy vegetable. Scientific Reports, 10(1), 1336. https://doi.org/10.1038/s41598-020-57687-3
  • Sarker, U., Oba, S., Alsanie, W. F., & Gaber, A. (2022). Characterization of phytochemicals, nutrients, and antiradical potential in slim amaranth. Antioxidants, 11(6), 1089. https://doi.org/10.3390/antiox11061089 Schoenlechner, R., Wendner, M., Siebenhandl-Ehn, S., & Berghofer, E. (2010). Pseudocereals as alternative sources for high folate content in staple foods. Journal of Cereal Science, 52, 475-479. https://doi.org/10.1016/j.jcs.2010.08.001
  • Shahbaz, M., Raza, N., Islam, M., Imran, M., Ahmad, I., Meyyazhagan, A., ... & Wan, C. (2023). The nutraceutical properties and health benefits of pseudocereals: a comprehensive treatise. Critical Reviews in Food Science and Nutrition, 63(29), 10217-10229. https://doi.org/10.1080/10408398.2022.2071205
  • Sofi, S. A., Ahmed, N., Farooq, A., Rafiq, S., Zargar, S. M., Kamran, F., ... & Mousavi Khaneghah, A. (2023). Nutritional and bioactive characteristics of buckwheat, and its potential for developing gluten‐free products: An updated overview. Food Science & Nutrition, 11(5), 2256-2276. https://doi.org/10.1002/fsn3.3166
  • Tang, Y., Li, X., Chen, P. X., Zhang, B., Hernandez, M., Zhang, H., ... & Tsao, R. (2015). Characterisation of fatty acid, carotenoid, tocopherol/tocotrienol compositions and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food chemistry, 174, 502-508. https://doi.org/10.1016/j.foodchem.2014.11.040
  • Ugural, A., & Akyol, A. (2022). Can pseudocereals modulate microbiota by functioning as probiotics or prebiotics?. Critical Reviews in Food Science and Nutrition, 62(7), 1725-1739. https://doi.org/10.1080/10408398.2020.1846493
  • Vega-Gálvez, A. V., Miranda, M., Vergara, J., Uribe, E., Puente, L., & Martínez, E. A. (2010). Nutrition facts and functional potential of quinoa (Chenopodium quinoa Willd.), an ancient Andean grain: A review. Journal of the Science of Food and Agriculture, 90, 2541-2547. https://doi.org/10.1002/jsfa.4158
  • Vidaurre-Ruiz, J., Bender, D., & Schönlechner, R. (2023). Exploiting pseudocereals as novel high protein grains. Journal of Cereal Science, 114, 103795. https://doi.org/10.1016/j.jcs.2023.103795
  • Vuksan, V., Whitham, D., Sievenpiper, J. L., Jenkins, A. L., Rogovik, A. L., Bazinet, R. P., ... & Hanna, A. (2007). Supplementation of conventional therapy with the novel grain Salba (Salvia hispanica L.) improves major and emerging cardiovascular risk factors in type 2 diabetes: results of a randomized controlled trial. Diabetes Care, 30(11), 2804-2810. https://doi.org/10.2337/dc07-1144
  • World Health Organization. (2002). Nitrate. https://apps.who.int/food-additives-contaminants-jecfa-database/Home/Chemical/709 (Erişim Tarihi: 10.12.2024)
  • World Health Organization. (2007). Protein and Amino Acid Requirements in Human Nutrition: Report of a Joint WHO/FAO/UNU Expert Consultation, WHO Technical Report Series, 935, WHO, Geneva, Switzerland, 265 pp.
  • Zhao, M., Gou, J., Zhang, K., & Ruan, J. (2023). Principal components and cluster analysis of trace elements in buckwheat flour. Foods, 12(1), 225. https://doi.org/10.3390/foods12010225
  • Zhou, X., Wen, L., Li, Z., Zhou, Y., Chen, Y., & Lu, Y. (2015). Advance on the benefits of bioactive peptides from buckwheat. Phytochemistry Reviews, 14, 381-388. https://doi.org/10.1007/s11101-014-9390-0
  • Zhu, F. (2019). Proanthocyanidins in cereals and pseudocereals. Critical Reviews in Food Science and Nutrition, 59(10), 1521-1533. https://doi.org/10.1080/10408398.2017.1418284

Gastronomide Fonksiyonel Ürün Kapsamında Kullanılan Pseudotahıllar

Yıl 2025, Cilt: 56 Sayı: 3, 256 - 268, 26.09.2025
https://doi.org/10.17097/agricultureatauni.1636831

Öz

Son yıllarda tüketiciler, sağlıklı yaşam tarzlarını benimseme ve besleyici gıdalar tüketme konusunda giderek daha bilinçli hâle gelmiştir. Bu eğilim, geleneksel tarım ürünlerine olan ilgiyi çeşitlendirmiş; alternatif ve fonksiyonel besin kaynaklarına yönelimi artırmıştır. Bu bağlamda, uzun yıllar boyunca ikincil ürün olarak değerlendirilen pseudo tahıllar, 21. yüzyılın başlarından itibaren yeniden keşfedilmiş ve üretim süreçlerinde daha fazla yer bulmaya başlamıştır. Pseudo tahıllar, iyi kaliteli proteinlerle olağanüstü bir besinsel ve fitokimyasal profile sahip tahıllardır. Glutensiz ürün alternatifi olarak öne çıkartılmış olan pseudo tahıllar son çalışmalarda, içerisinde bulunan diyet lifleri, vitaminler, mineraller, fenolikler ve diğer biyoaktif bileşenlerle kanser, diyabet, hipertansiyon ve kardiyovasküler hastalıklar gibi kronik rahatsızlıklarla mücadele etme potansiyeline sahip ürünler olarak öne çıkarılmaktadır. Bu derleme çalışmasında da pseudo tahılların glutensiz ürün geliştirme kapsamında kullanımı dışında amino asit örüntüleri ve diğer biyoaktif bileşenleri ön plana çıkartılarak sağlık üzerine etkileri hakkında detaylı literatür taraması yaparak bu ürünlerin sürdürülebilir gastronomi uygulamalarına kazandırılması amaçlanmaktadır. Elde edilen bilgiler pseudo tahılların toplam protein içeriğinin, elzem amino asit içeriğinin, vitamin, mineral ve diğer biyoaktif bileşen içeriklerinin tahıllardan daha yüksek olduğunu ve filizlendirme işlemleri ile besin öğelerinin biyoyararlılıklarının artırılabildiği ve bu pseudo tahılların tüketiminin kan glikozu, lipit profili ve antioksidan kapasite seviyeleri gibi değerlerde iyileştirmeler yaparak hastalıklara karşı koruyucu olabileceklerini vurgulamaktadır. Pseudo tahılların filizlendirme uygulamalarında depolama ile besin öğeleri içerik değişimleri üzerine yapılmış çalışmalar kısıtlıdır. İleriki çalışmalar bu eksikler üzerine yoğunlaşabilir.

Etik Beyan

Derleme çalışması olması sebebiyle etik kurul izni gerekmemektedir.

Destekleyen Kurum

Yoktur.

Kaynakça

  • Alan, O., Kinaci, G., Kinaci, E., Basciftci, Z. B., Sonmez, K., Evrenosoglu, Y., & Kutlu, I. (2014). Kernel quality of some sweet corn varieties in relation to processing. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 42(2), 414-419. https://doi.org/10.15835/nbha4229425
  • Abugoch James, L. E (2009). Quinoa (Chenopodium quinoa Willd.): composition, chemistry, nutritional and functional properties. Advances in Food and Nutrition Research, 58(1), 1-31. https://doi.org/10.1016/S1043-4526(09)58001-1
  • Ahmad, I., Rashid M. H. U., Nawaz, S., Asif M., Farooq T. H., Shahbaz Z., M., & Kashif, M. (2022). Effect of different compost concentrations on the growth yield of Bombax Ceiba (Simal). Natural Resources for Human Health 2(2), 222-227.
  • Ahmed, J., Thomas, L., Arfat, Y. A., & Joseph, A. (2018). Rheological, structural and functional properties of high-pressure treated quinoa starch in dispersions. Carbohydrate Polymers, 197, 649-657. https://doi.org/10.1016/j.carbpol.2018.05.081
  • Alasalvar, C., Chang, S. K., Bolling, B., Oh, W. Y., & Shahidi, F. (2021). Specialty seeds: Nutrients, bioactives, bioavailability, and health benefits: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 20(3), 2382-2427. https://doi.org/10.1111/1541-4337.12730
  • Alvarez-Jubete, L., Wijngaard, H., Arendt, E. K., & Gallagher, E. (2010). Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa, buckwheat and wheat as affected by sprouting and baking. Food Chemistry, 119(2), 770-778.
  • Arendt, E.K., Moroni, A., & Zannini, E. (2011). Medical nutrition therapy: use of sourdough lactic acid bacteria as a cell factory for delivering functional biomolecules and food ingredients in gluten free bread. Microbial Cell Factories, 10, 1-9. https://doi.org/10.1186/1475-2859-10-S1-S15
  • Beslenme Bilgi Sistemi (BeBiS). (2021). Versiyon 9, İstanbul.
  • Bekkering, C. S., & Tian, L. (2019). Thinking outside of the cereal box: breeding underutilized (pseudo) cereals for improved human nutrition. Frontiers in Genetics, 10, 1289.
  • Berti, C., Riso, P., Monti, L. D., & Porrini, M. (2004). In vitro starch digestibility and in vivo glucose response of gluten-free foods and their gluten counterparts. European Journal of Nutrition, 43(4), 198-204.
  • Coțovanu, I., Batariuc, A., & Mironeasa, S. (2020). Characterization of quinoa seeds milling fractions and their effect on the rheological properties of wheat flour dough. Applied Sciences, 10(20), 7225. https://doi.org/10.3390/app10207225
  • Cumbane, P., Estivila, A., & Magaia, I. (2022). A comparative study on the antioxidant activity of Gladiolus dalenii Van Geel and nine commonly used substances to compare the antioxidant activity of foods and medicinal plants. Natural Resources for Human Health 2(2), 228-235.
  • Da Silva Marineli, R., Moraes, É. A., Lenquiste, S. A., Godoy, A. T., Eberlin, M. N., & Maróstica Jr, M. R. (2014). Chemical characterization and antioxidant potential of Chilean chia seeds and oil (Salvia hispanica L.). LWT-Food Science and Technology, 59(2), 1304-1310. https://doi.org/10.1016/j.lwt.2014.04.014
  • Dizlek H., Özer M.S., Gül H., & İnaç E. (2009). Karabuğday'ın (Fagopyrum Esculentum Moench) Bileşimi ve Gıda Sanayiinde Kullanım Olanakları. Gıda Dergisi, 34(5), 317-324.
  • Dumitru, C., Dinica, R. M., Bahrim, G. E., Vizireanu, C., Baroiu, L., Iancu, A. V., & Draganescu, M. (2021). New insights into the antioxidant compounds of achenes and sprouted buckwheat cultivated in the Republic of Moldova. Applied Sciences, 11(21), 10230. https://doi.org/10.3390/app112110230
  • Graziano, S., Agrimonti, C., Marmiroli, N., & Gullì, M. (2022). Utilisation and limitations of pseudocereals (quinoa, amaranth, and buckwheat) in food production: A review. Trends in Food Science & Technology, 125, 154-165. https://doi.org/10.1016/j.tifs.2022.04.007
  • Hayıt, F., & Gül, H. (2015). Karabuğdayın Sağlık Açısından Önemi ve Unlu Mamüllerde Kullanımı. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 29(1), 123-131.
  • Hayıt, F., & Gül, H. (2017). Tam karabuğday unu ve transglutaminaz ilavesinin kısmi pişirilerek dondurulmuş ekşi mayalı ekmeklerin fiziksel ve tekstürel özellikleri üzerine etkisi. Mediterranean Agricultural Sciences, 30(2), 113-119.
  • Hayıt, F., & Gül, H. (2017). Çölyak ve çölyak hastaları için üretilen ekmeklerin kalite özellikleri. Journal of the Institute of Science and Technology, 7(1), 163-169.
  • Food and Agriculture Organization of the United Nations (FAOSTAT). 2015. Food security and the right to food. http://www.fao.org
  • Filho, A. M. M., Pirozi, M. R., Borges, J. T. D. S., Pinheiro Sant'Ana, H. M., Chaves, J. B. P., & Coimbra, J. S. D. R. (2017). Quinoa: Nutritional, functional, and antinutritional aspects. Critical Reviews in Food Science and Nutrition, 57(8), 1618-1630. https://doi.org/10.1080/10408398.2014.1001811
  • Jancurová, M., Minarovičová, L., & Dandár, A. (2009). Quinoa: A review. Czech Journal of Food Sciences 27(2), 71–79.
  • Kulczyński, B., Kobus-Cisowska, J., Taczanowski, M., Kmiecik, D., & Gramza-Michałowska, A. (2019). The chemical composition and nutritional value of chia seeds—Current state of knowledge. Nutrients, 11(6), 1242. https://doi.org/10.3390/nu11061242
  • Majzoobi, M., Wang, Z., Teimouri, S., Pematilleke, N., Brennan, C. S., & Farahnaky, A. (2023). Unlocking the Potential of Sprouted Cereals, Pseudocereals, and Pulses in Combating Malnutrition. Foods, 12(21), 3901. https://doi.org/10.3390/foods12213901
  • Morales, D., Miguel, M., & Garcés-Rimón, M. (2021). Pseudocereals: A novel source of biologically active peptides. Critical Reviews in Food Science and Nutrition, 61(9), 1537-1544. https://doi.org/10.1080/10408398.2020.1761774 Nandan, A., Koirala, P., Tripathi, A. D., Vikranta, U., Shah, K., Gupta, A. J., ... & Nirmal, N. (2024). Nutritional and functional perspectives of pseudocereals. Food Chemistry, 448(1), 139072. https://doi.org/10.1016/j.foodchem.2024.139072
  • Nsimba, R. Y., Kikuzaki, H., & Konishi, Y. (2008). Antioxidant activity of various extracts and fractions of Chenopodium quinoa and Amaranthus spp. seeds. Food Chemistry, 106(2), 760-766. https://doi.org/10.1016/j.foodchem.2007.06.004
  • Pirzadah, T. B., & Malik, B. (2020). Pseudocereals as super foods of 21st century: Recent technological interventions. Journal of Agriculture and Food Research, 2, 100052. https://doi.org/10.1016/j.jafr.2020.100052
  • Poshadri, A., Deshpande, H. W., Machewad, G. M., Kshirsagar, R. B., Gadhe, K. S., & Kadam, S. D. (2023). Functional properties of selected composite gluten-free pseudocereals flour. Food and Humanity, 1, 1200-1205. https://doi.org/10.1016/j.foohum.2023.09.015
  • Repo-Carrasco-Valencia, R. A. M., & Serna, L. A. (2011). Quinoa (Chenopodium quinoa, Willd.) as a source of dietary fiber and other functional components. Ciência e Tecnologia de Alimentos, 31(1), 225-230. https://doi.org/10.1590/S0101-20612011000100035
  • Rollán, G. C., Gerez, C. L., & LeBlanc, J. G. (2019). Lactic fermentation as a strategy to improve the nutritional and functional values of pseudocereals. Frontiers in Nutrition, 6, 98. https://doi.org/10.3389/fnut.2019.00098
  • Ruan, J., Zhou, Y., Yan, J., Zhou, M., Woo, S. H., Weng, W., ... & Zhang, K. (2022). Tartary buckwheat: An under-utilized edible and medicinal herb for food and nutritional security. Food Reviews International, 38(4), 440-454. https://doi.org/10.1080/87559129.2020.1734610
  • Ryan, E., Galvin, K., O'Connor, T. P., & Maguire, A. R. (2007). Phytosterol, squalene, tocopherol content and fatty acid profile of selected seeds, grains, and legumes. Plant Foods for Human Nutrition, 62(3), 85-91. Sarker, U., Hossain, M. M., & Oba, S. (2020). Nutritional and antioxidant components and antioxidant capacity in green morph Amaranthus leafy vegetable. Scientific Reports, 10(1), 1336. https://doi.org/10.1038/s41598-020-57687-3
  • Sarker, U., Oba, S., Alsanie, W. F., & Gaber, A. (2022). Characterization of phytochemicals, nutrients, and antiradical potential in slim amaranth. Antioxidants, 11(6), 1089. https://doi.org/10.3390/antiox11061089 Schoenlechner, R., Wendner, M., Siebenhandl-Ehn, S., & Berghofer, E. (2010). Pseudocereals as alternative sources for high folate content in staple foods. Journal of Cereal Science, 52, 475-479. https://doi.org/10.1016/j.jcs.2010.08.001
  • Shahbaz, M., Raza, N., Islam, M., Imran, M., Ahmad, I., Meyyazhagan, A., ... & Wan, C. (2023). The nutraceutical properties and health benefits of pseudocereals: a comprehensive treatise. Critical Reviews in Food Science and Nutrition, 63(29), 10217-10229. https://doi.org/10.1080/10408398.2022.2071205
  • Sofi, S. A., Ahmed, N., Farooq, A., Rafiq, S., Zargar, S. M., Kamran, F., ... & Mousavi Khaneghah, A. (2023). Nutritional and bioactive characteristics of buckwheat, and its potential for developing gluten‐free products: An updated overview. Food Science & Nutrition, 11(5), 2256-2276. https://doi.org/10.1002/fsn3.3166
  • Tang, Y., Li, X., Chen, P. X., Zhang, B., Hernandez, M., Zhang, H., ... & Tsao, R. (2015). Characterisation of fatty acid, carotenoid, tocopherol/tocotrienol compositions and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food chemistry, 174, 502-508. https://doi.org/10.1016/j.foodchem.2014.11.040
  • Ugural, A., & Akyol, A. (2022). Can pseudocereals modulate microbiota by functioning as probiotics or prebiotics?. Critical Reviews in Food Science and Nutrition, 62(7), 1725-1739. https://doi.org/10.1080/10408398.2020.1846493
  • Vega-Gálvez, A. V., Miranda, M., Vergara, J., Uribe, E., Puente, L., & Martínez, E. A. (2010). Nutrition facts and functional potential of quinoa (Chenopodium quinoa Willd.), an ancient Andean grain: A review. Journal of the Science of Food and Agriculture, 90, 2541-2547. https://doi.org/10.1002/jsfa.4158
  • Vidaurre-Ruiz, J., Bender, D., & Schönlechner, R. (2023). Exploiting pseudocereals as novel high protein grains. Journal of Cereal Science, 114, 103795. https://doi.org/10.1016/j.jcs.2023.103795
  • Vuksan, V., Whitham, D., Sievenpiper, J. L., Jenkins, A. L., Rogovik, A. L., Bazinet, R. P., ... & Hanna, A. (2007). Supplementation of conventional therapy with the novel grain Salba (Salvia hispanica L.) improves major and emerging cardiovascular risk factors in type 2 diabetes: results of a randomized controlled trial. Diabetes Care, 30(11), 2804-2810. https://doi.org/10.2337/dc07-1144
  • World Health Organization. (2002). Nitrate. https://apps.who.int/food-additives-contaminants-jecfa-database/Home/Chemical/709 (Erişim Tarihi: 10.12.2024)
  • World Health Organization. (2007). Protein and Amino Acid Requirements in Human Nutrition: Report of a Joint WHO/FAO/UNU Expert Consultation, WHO Technical Report Series, 935, WHO, Geneva, Switzerland, 265 pp.
  • Zhao, M., Gou, J., Zhang, K., & Ruan, J. (2023). Principal components and cluster analysis of trace elements in buckwheat flour. Foods, 12(1), 225. https://doi.org/10.3390/foods12010225
  • Zhou, X., Wen, L., Li, Z., Zhou, Y., Chen, Y., & Lu, Y. (2015). Advance on the benefits of bioactive peptides from buckwheat. Phytochemistry Reviews, 14, 381-388. https://doi.org/10.1007/s11101-014-9390-0
  • Zhu, F. (2019). Proanthocyanidins in cereals and pseudocereals. Critical Reviews in Food Science and Nutrition, 59(10), 1521-1533. https://doi.org/10.1080/10408398.2017.1418284
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ziraat Mühendisliği (Diğer)
Bölüm Derlemeler
Yazarlar

Özlem Özer Altundağ 0000-0001-7117-6335

Yayımlanma Tarihi 26 Eylül 2025
Gönderilme Tarihi 10 Şubat 2025
Kabul Tarihi 7 Ağustos 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 56 Sayı: 3

Kaynak Göster

APA Özer Altundağ, Ö. (2025). Gastronomide Fonksiyonel Ürün Kapsamında Kullanılan Pseudotahıllar. Research in Agricultural Sciences, 56(3), 256-268. https://doi.org/10.17097/agricultureatauni.1636831

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License


29919