Bu araştırma ile altıncı sınıf öğrencilerinin bilişsel çatışma temelli etkinlikler aracılığıyla kesirlerde kavram değişimini izlemek amaçlanmıştır. Araştırmanın katılımcı grubunu 14 altıncı sınıf öğrencisi oluşturmaktadır. Araştırmada öncelikle öğrencilerin kesirlerin büyüklüklerini karşılaştırmaya yönelik kavram yanılgıları tespit edilmiştir. Daha sonra öğrencilere yanılgılarına yönelik bilişsel çatışma senaryoları uygulanmıştır. Son olarak kavramı verimli kullanıp kullanamadıklarını ölçmek amacıyla öğrencilere günlük yaşam bağlamlı problem sunulmuştur. Veriler içerik analizi ve betimsel analiz yöntemiyle incelenmiştir. Çalışmadan elde edilen bulgular doğrultusunda bilişsel çatışma temelli etkinliklerin kesirlerle ilgili kavram değişimi oluşturmada olumlu etkisinin olduğu sonucuna ulaşılmıştır. Matematik dersi akademik başarı düzeyi arttıkça kavram değişimi sürecinde daha üst seviyelere çıkılabildiği belirlenmiştir. Öğrencilerin en çok somut materyal aracılığı ile bilişsel çatışma yaşadığı görülmüştür. Kavramla ilgili ön bilginin bilişsel çatışma yaşamak için gerekli olduğu tespit edilmiştir. Ek olarak bilişsel çatışmanın kavram değişimi için etkili bir başlangıç olabileceği fakat yeterli olmadığı sonuçlarına ulaşılmıştır. Bu sonuçlar ışığında matematik derslerinde kesirlerde kavram değişimi oluşturmak için bilişsel çatışma temelli etkinliklere yer verilebileceği ve farklı matematik dersi konularında bilişsel çatışma stratejileri aracılığı ile kavram değişimi oluşturma üzerine çalışmalar yapılabileceği önerilmiştir.
Aliustaoğlu, F., Tuna, A. ve Biber, A. Ç. (2018). The misconceptions of sixth grade secondary school students on fractions. International Electronic Journal of Elementary Education, 10(5), 591-599.
Birgin, O. ve Gürbüz, R. (2009). İlköğretim II. kademe öğrencilerinin rasyonel sayılar konusundaki işlemsel ve kavramsal bilgi düzeylerinin incelenmesi. Uludağ Üniversitesi Eğitim Fakültesi Dergisi, 22(2), 529-550.
Blake, B., & Pope, T. (2008). Developmental psychology: Incorporating Piaget’s and Vygotsky’s theories in classrooms. Journal of Cross-Disciplinary Perspective in Education, 1(1), 59-67.
Budiarto, M. T. (2018). Fauzi’s cognitive conflict in the development of geometry teaching material: A case study in shifting trapezoidal definition. In Journal of Physics: Conference Series (Vol. 1088, No. 1, p. 012083). IOP Publishing.
Cıhlář, J., Eisenmann, P., Krátká, M., & Vopěnka, P. (2009). Cognitive conflict as a tool of overcoming obstacles in understanding infinity. Teaching Mathematics and Computer Science, 7(2), 279-295.
Çelik, B. (2006). Temel matematik. Nobel Yayın,Ankara.
Duit, R., & Treagust, D. (2003). Conceptual change: A powerful framework for improving science teaching and learning. International Journal of Science education, 25(6), 671–688.
Gredler, D. E. (1992). Learning and instruction: Theory into practice. NY: Macmillan Publishing Company.
Güler, M. ve Güveli, E. (2023). Elimination of Misconceptions about Percentages with the Cognitive Conflict Approach. Journal of Computer and Education Research, 11(21), 162-192.
Güveli, H., Baki, A. ve Güveli, E. (2022). The impact of the cognitive conflict approach on the elimination of the misconception in square root numbers. Education Quarterly Reviews, 5(2), 39-52.
Haser, Ç. ve Ubuz, B. (2002). Kesirlerde kavramsal ve işlemsel performans. Eğitim ve Bilim, 27(126, 53-61.
Herawaty, D., & Rusdi, R. (2016). Increased capacity of the understanding of the concept and the ability to solve problems through the implementation of the model of teaching mathematics realistic based on cognitive conflict students. Infinity Journal, 5(2), 109-120.
Herawaty, D., & Widada, W. (2017). The influence of contextual learning models and the cognitive conflict to understand mathematical concepts and problems solving abilities. In 1st Annual International Conference on
Mathematics, Science, and Education (ICoMSE 2017) (pp. 224-230). Atlantis Press.
Hewson, P. W. (1981). A conceptual change approach to learning science. European Journal of Science Education, 3(4), 383-396.
Hewson, P. W. (1992). Conceptual change in science teaching and teacher education. In a meeting on “Research and Curriculum Development in Science Teaching,” under the auspices of the National Center for Educational Research, Documentation, and Assessment, Ministry for Education and Science, Madrid, Spain (pp. 329-342).
Lefa, B. (2014). The Piaget theory of cognitive development: an educational implications. Educational psychology, 1(1), 1-8.
Liang, S. (2016). Teaching the Concept of Limit by Using Conceptual Conflict Strategy and Desmos Graphing Calculator. International Journal of Research in Education and Science, 2(1), 35-48.
Liljedahl, P. (2011). The theory of conceptual change as a theory for changing conceptions. Nordic Studies in Mathematics Education, 16(1-2), 101-124.
Limón, M. (2001). On the cognitive conflict as an instructional strategy for conceptual change: A critical appraisal. Learning and Instruction, 11(4-5), 357-380.
Lin, J. (2007). Responses to anomalous data obtained from repeatable experiments in the laboratory. Journal of Research in Science Teaching, 44, 506–528.
Maharani, I. P., & Subanji, S. (2018). Scaffolding based on cognitive conflict in correcting the students' algebra errors. International Electronic Journal of Mathematics Education, 13(2), 67-74.
McMullen, J., Laakkonen, E., Hannula-Sormunen, M., & Lehtinen, E. (2015). Modeling the developmental trajectories of rational number concept (s). Learning and Instruction, 37, 14-20.
Merriam, S. B. (1998). Qualitative research and case study applications in education. Revised and expanded from "case study research in education.". San Francisco: Jossey-Bass Publishers.
Millî Eğitim Bakanlığı [MEB] (2024). İlkokul matematik dersi öğretim programı. MEB Yayınları.
Moody, B. (2010). Connecting the points: cognitive conflict and decimal magnitude. In L. Sparrow, B. Kissane & C. Hurst (Eds.), Shaping the future of mathematics education. Proceedings of the Annual Conference of The
Mathematics Education Research Group of Australasia (pp. 422–429). Fremantle: MERGA
Moss. J. (2005). Pipes, tubes, and beakers: New approaches to teaching the rational-number system. In M. S.
Donovan & J. D. Bransford (Eds.), How students learn: Mathematics in the classroom (pp. 121-162). Washington, DC: National Academic Press.
Niven, I. (1961). Numbers: Rational and İrrational. Washington D.C.:Mathematical Association of America.
Ni, Y., & Zhou, Y. D. (2005). Teaching and learning fraction and rational numbers: The origins and implications of whole number bias. Educational psychologist, 40(1), 27-52.
Olkun S., & Toluk Uçar Z. (2007). Activity-based mathematics teaching in primary education. Ankara: Maya Akademi Publishing Distribution.
Önal, H. ve Yorulmaz, A. (2017). The errors made by primary school fourth graders on fractions. Journal of Research in Education and Society, 4(1), 98-113.
Parwati, N., & Suharta, I. (2020). Effectiveness of the implementation of cognitive conflict strategy assisted by e-service learning to reduce students' mathematical misconceptions. International Journal of Emerging Technologies in Learning (iJET), 15(11), 102-118.
Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66, 221- 227.
Sela, H., & Zaslavsky, O. (2007). Resolving cognitive conflict with peers – Is there a difference between two and four? In J. H. Woo, H. C. Lew, K. S. Park, & D. Y. Seo (Eds.), Proceedings of the 31st Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 169–176). Seoul: PME.
Shahbari, J. A., & Peled, I. (2015). Resolving cognitive conflict in a realistic situation with modeling characteristics: Coping with a changing reference in fractions. International Journal of Science and Mathematics Education, 13(4), 891-907.
Siegler RS, Thompson CA, & Schneider M. (2011). An integrated theory of whole number and fractions development. Cognitive Psychology, 62(4): 273-96.
Soylu, Y. ve Soylu, C. (2005). İlköğretim beşinci sınıf öğrencilerinin kesirler konusundaki öğrenme güçlükleri: kesirlerde sıralama, toplama, çıkarma, çarpma ve kesirlerle ilgili problemler. Erzincan Üniversitesi Eğitim Fakültesi Dergisi, 7(2), 101-117.
Susilawati, W., Suryadi, D., & Dahlan, J. A. (2017). The improvement of mathematical spatial visualization ability of student through cognitive conflict. International Electronic Journal of Mathematics Education, 12(2), 155-166.
Toka, Y., & Aşkar, P. (Susilawati 2002). The effect of cognitive conflict and conceptual change text on students' achievement related to first degree equations with one unknown. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 23; 211-217.
Vamvakoussi, X., & Vosniadou, S. (2010). How many decimals are there between two fractions? Aspects of secondary school students’ understanding of rational numbers and their notation. Cognition and instruction, 28(2), 181-209
Westbrook, S. L., & Rogers, L. N. (1992). Experience is the teacher: Using the laboratory to promote conceptual change. Paper presented at the Annual Meeting of the National Association for Research in Science Teaching, Boston, MA.
White, R., & Gunstone, R. (1989). Metelearning and coneptual change. International Journal of Science, 11, 577-586.
Yıldırım, A. ve Şimşek, H. (2016). Sosyal bilimlerde nitel araştırma yöntemleri. Ankara: Seçkin Yayıncılık.
Yılmaz, H. Z. (2019). Altıncı sınıf öğrencilerinin çokgenler ve dörtgenler konusundaki kavram yanılgılarının geogebra ile bilişsel çelişki oluşturarak giderilme sürecinin incelenmesi [Yayımlanmamış yüksek lisans tezi]. Gazi Üniversitesi Eğitim Bilimleri Enstitüsü.
Zohar, A., & Aharon‐Kravetsky, S. (2005). Exploring the effects of cognitive conflict and direct teaching for students of different academic levels. Journal of research in science teaching, 42(7), 829-855.
Monitoring Sixth Grade Students' Concept Change in Fractions Through Cognitive Conflict-Based Activities
This study aimed to monitor the concept change of sixth grade students in fractions through cognitive conflict-based activities. The participant group of the study consisted of 14 sixth grade students. First, the students' misconceptions about comparing the magnitudes of fractions were determined in the study. Then, cognitive conflict scenarios were applied to the students regarding their misconceptions. Finally, a problem in the context of daily life was presented to the students in order to measure whether they could use the concept efficiently. The data were examined with content analysis and descriptive analysis methods. In line with the findings obtained from the study, it was concluded that cognitive conflict-based activities had a positive effect on creating concept change related to fractions. It was determined that as the academic success level in mathematics course increased, higher levels could be reached in the concept change process. It was observed that students experienced cognitive conflict mostly through concrete materials. It was determined that prior knowledge about the concept was necessary to experience cognitive conflict. In addition, it was concluded that cognitive conflict could be an effective start for concept change but it was not sufficient. In the light of these results, it was suggested that cognitive conflict-based activities could be included in mathematics courses to create concept change in fractions and that studies could be conducted on creating concept change through cognitive conflict strategies in different mathematics lesson subjects.
Aliustaoğlu, F., Tuna, A. ve Biber, A. Ç. (2018). The misconceptions of sixth grade secondary school students on fractions. International Electronic Journal of Elementary Education, 10(5), 591-599.
Birgin, O. ve Gürbüz, R. (2009). İlköğretim II. kademe öğrencilerinin rasyonel sayılar konusundaki işlemsel ve kavramsal bilgi düzeylerinin incelenmesi. Uludağ Üniversitesi Eğitim Fakültesi Dergisi, 22(2), 529-550.
Blake, B., & Pope, T. (2008). Developmental psychology: Incorporating Piaget’s and Vygotsky’s theories in classrooms. Journal of Cross-Disciplinary Perspective in Education, 1(1), 59-67.
Budiarto, M. T. (2018). Fauzi’s cognitive conflict in the development of geometry teaching material: A case study in shifting trapezoidal definition. In Journal of Physics: Conference Series (Vol. 1088, No. 1, p. 012083). IOP Publishing.
Cıhlář, J., Eisenmann, P., Krátká, M., & Vopěnka, P. (2009). Cognitive conflict as a tool of overcoming obstacles in understanding infinity. Teaching Mathematics and Computer Science, 7(2), 279-295.
Çelik, B. (2006). Temel matematik. Nobel Yayın,Ankara.
Duit, R., & Treagust, D. (2003). Conceptual change: A powerful framework for improving science teaching and learning. International Journal of Science education, 25(6), 671–688.
Gredler, D. E. (1992). Learning and instruction: Theory into practice. NY: Macmillan Publishing Company.
Güler, M. ve Güveli, E. (2023). Elimination of Misconceptions about Percentages with the Cognitive Conflict Approach. Journal of Computer and Education Research, 11(21), 162-192.
Güveli, H., Baki, A. ve Güveli, E. (2022). The impact of the cognitive conflict approach on the elimination of the misconception in square root numbers. Education Quarterly Reviews, 5(2), 39-52.
Haser, Ç. ve Ubuz, B. (2002). Kesirlerde kavramsal ve işlemsel performans. Eğitim ve Bilim, 27(126, 53-61.
Herawaty, D., & Rusdi, R. (2016). Increased capacity of the understanding of the concept and the ability to solve problems through the implementation of the model of teaching mathematics realistic based on cognitive conflict students. Infinity Journal, 5(2), 109-120.
Herawaty, D., & Widada, W. (2017). The influence of contextual learning models and the cognitive conflict to understand mathematical concepts and problems solving abilities. In 1st Annual International Conference on
Mathematics, Science, and Education (ICoMSE 2017) (pp. 224-230). Atlantis Press.
Hewson, P. W. (1981). A conceptual change approach to learning science. European Journal of Science Education, 3(4), 383-396.
Hewson, P. W. (1992). Conceptual change in science teaching and teacher education. In a meeting on “Research and Curriculum Development in Science Teaching,” under the auspices of the National Center for Educational Research, Documentation, and Assessment, Ministry for Education and Science, Madrid, Spain (pp. 329-342).
Lefa, B. (2014). The Piaget theory of cognitive development: an educational implications. Educational psychology, 1(1), 1-8.
Liang, S. (2016). Teaching the Concept of Limit by Using Conceptual Conflict Strategy and Desmos Graphing Calculator. International Journal of Research in Education and Science, 2(1), 35-48.
Liljedahl, P. (2011). The theory of conceptual change as a theory for changing conceptions. Nordic Studies in Mathematics Education, 16(1-2), 101-124.
Limón, M. (2001). On the cognitive conflict as an instructional strategy for conceptual change: A critical appraisal. Learning and Instruction, 11(4-5), 357-380.
Lin, J. (2007). Responses to anomalous data obtained from repeatable experiments in the laboratory. Journal of Research in Science Teaching, 44, 506–528.
Maharani, I. P., & Subanji, S. (2018). Scaffolding based on cognitive conflict in correcting the students' algebra errors. International Electronic Journal of Mathematics Education, 13(2), 67-74.
McMullen, J., Laakkonen, E., Hannula-Sormunen, M., & Lehtinen, E. (2015). Modeling the developmental trajectories of rational number concept (s). Learning and Instruction, 37, 14-20.
Merriam, S. B. (1998). Qualitative research and case study applications in education. Revised and expanded from "case study research in education.". San Francisco: Jossey-Bass Publishers.
Millî Eğitim Bakanlığı [MEB] (2024). İlkokul matematik dersi öğretim programı. MEB Yayınları.
Moody, B. (2010). Connecting the points: cognitive conflict and decimal magnitude. In L. Sparrow, B. Kissane & C. Hurst (Eds.), Shaping the future of mathematics education. Proceedings of the Annual Conference of The
Mathematics Education Research Group of Australasia (pp. 422–429). Fremantle: MERGA
Moss. J. (2005). Pipes, tubes, and beakers: New approaches to teaching the rational-number system. In M. S.
Donovan & J. D. Bransford (Eds.), How students learn: Mathematics in the classroom (pp. 121-162). Washington, DC: National Academic Press.
Niven, I. (1961). Numbers: Rational and İrrational. Washington D.C.:Mathematical Association of America.
Ni, Y., & Zhou, Y. D. (2005). Teaching and learning fraction and rational numbers: The origins and implications of whole number bias. Educational psychologist, 40(1), 27-52.
Olkun S., & Toluk Uçar Z. (2007). Activity-based mathematics teaching in primary education. Ankara: Maya Akademi Publishing Distribution.
Önal, H. ve Yorulmaz, A. (2017). The errors made by primary school fourth graders on fractions. Journal of Research in Education and Society, 4(1), 98-113.
Parwati, N., & Suharta, I. (2020). Effectiveness of the implementation of cognitive conflict strategy assisted by e-service learning to reduce students' mathematical misconceptions. International Journal of Emerging Technologies in Learning (iJET), 15(11), 102-118.
Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66, 221- 227.
Sela, H., & Zaslavsky, O. (2007). Resolving cognitive conflict with peers – Is there a difference between two and four? In J. H. Woo, H. C. Lew, K. S. Park, & D. Y. Seo (Eds.), Proceedings of the 31st Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 169–176). Seoul: PME.
Shahbari, J. A., & Peled, I. (2015). Resolving cognitive conflict in a realistic situation with modeling characteristics: Coping with a changing reference in fractions. International Journal of Science and Mathematics Education, 13(4), 891-907.
Siegler RS, Thompson CA, & Schneider M. (2011). An integrated theory of whole number and fractions development. Cognitive Psychology, 62(4): 273-96.
Soylu, Y. ve Soylu, C. (2005). İlköğretim beşinci sınıf öğrencilerinin kesirler konusundaki öğrenme güçlükleri: kesirlerde sıralama, toplama, çıkarma, çarpma ve kesirlerle ilgili problemler. Erzincan Üniversitesi Eğitim Fakültesi Dergisi, 7(2), 101-117.
Susilawati, W., Suryadi, D., & Dahlan, J. A. (2017). The improvement of mathematical spatial visualization ability of student through cognitive conflict. International Electronic Journal of Mathematics Education, 12(2), 155-166.
Toka, Y., & Aşkar, P. (Susilawati 2002). The effect of cognitive conflict and conceptual change text on students' achievement related to first degree equations with one unknown. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 23; 211-217.
Vamvakoussi, X., & Vosniadou, S. (2010). How many decimals are there between two fractions? Aspects of secondary school students’ understanding of rational numbers and their notation. Cognition and instruction, 28(2), 181-209
Westbrook, S. L., & Rogers, L. N. (1992). Experience is the teacher: Using the laboratory to promote conceptual change. Paper presented at the Annual Meeting of the National Association for Research in Science Teaching, Boston, MA.
White, R., & Gunstone, R. (1989). Metelearning and coneptual change. International Journal of Science, 11, 577-586.
Yıldırım, A. ve Şimşek, H. (2016). Sosyal bilimlerde nitel araştırma yöntemleri. Ankara: Seçkin Yayıncılık.
Yılmaz, H. Z. (2019). Altıncı sınıf öğrencilerinin çokgenler ve dörtgenler konusundaki kavram yanılgılarının geogebra ile bilişsel çelişki oluşturarak giderilme sürecinin incelenmesi [Yayımlanmamış yüksek lisans tezi]. Gazi Üniversitesi Eğitim Bilimleri Enstitüsü.
Zohar, A., & Aharon‐Kravetsky, S. (2005). Exploring the effects of cognitive conflict and direct teaching for students of different academic levels. Journal of research in science teaching, 42(7), 829-855.
Bağdat, A., & Sezen Yüksel, N. (2025). Altıncı Sınıf Öğrencilerinin Bilişsel Çatışma Temelli Etkinlikler Aracılığı ile Kesirlerde Kavram Değişiminin İzlenmesi. Anadolu Journal of Educational Sciences International, 15(1), 55-83. https://doi.org/10.18039/ajesi.1510801
AMA
Bağdat A, Sezen Yüksel N. Altıncı Sınıf Öğrencilerinin Bilişsel Çatışma Temelli Etkinlikler Aracılığı ile Kesirlerde Kavram Değişiminin İzlenmesi. AJESI. Mart 2025;15(1):55-83. doi:10.18039/ajesi.1510801
Chicago
Bağdat, Ayşe, ve Nazan Sezen Yüksel. “Altıncı Sınıf Öğrencilerinin Bilişsel Çatışma Temelli Etkinlikler Aracılığı Ile Kesirlerde Kavram Değişiminin İzlenmesi”. Anadolu Journal of Educational Sciences International 15, sy. 1 (Mart 2025): 55-83. https://doi.org/10.18039/ajesi.1510801.
EndNote
Bağdat A, Sezen Yüksel N (01 Mart 2025) Altıncı Sınıf Öğrencilerinin Bilişsel Çatışma Temelli Etkinlikler Aracılığı ile Kesirlerde Kavram Değişiminin İzlenmesi. Anadolu Journal of Educational Sciences International 15 1 55–83.
IEEE
A. Bağdat ve N. Sezen Yüksel, “Altıncı Sınıf Öğrencilerinin Bilişsel Çatışma Temelli Etkinlikler Aracılığı ile Kesirlerde Kavram Değişiminin İzlenmesi”, AJESI, c. 15, sy. 1, ss. 55–83, 2025, doi: 10.18039/ajesi.1510801.
ISNAD
Bağdat, Ayşe - Sezen Yüksel, Nazan. “Altıncı Sınıf Öğrencilerinin Bilişsel Çatışma Temelli Etkinlikler Aracılığı Ile Kesirlerde Kavram Değişiminin İzlenmesi”. Anadolu Journal of Educational Sciences International 15/1 (Mart 2025), 55-83. https://doi.org/10.18039/ajesi.1510801.
JAMA
Bağdat A, Sezen Yüksel N. Altıncı Sınıf Öğrencilerinin Bilişsel Çatışma Temelli Etkinlikler Aracılığı ile Kesirlerde Kavram Değişiminin İzlenmesi. AJESI. 2025;15:55–83.
MLA
Bağdat, Ayşe ve Nazan Sezen Yüksel. “Altıncı Sınıf Öğrencilerinin Bilişsel Çatışma Temelli Etkinlikler Aracılığı Ile Kesirlerde Kavram Değişiminin İzlenmesi”. Anadolu Journal of Educational Sciences International, c. 15, sy. 1, 2025, ss. 55-83, doi:10.18039/ajesi.1510801.
Vancouver
Bağdat A, Sezen Yüksel N. Altıncı Sınıf Öğrencilerinin Bilişsel Çatışma Temelli Etkinlikler Aracılığı ile Kesirlerde Kavram Değişiminin İzlenmesi. AJESI. 2025;15(1):55-83.