Derleme
BibTex RIS Kaynak Göster

Nisinin Sinerjistik Antimikrobiyel Etkisi

Yıl 2017, , 288 - 299, 22.10.2017
https://doi.org/10.24323/akademik-gida.345270

Öz

Gıda muhafaza yöntemlerinin
birlikte kullanılması, gıda kalitesini ve güvenliğini artırmaktadır. Bu nedenle
engeller teknolojisi kapsamında çeşitli doğal koruyucular kullanılarak
mikrobiyal risk ortadan kaldırılmaya çalışılmaktadır. Nisin ise Lactococcus lactis suşları tarafından üretilen ve gıda sistemlerinde kullanılmasına
izin verilmiş (E234) bir doğal koruyucudur. Bu antimikrobiyel ajanın gıda
sistemlerinde etkisinin artırılması için çeşitli kimyasal katkı ve fiziksel
işlemlerle birlikte kullanılması denenmiştir. Bu derleme çalışmasında da nisinin
sinerjistik antimikrobiyel etkisi üzerinde durularak, hem gıda sistemlerinde
çeşitli muhafaza yöntemlerinin olumsuz etkilerinin azaltılabildiği hem de nisinin
antimikrobiyel aktivitesinin artırılabildiği gösterilmiştir.

Kaynakça

  • [1] Komora, N., Bruschi, C., Magalhães, R., Ferreira, V., Teixeira, P., 2017. Survival of Listeria monocytogenes with different antibiotic resistance patterns to food-associated stresses. International Journal of Food Microbiology 20(245): 79-87.
  • [2] Malekmohammadi, S., Kodjovi, K.K., Sherwood, J., Bergholz, T.M., 2017. Genetic and environmental factors influence Listeria monocytogenes nisin resistance. Journal of Applied Microbiology DOI: 10.1111/jam.13479. Baskıda.
  • [3] McNamee, C., Noci, F., Cronin, D.A., Lyng, J.G., Morgan, D.J., Scannell, A.G., 2010. PEF based hurdle strategy to control Pichia fermentans, Listeria innocua and Escherichia coli k12 in orange juice. International Journal of Food Microbiology 138(1-2): 13-8.
  • [4] Saldaña, G., Minor-Pérez, H., Raso, J., Alvarez, I., 2011. Combined effect of temperature, pH, and presence of nisin on inactivation of Staphylococcus aureus and Listeria monocytogenes by pulsed electric fields. Foodborne Pathogens and Disease 8(7): 797-802.
  • [5] Hurst, A., 1981. Nisin. Advances in Applied Microbiology 27(2): 85-123.
  • [6] Abee, T., Rombouts, F.M., Hugenholtz, J., Guihard, G., Letellier, L., 1994. Mode of action of nisin Z against Listeria monocytogenes Scott A grown at hihg and low temperatures. Applied and Environmental Microbiology 60(4): 1962-1968.
  • [7] Delves-Broughton, J., Blackburn, P., Evans, R.J., Hugenholtz, J. 1996. Applications of bacteriocins. Antonie van Leuwenhook 69(2): 193-202.
  • [8] de Vuyst, L., Vandammme, E.J., 1994. Nisin, a lantibiotic produced by Lactococcus lactis subsp. lactis properties, biosythesis, fermentation and applications. In Bacteriocins of Lactic Acid Bacteria. 151-221.
  • [9] Ruhr, E., Sahl, H.G., 1985. Mode of action of the peptideantibiotic nisin and influence on the membrane potential of whole cells and on cytoplasmic and artificial membrane vesicles. Journal of Bacteriology 27(5): 841-845.
  • [10] Kordel, M., Sahl, H.G., 1986. Susceptibility of bacterial, eukaryotic and artificial membranes to the disruptive action of the cationic peptides Pep 5 and nisin. FEMS Microbiology Letters 34(2): 139-144.
  • [11] Gao, F.H., Abee, T., Konings, W.N., 1991. Mechanism of action of the peptide antibiotic nisin in liposomes and cytochrome c oxidase-containing proteoliposomes. Applied and Environmental Microbiology 57(8): 2164-70.
  • [12] Garcerá, M.J., Elferink, M.G., Driessen, A.J., Konings, W.N., 1993. In vitro pore-forming activity of the lantibiotic nisin. Role of proton motive force and lipid composition. European Journal of Biochemistry 212(2): 417-22.
  • [13] Driessen, A.J., van den Hooven, H.W., Kuiper, W., van de Kamp, M., Sahl, H.G., Konings, R.N., Konings, W.N., 1995. Mechanistic studies of lantibiotic-induced permeabilization of phospholipid vesicles. Biochemistry 34(5): 1606-14.
  • [14] Demel, R.A., Peelen, T., Siezen, R.J., De Kruijff, B., Kuipers, O.P., 1996. Nisin Z, mutant nisin Z and lacticin 481 interactions with anionic lipids correlate with antimicrobial activity. A monolayer study. European Journal of Biochemistry 235 (1-2):267-74.
  • [15] Martin, I., Ruysschaert, J.M., Sanders, D., Giffard, C.J., 1996. Interaction of the lantibiotic nisin with membranes revealed by fluorescence quenching of an introduced tryptophan. European Journal of Biochemistry 239(1): 156-164.
  • [16] Breukink, E., van Kraaij, C., van Dalen, A., Demel, R.A., Siezen, R.J., de Kruijff, B., Kuipers, O.P., 1998. The orientation of nisin in membranes. Biochemistry 37(22): 8153-81562.
  • [17] Van Den Hooven, H.W., Spronk, C.A., Van De Kamp, M., Konings, R.N., Hilbers, C.W., Van De Van, F.J., 1996. Surface location and orientation of the lantibiotic nisin bound to membrane-mimicking micelles of dodecylphosphocholine and of sodium dodecylsulphate. European Journal of Biochemistry 235(1-2): 394-403.
  • [18] Brötz, H., Josten, M., Wiedemann, I., Schneider, U., Götz, F., Bierbaum, G., Sahl, H.G., 1998. Role of lipid-bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics. Molecular Microbiology 30(2): 317-327.
  • [19] Breukink, E., Wiedemann, I., van Kraaij, C., Kuipers, O.P., Sahl, H.G., de Kruijff, B., 1999. Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science 286(48): 2361-2364.
  • [20] Wiedemann, I., Breukink, E., van Kraaij, C., Kuipers, O.P., Bierbaum, G., de Kruijff, B., Sahl, H.G., 2001. Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. Journal of Biological Chemistry 276(3): 1772-1779.
  • [21] Hsu, S.T., Breukink, E., de Kruijff, B., Kaptein, R., Bonvin, A.M., van Nuland, N.A., 2002. Mapping the targeted membrane pore formation mechanism by solution NMR: the nisin Z and lipid II interaction in SDS micelles. Biochemistry 41(24): 7670-7676.
  • [22] Bonev, B.B., Breukink, E., Swiezewska, E., De Kruijff, B., Watts, A. 2004. Targeting extracellular pyrophosphates underpins the high selectivity of nisin. The FASEB Journal 18(15): 1862-1869.
  • [23] Bauer, R., Dicks, L.M., 2005. Mode of action of lipid II-targeting lantibiotics. International Journal of Food Microbiology 1101(2): 201-216.
  • [24] Hasper, H.E., Kramer, N.E., Smith, J.L., Hillman, J.D., Zachariah, C., Kuipers, O.P., de Kruijff, B., Breukink, E., 2006. An alternative bactericidal mechanism of action for lantibiotic peptides that target lipid II. Science. 313(5793): 1636-1637.
  • [25] Morris, S.L., Walsh, R.C., Hansen, J.N., 1984. Identification and characterization of some bacterial membrane sulfhydryl groups which are targets of bacteriostatic and antibiotic action. Journal of Biological Chemistry 259(21): 13590-13594.
  • [26] Buchman, G.W., Banerjee, S., Hansen, J.N., 1988. Structure, expression, and evolution of a gene encoding the precursor of nisin, a small protein antibiotic. Journal of Biological Chemistry 263(31): 16260-16266.
  • [27] Chan, W.C., Dodd, H.M., Horn, N., Maclean, K., Lian, L.Y., Bycroft, B.W., Gasson, M.J., Roberts, G.C., 1996. Structure-activity relationships in the peptide antibiotic nisin: role of dehydroalanine 5. Applied and Environmental Microbiology 62(8): 2966-2969.
  • [28] Harris, L.J., Fleming, H.P., Klaenhammer, T.R., 1991. Sensitivity and resistance of Listeria monocytogenes ATCC 19115, Scott A and UAL 500 to nisin. Journal of Food Protection 54: 836-840.
  • [29] Jydegaard, A.M., Gravesen, A., Knøchel, S., 2000. Growth condition-related response of Listeria monocytogenes 412 to bacteriocin inactivation. Letters in Applied Microbiology 31(1): 68-72.
  • [30] Gill, A.O., Holley, R.A., 2003. Interactive inhibition of meat spoilage and pathogenic bacteria by lysozyme, nisin and EDTA in the presence of nitrite and sodium chloride at 24 degrees C. International Journal of Food Microbiology 180(3): 251-259.
  • [31] Kurt, S., Zorba, O., 2010. Biogenic amine formation in Turkish dry fermented sausage (sucuk) as affected by nisin and nitrite. Journal of the Science of Food and Agriculture 90(15): 2669-2674.
  • [32] Jack, R.W., Tagg, J.R., Ray, B., 1995. Bacteriocins of Gram positive bacteria. Microbiological Reviews 59(2): 171-200.
  • [33] Stiles, M.E., 1996. Biopreservation by lactic acid bacteria. Antonie van Leeuwenhoek. 70(2-4): 331-345.
  • [34] Liu, W., Hansen, J.N., 1990. Some chemical and physical properties of nisin, a small-protein antibiotic produced by Lactococcus lactis. Applied and Environmental Microbiology 56(8): 2551-2558.
  • [35] Rollema, H.S., Kuipers, O.P., Both, P., de Vos, W.M., Siezen, R.J., 1995. Improvement of solubility and stability of the antimicrobial peptide nisin by protein engineering. Applied and Environmental Microbiology 61(8): 2873-2878.
  • [36] Buncic, S., Fitzgerald, S., Bell, C.M., Hudson, R.G., 1995. Individual and combined listericidal effects of sodium lactate, potassium sorbate, nisin and curing salts at refrigeration temperatures. Journal of Food Safety 15(3): 247-264.
  • [37] Nykänen, A., Weckman, K., Lapveteläinen, A., 2000. Synergistic inhibition of Listeria monocytogenes on cold-smoked rainbow trout by nisin and sodium lactate. International Journal of Food Microbiology 61(1): 63-72.
  • [38] Long, C., Phillips, C.A., 2003. The effect of sodium citrate, sodium lactate and nisin on the survival of Arcobacter butzleri NCTC 12481 on chicken. Food Microbiology 20(5): 495-502.
  • [39] Ukuku, D.O., Fett, W.F., 2004. Effect of nisin in combination with EDTA, sodium lactate, and potassium sorbate for reducing Salmonella on whole and fresh-cut cantaloupe. Journal of Food Protection 67(10): 2143-2150.
  • [40] Bari, M.L., Ukuku, D.O., Kawasaki, T., Inatsu, Y., Isshiki, K., Kawamoto, S., 2005. Combined efficacy of nisin and pediocin with sodium lactate, citric acid, phytic acid, and potassium sorbate and EDTA in reducing the Listeria monocytogenes population of inoculated fresh-cut produce. Journal of Food Protection 68(7): 1381-1387.
  • [41] Boziaris, I.S., Humpheson, I., Adams, M.R., 1998. Effect of nisin on heat injury and inactivation of Salmonella enteritidis PT4. International Journal of Food Microbiology 43(1-2): 7-13.
  • [42] Yethon, J.A., Whitfield, C., 2001. Lipopolysaccharide as a target for the development of novel therapeutics in Gram-negative bacteria. Current Drug Targets. Infectious Disorders 1(2): 91-106.
  • [43] Belfiore, C., Castellano, P., Vignolo, G., 2007. Reduction of Escherichia coli population following treatment with bacteriocins from lactic acid bacteria and chelators. Food Microbiology 24(3): 223-229.
  • [44] Stevens, K.A., Sheldon, B.W., Klapes, N.A., Klaenhammer, T.R., 1991. Nisin treatment for inactivation of Salmonella species and other Gram-negative bacteria. Applied and Environmental Microbiology 57(12): 3613-3615.
  • [45] Cutter, C.N., Siragusa, G.R., 1995. Treatments with nisin and chelators to reduce Salmonella and Escherichia coli on beef. Journal of Food Protection 58(9): 1028-1030.
  • [46] Boziaris, I.S., Adams, M.R., 1999. Effect of chelators and nisin produced in situ on inhibition and inactivation of Gram negatives. International Journal of Food Microbiology 53(2-3):105-113.
  • [47] Jill, K.B., Davidson, J.M., 2004. Enhancement of nisin, lysozyme, and monolaurin antimicrobial activities by ethylenediaminetetraacetic acid and lactoferrin. International Journal of Food Microbiology 90(1): 63-74.
  • [48] Periago, P.M., Palop, A., Fernandez, P.S., 2001. Combined effect of nisin, carvacrol and thymol on the viability of Bacillus cereus heat-treated vegetative cells. Food Science and Technology International 7(6): 487-492.
  • [49] Olasupo, N.A., Fitzgerald, D.J., Narrad, A., Gasson, M.J., 2004. Inhibition of Bacillus subtilis and Listeria innocua by nisin in combination with some naturally occurring organic compounds. Journal of Food Protection 67(3): 596-600.
  • [50] Burt, S., 2004. Essential oils: their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology 94(3): 223-253.
  • [51] Gálvez, A., Abriouel, H., López, R.L., Omar, N., 2007. Bacteriocin-based strategies for food biopreservation. International Journal of Food Microbiology 120(1-2): 51-70.
  • [52] Lee, S.Y., Jin, H.H., 2008. Inhibitory activity of natural antimicrobial compounds alone or in combination with nisin against Enterobacter sakazakii. Letters in Applied Microbiology 47(4): 315-321.
  • [53] Solomakos, N., Govaris, A., Koidis, P., Botsoglou, N., 2008. The antimicrobial effect of thyme essential oil, nisin and their combination against Escherichia coli O157:H7 in minced beef during refrigerated storage. Meat Science 80(2): 159-166.
  • [54] Yoon, J.I., Bajpai, V.K., Kang, S.C., 2011. Synergistic effect of nisin and cone essential oil of Metasequoia glyptostroboides Miki ex Hu against Listeria monocytogenes in milk samples. Food and Chemical Toxicology 49(1): 109-114.
  • [55] Rattanachaikunsopon, P., Phumkhachorn, P., 2010. Synergistic antimicrobial effect of nisin and p-cymene on Salmonella enterica serovar Typhi in vitro and on ready-to-eat food. Bioscience Biotechnology Biochemistry 74(3): 520-524.
  • [56] Pajohi, M.R., Tajik, H., Farshid, A.A., Basti, A.A., Hadian, M., 2011. Effects of Mentha longifolia L. essential oil and nisin alone and in combination on Bacillus cereus and Bacillus subtilis in a food model and bacterial ultrastructural changes. Foodborne Pathogen and Disease 8(2): 283-290.
  • [57] Pajohi, M.R., Tajik, H., Farshid, A.A., Hadian, M., 2011. Synergistic antibacterial activity of the essential oil of Cuminum cyminum L. seed and nisin in a food model. Journal of Applied Microbiology 110(4):943-951.
  • [58] Periago, P.M., Palop, A., Fernandez, P.S., 2001. Combined effect of nisin, carvacrol and thymol on the viability of Bacillus cereus heat-treated vegetative cells. Food Science Technology International 7(6): 487-492.
  • [59] Yamazaki, K., Yamamoto, T., Kawai, Y., Inoue, N., 2004. Enhancement of antilisterial activity of essential oil constituents by nisin and diglycerol fatty acid ester. Food Microbiology 21(3): 283-289.
  • [60] Yuste, J., Fung, D.Y., 2004. Inactivation of Salmonella typhimurium and Escherichia coli O157:H7 in apple juice by a combination of nisin and cinnamon. Journal of Food Protection 67(2): 371-377.
  • [61] Reichling, J., Schnitzler, P., Suschke, U., Saller, R., 2009. Essential oils of aromatic plants with antibacterial, antifungal, antiviral, and cytotoxic properties--an overview. Forsch Komplementmed. 16(2): 79-90.
  • [62] Lambert, R.J.W., Skandamis, P.N., Coote, P., Nychas, G.J.E., 2001. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. Journal of Applied Microbiology 91(3): 453-462.
  • [63] Brewer, R., Adams, M.R., Park, S.F., 2002. Enhanced inactivation of Listeria monocytogenes by nisin in the presence of ethanol. Letters in Applieed Microbiology 34(1):18-21.
  • [64] Tokarskyy, O., Marshall, L.D., 2008. Immunosensors for rapid detection of Escherichia coli O157:H7 — Perspectives for use in the meat processing industry. Food Microbiology 25(1): 1-12.
  • [65] Garcia, P., Martinez, B., Rodriguez, L., Rodriguez, A., 2010. Synergy between the phage endolysin LysH5 and nisin to kill Staphylococcus aureus in pasteurized milk. International Journal of Food Microbiology 141(3): 151-155.
  • [66] Chai, C., Lee, K.S., Imm, G.S., Kim, Y.S., Oh, S.W., 2017. Inactivation of Clostridium difficile spore outgrowth by synergistic effects of nisin and lysozyme. Canadian Journal of Microbiology (Baskıda) doi: 10.1139/cjm-2016-0550.
  • [67] Liu, F., Liu, M., Du, L., Wang, D., Geng, Z., Zhang, M., Sun, C., Xu, X., Zhu, Y., Xu, W., 2015. Synergistic antibacterial effect of the combination of ε-polylysine and nisin against Enterococcus faecalis. Journal of Food Protection 78(12): 2200-2206.
  • [68] Moreira, M,R., Álvarez, M.V., Martín-Belloso, O., Soliva-Fortuny, R., 2016. Effects of pulsed light treatments and pectin edible coatings on the quality of fresh-cut apples: a hurdle technology approach. Journal of The Science of Food and Agriculture doi: 10.1002/jsfa.7723.
  • [69] Luo, K., Oh, D.H., 2016. Inactivation kinetics of Listeria monocytogenes and Salmonella enterica serovar Typhimurium on fresh-cut bell pepper treated with slightly acidic electrolyzed water combined with ultrasound and mild heat. Food Microbiology 53(Pt B): 165-171.
  • [70] Montiel, R., Martín-Cabrejas, I., Medina, M., 2016. Natural antimicrobials and high-pressure treatments on the inactivation of Salmonella enteritidis and Escherichia coli O157:H7 in cold-smoked salmon. Journal of The Science of Food and Agriculture 96(7): 2573-2578.
  • [71] Liato, V., Labrie, S., Viel, C., Benali, M., Aïder, M., 2015. Study of the combined effect of electro-activated solutions and heat treatment on the destruction of spores of Clostridium sporogenes and Geobacillus stearothermophilus in model solution and vegetable puree. Anaerobe. 35(Pt B): 11-21.
  • [72] García-García, R., Escobedo-Avellaneda, Z., Tejada-Ortigoza, V., Martín-Belloso, O., Valdez-Fragoso, A., Welti-Chanes, J., 2015. Hurdle technology applied to prickly pear beverages for inhibiting Saccharomyces cerevisiae and Escherichia coli. Letters in Applied Microbiology 60(6): 558-564.
  • [73] Tango, C.N., Mansur, A.R., Kim, G.H., Oh, D.H., 2014. Synergetic effect of combined fumaric acid and slightly acidic electrolysed water on the inactivation of food-borne pathogens and extending the shelf life of fresh beef. Journal of Applied Microbiology 117(6): 1709-1720.
  • [74] Park, S.Y., Song, H.H., Ha, S.D., 2014. Synergistic effects of NaOCl and ultrasound combination on the reduction of Escherichia coli and Bacillus cereus in raw laver, Foodborne Pathogens and Disease 11(5): 373-378.
  • [75] Budu-Amoako, E., Ablett, R.F., Harris, J., Delves-Broughton, J., 1999. Combined effect of nisin and moderate heat on destruction of Listeria monocytogenes in cold-pack lobster meat. Journal of Food Protection 62(1): 46-50.
  • [76] Modi, K.D., Chikindas, M.L., Montville, T.J., 2000. Sensitivity of nisin-resistant Listeria monocytogenes to heat and the synergistic action of heat and nisin. Letters in Applied Microbiology 30(3): 249-253.
  • [77] Kalchayanand, N., Hanlin, M.B., Ray, B., 1992. Sublethal injury makes Gram negative and resistant Gram-positive bacteria sensitive to the bacteriocins pediocin AcH and nisin. Letters in Applied Microbiology 15(6): 239-243.
  • [78] Boziaris, I.S., Humpheson, I., Adams, M.R., 1998. Effect of nisin on heat injury and inactivation of Salmonella enteritidis PT4. International Journal of Food Microbiology 43(1-2): 7-13.
  • [79] Abriouel, H., Valdivia, E., Gálvez, A., Maqueda, M., 1998. Response of Salmonella choleraesuis LT2 spheroplasts and permeabilized cells to the bacteriocin AS-48. Applied and Environmental Microbiology 64(11): 4623-4626.
  • [80] Ananou, S., Gálvez, A., Martínez-Bueno, M., Maqueda, M., Valdivia, E., 2005. Synergistic effect of enterocin AS-48 in combination with outer membrane permeabilizing treatments against Escherichia coli O157:H7. Journal of Applied Microbiology 99(6): 1364-1372.
  • [81] Ros-Chumillas, M., Esteban, M.D., Huertas, J.P., Palop, A., 2015. Effect of Nisin and Thermal Treatments on the Heat Resistance of Clostridium sporogenes Spores. Journal of Food Protection 78(11): 2019-2023.
  • [82] Naim, F., Zareifard, M.R., Zhu, S., Huizing, R.H., Grabowski, S., Marcotte, M., 2008. Combined effects of heat, nisin and acidification on the inactivation of Clostridium sporogenes spores in carrot-alginate particles: from kinetics to process validation. Food Microbiology 25(7): 936-941.
  • [83] Aouadhi, C., Mejri, S., Maaroufi, A., 2015. Inhibitory effects of nisin and potassium sorbate alone or in combination on vegetative cells growth and spore germination of Bacillus sporothermodurans in milk. Food Microbiology 46: 40-45.
  • [84] Esteban, M.D., Aznar, A., Fernández, P.S., Palop, A., 2013. Combined effect of nisin, carvacrol and a previous thermal treatment on the growth of Salmonella enteritidis and Salmonella senftenberg. Food Science Technology International 19(4): 357-364.
  • [85] Faille, C., Membre, J.M., Kubaczka, M., Gavini, F., 2002. Altered ability of Bacillus cereus spores to grow under unfavorable conditions (presence of nisin, low temperature, acidic pH, presence of NaCl) following heat treatment during sporulation. Journal of Food Protection 65(12): 1930-1936.
  • [86] Vega-Mercado, H., Martín-Belloso, O., Qin, B.L., Chang, F.J., Góngora-Nieto, M.M., Barbosa-Cánovas, G.V., Swanson, B.G., 1997. Non-thermal food preservation: pulsed electric fields. Trends in Food Science and Technology 8(5): 151-157.
  • [87] Wouters, P., Álvarez, I., Raso, J., 2001. Critical factors determining inactivation kinetics by pulsed electric field food processing. Trends in Food Science and Technology 12(3-4): 112-121.
  • [88] Bendicho, S., Barbosa-Cánovas, G.V., Martín, O., 2002. Milk processing by high intensity pulsed electric fields. Trends in Food Science and Technology 13(6-7): 195-204.
  • [89] Heinz, V., Alvarez, I., Angersbach, A., Knorr, D., 2002. Preservation of liquid foods by high intensity pulsed electric fields-basic concepts for process design. Trends in Food Science and Technology 12(3-4): 103-111.
  • [90] Griffiths, S., Maclean, M., Macgregor, S.J., Anderson, J.G., Helen Grant, M., 2011. Decontamination of collagen biomatrices with combined pulsed electric field and nisin treatment. Journal of Biomedical Materials Research Part B: Applied Biomaterials 96(2): 287-293.
  • [91] Galvagno, M.A., Gil, G.R., Iannone, L.J., Cerrutti, P., 2007. Exploring the use of natural antimicrobial agents and pulsed electric fields to control spoilage bacteria during a beer production process. Revista Argentina de Microbiologia 39(3): 170-176.
  • [92] Santi, L., Cerrutti, P., Pilosof, A.M., de Huergo, M.S., 2003. Optimization of the conditions for electroporation and the addition nisin for Pseudomonas aeruginosa inhibition. Revista Argentina de Microbiología 35(4): 198-204.
  • [93] Terebiznik, M.R., Jagus, R.J., Cerrutti, P., De Huergo, M., Pilosof, A.M., 2002. Inactivation of Escherichia coli by a combination of nisin, pulsed electric fields, and water activity reduction by sodium chloride. J of Food Prot. 65(8): 1253-1258.
  • [94] Dutreux, N., Notermans, S., Góngora-Nieto, M.M., Barbosa-Cánovas, G.V., Swanson, B.G., 2000. Effects of combined exposure of Micrococcus luteus to nisin and pulsed electric fields. International Journal of Food Microbiology 60(2-3): 147-152.
  • [95] Ulmer, H.M., Heinz, V., Gänzle, M.G., Knorr, D., Vogel, R.F., 2002. Effects of pulsed electric fields on inactivation and metabolic activity of Lactobacillus plantarum in model beer. Journal of Applied Microbiology 93(2):326-335.
  • [96] Sobrino-Lopez, A., Martin Belloso, O., 2006. Enhancing inactivation of Staphylococcus aureus in skim milk by combining high-intensity pulsed electric fields and nisin. Journal of Food Protection 69(2):345-353.
  • [97] Pol, I.E., Mastwijk, H.C., Bartels, P.V., Smid, E.J., 2000. Pulsed-electric field treatment enhances the bactericidal action of nisin against Bacillus cereus. Applied and Environmental Microbiology 66(1): 428-430.
  • [98] Liang, Z., Mittal, G.S., Griffiths, M.W., 2002. Inactivation of Salmonella typhimurium in orange juice containing antimicrobial agents by pulsed electric field. Journal of Food Protection 65(7): 1081-1087.
  • [99] Iu, J., Mittal, G.S., Griffiths, MW. 2001. Reduction in levels of Escherichia coli O157:H7 in apple cider by pulsed electric fields. Journal of Food Protection 64(7): 964-969.
  • [100] Terebiznik, M.R., Jagus, R.J., Cerrutti, P., De Huergo, M., Pilosof, A.M., 2000. Combined effect of nisin and pulsed electric fields on the inactivation of Escherichia coli. Journal of Food Protection 63(6): 741-746.
  • [101] Farkas, D.F., Hoover, D.G., 2000. High pressure processing. In: Kinetics of microbial inactivation for alternative food processing Technologies. Journal of Food Science 12(3): 47-64.
  • [102] Zhao, L., Wang, Y., Wang, S., Li, H., Huang, W., Liao, X., 2014. Inactivation of naturally occurring microbiota in cucumber juice by pressure treatment. International Journal of Food Microbiology 174: 12-18.
  • [103] Qi, W., Qian, P., Yu, J., Zhang, X., Zhang, C., Lu, R., 2011. Synergistic inactivation of Bacillus subtilis by high hydrostatic pressure and nisin at neutral pH. Wei Sheng Wu Xue Bao. 51(1): 35-42.
  • [104] Hereu, A., Bover-Cid, S., Garriga, M., Aymerich, T., 2012. High hydrostatic pressure and biopreservation of dry-cured ham to meet the Food Safety Objectives for Listeria monocytogenes. International Journal of Food Microbiology 154(3): 107-112.
  • [105] Lee, J., Kaletunç, G., 2010. Inactivation of Salmonella enteritidis strains by combination of high hydrostatic pressure and nisin. International Journal of Food Microbiology 140(1): 49-56.
  • [106] López-Pedemonte, T., Roig-Sagués, A.X., Trujillo, A.J., Capellas, M., Guamis, B., 2003. Inactivation of spores of Bacillus cereus in cheese by high hydrostatic pressure with the addition of nisin or lysozyme. Journal of Dairy Science 86(10): 3075-3081.
  • [107] Kalchayanand, N., Sikes, A., Dunne, C.P., Ray, B., 1994. Hydrostatic pressure and electroporation have increased bactericidal efficiency in combination with bacteriocins. Applied and Environmental Microbiology 60(11): 4174-4177.
  • [108] Hauben, K.J.A., Wuytack, E.Y., Soontjens, C.C.F., Michiels, C.W., 1996. High pressure transient sensitization of Escherichia coli to lysozyme and nisin by disruption of outer membrane permeability. Journal of Food Protection 59(4): 350-355.
  • [109] Masschalck, B., Van Houdt, R., Michiels, C.W., 2001. High pressure increases bactericidal activity and spectrum of lactoferrin, lactoferricin and nisin. International Journal of Food Microbiology 64(3): 325-332.
  • [110] Black, E.P., Kelly, A.L., Fitzgerald, G.F., 2005. The combined effect of high pressure and nisin on inactivation of microorganisms in milk. Innovative Food Science and Emerging Technologies 6(3): 286-292.
  • [111] Kalchayanand, N., Dunne, C.P., Sikes, A., Ray, B., 2004. Germination induction and inactivation of Clostridium spores at medium-range hydrostatic pressure treatment. Innovative Food Science and Emerging Technologies 5(3): 277-283.
  • [112] Garcia-Graells, C., Masschalck, B., Michiels, C.W., 1999. Inactivation of Escherichia coli in milk by high-hydrostatic-pressure treatment in combination with antimicrobial peptides. Journal of Food Protection 62(11): 1248-1254.
  • [113] Proulx, J., Sullivan, G., Marostegan, L.F., VanWees, S., Hsu, L.C., Moraru, CI., 2017. Pulsed light and antimicrobial combination treatments for surface decontamination of cheese: Favorable and antagonistic effects. Journal of Dairy Science 100(3): 1664-1673.
  • [114] Uesugi, AR., Moraru, CI., 2009. Reduction of Listeria on ready-to-eat sausages after exposure to a combination of pulsed light and nisin. Journal of Food Protection 72(2): 347-53.

Synergistic Antimicrobial Effect of Nisin

Yıl 2017, , 288 - 299, 22.10.2017
https://doi.org/10.24323/akademik-gida.345270

Öz

Application of food preservation treatments in
combinations increases food quality and safety. Therefore, microbial risks can
be prevented by using natural preservatives within the concept of hurdle
technology. Nisin is a natural preservative (E234) permitted in food production
and produced by Lactococcus lactis. To
increase the effect of this antimicrobial agent in foods systems, it has been
tested in combinations with different chemical additives and physical
treatments. In this review, the synergistic antimicrobial effect of nisin was
emphasized and it was shown that the adverse effects of various preservation
methods in food systems can be reduced while the antimicrobial activity of
nisin can be increased.

Kaynakça

  • [1] Komora, N., Bruschi, C., Magalhães, R., Ferreira, V., Teixeira, P., 2017. Survival of Listeria monocytogenes with different antibiotic resistance patterns to food-associated stresses. International Journal of Food Microbiology 20(245): 79-87.
  • [2] Malekmohammadi, S., Kodjovi, K.K., Sherwood, J., Bergholz, T.M., 2017. Genetic and environmental factors influence Listeria monocytogenes nisin resistance. Journal of Applied Microbiology DOI: 10.1111/jam.13479. Baskıda.
  • [3] McNamee, C., Noci, F., Cronin, D.A., Lyng, J.G., Morgan, D.J., Scannell, A.G., 2010. PEF based hurdle strategy to control Pichia fermentans, Listeria innocua and Escherichia coli k12 in orange juice. International Journal of Food Microbiology 138(1-2): 13-8.
  • [4] Saldaña, G., Minor-Pérez, H., Raso, J., Alvarez, I., 2011. Combined effect of temperature, pH, and presence of nisin on inactivation of Staphylococcus aureus and Listeria monocytogenes by pulsed electric fields. Foodborne Pathogens and Disease 8(7): 797-802.
  • [5] Hurst, A., 1981. Nisin. Advances in Applied Microbiology 27(2): 85-123.
  • [6] Abee, T., Rombouts, F.M., Hugenholtz, J., Guihard, G., Letellier, L., 1994. Mode of action of nisin Z against Listeria monocytogenes Scott A grown at hihg and low temperatures. Applied and Environmental Microbiology 60(4): 1962-1968.
  • [7] Delves-Broughton, J., Blackburn, P., Evans, R.J., Hugenholtz, J. 1996. Applications of bacteriocins. Antonie van Leuwenhook 69(2): 193-202.
  • [8] de Vuyst, L., Vandammme, E.J., 1994. Nisin, a lantibiotic produced by Lactococcus lactis subsp. lactis properties, biosythesis, fermentation and applications. In Bacteriocins of Lactic Acid Bacteria. 151-221.
  • [9] Ruhr, E., Sahl, H.G., 1985. Mode of action of the peptideantibiotic nisin and influence on the membrane potential of whole cells and on cytoplasmic and artificial membrane vesicles. Journal of Bacteriology 27(5): 841-845.
  • [10] Kordel, M., Sahl, H.G., 1986. Susceptibility of bacterial, eukaryotic and artificial membranes to the disruptive action of the cationic peptides Pep 5 and nisin. FEMS Microbiology Letters 34(2): 139-144.
  • [11] Gao, F.H., Abee, T., Konings, W.N., 1991. Mechanism of action of the peptide antibiotic nisin in liposomes and cytochrome c oxidase-containing proteoliposomes. Applied and Environmental Microbiology 57(8): 2164-70.
  • [12] Garcerá, M.J., Elferink, M.G., Driessen, A.J., Konings, W.N., 1993. In vitro pore-forming activity of the lantibiotic nisin. Role of proton motive force and lipid composition. European Journal of Biochemistry 212(2): 417-22.
  • [13] Driessen, A.J., van den Hooven, H.W., Kuiper, W., van de Kamp, M., Sahl, H.G., Konings, R.N., Konings, W.N., 1995. Mechanistic studies of lantibiotic-induced permeabilization of phospholipid vesicles. Biochemistry 34(5): 1606-14.
  • [14] Demel, R.A., Peelen, T., Siezen, R.J., De Kruijff, B., Kuipers, O.P., 1996. Nisin Z, mutant nisin Z and lacticin 481 interactions with anionic lipids correlate with antimicrobial activity. A monolayer study. European Journal of Biochemistry 235 (1-2):267-74.
  • [15] Martin, I., Ruysschaert, J.M., Sanders, D., Giffard, C.J., 1996. Interaction of the lantibiotic nisin with membranes revealed by fluorescence quenching of an introduced tryptophan. European Journal of Biochemistry 239(1): 156-164.
  • [16] Breukink, E., van Kraaij, C., van Dalen, A., Demel, R.A., Siezen, R.J., de Kruijff, B., Kuipers, O.P., 1998. The orientation of nisin in membranes. Biochemistry 37(22): 8153-81562.
  • [17] Van Den Hooven, H.W., Spronk, C.A., Van De Kamp, M., Konings, R.N., Hilbers, C.W., Van De Van, F.J., 1996. Surface location and orientation of the lantibiotic nisin bound to membrane-mimicking micelles of dodecylphosphocholine and of sodium dodecylsulphate. European Journal of Biochemistry 235(1-2): 394-403.
  • [18] Brötz, H., Josten, M., Wiedemann, I., Schneider, U., Götz, F., Bierbaum, G., Sahl, H.G., 1998. Role of lipid-bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics. Molecular Microbiology 30(2): 317-327.
  • [19] Breukink, E., Wiedemann, I., van Kraaij, C., Kuipers, O.P., Sahl, H.G., de Kruijff, B., 1999. Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science 286(48): 2361-2364.
  • [20] Wiedemann, I., Breukink, E., van Kraaij, C., Kuipers, O.P., Bierbaum, G., de Kruijff, B., Sahl, H.G., 2001. Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. Journal of Biological Chemistry 276(3): 1772-1779.
  • [21] Hsu, S.T., Breukink, E., de Kruijff, B., Kaptein, R., Bonvin, A.M., van Nuland, N.A., 2002. Mapping the targeted membrane pore formation mechanism by solution NMR: the nisin Z and lipid II interaction in SDS micelles. Biochemistry 41(24): 7670-7676.
  • [22] Bonev, B.B., Breukink, E., Swiezewska, E., De Kruijff, B., Watts, A. 2004. Targeting extracellular pyrophosphates underpins the high selectivity of nisin. The FASEB Journal 18(15): 1862-1869.
  • [23] Bauer, R., Dicks, L.M., 2005. Mode of action of lipid II-targeting lantibiotics. International Journal of Food Microbiology 1101(2): 201-216.
  • [24] Hasper, H.E., Kramer, N.E., Smith, J.L., Hillman, J.D., Zachariah, C., Kuipers, O.P., de Kruijff, B., Breukink, E., 2006. An alternative bactericidal mechanism of action for lantibiotic peptides that target lipid II. Science. 313(5793): 1636-1637.
  • [25] Morris, S.L., Walsh, R.C., Hansen, J.N., 1984. Identification and characterization of some bacterial membrane sulfhydryl groups which are targets of bacteriostatic and antibiotic action. Journal of Biological Chemistry 259(21): 13590-13594.
  • [26] Buchman, G.W., Banerjee, S., Hansen, J.N., 1988. Structure, expression, and evolution of a gene encoding the precursor of nisin, a small protein antibiotic. Journal of Biological Chemistry 263(31): 16260-16266.
  • [27] Chan, W.C., Dodd, H.M., Horn, N., Maclean, K., Lian, L.Y., Bycroft, B.W., Gasson, M.J., Roberts, G.C., 1996. Structure-activity relationships in the peptide antibiotic nisin: role of dehydroalanine 5. Applied and Environmental Microbiology 62(8): 2966-2969.
  • [28] Harris, L.J., Fleming, H.P., Klaenhammer, T.R., 1991. Sensitivity and resistance of Listeria monocytogenes ATCC 19115, Scott A and UAL 500 to nisin. Journal of Food Protection 54: 836-840.
  • [29] Jydegaard, A.M., Gravesen, A., Knøchel, S., 2000. Growth condition-related response of Listeria monocytogenes 412 to bacteriocin inactivation. Letters in Applied Microbiology 31(1): 68-72.
  • [30] Gill, A.O., Holley, R.A., 2003. Interactive inhibition of meat spoilage and pathogenic bacteria by lysozyme, nisin and EDTA in the presence of nitrite and sodium chloride at 24 degrees C. International Journal of Food Microbiology 180(3): 251-259.
  • [31] Kurt, S., Zorba, O., 2010. Biogenic amine formation in Turkish dry fermented sausage (sucuk) as affected by nisin and nitrite. Journal of the Science of Food and Agriculture 90(15): 2669-2674.
  • [32] Jack, R.W., Tagg, J.R., Ray, B., 1995. Bacteriocins of Gram positive bacteria. Microbiological Reviews 59(2): 171-200.
  • [33] Stiles, M.E., 1996. Biopreservation by lactic acid bacteria. Antonie van Leeuwenhoek. 70(2-4): 331-345.
  • [34] Liu, W., Hansen, J.N., 1990. Some chemical and physical properties of nisin, a small-protein antibiotic produced by Lactococcus lactis. Applied and Environmental Microbiology 56(8): 2551-2558.
  • [35] Rollema, H.S., Kuipers, O.P., Both, P., de Vos, W.M., Siezen, R.J., 1995. Improvement of solubility and stability of the antimicrobial peptide nisin by protein engineering. Applied and Environmental Microbiology 61(8): 2873-2878.
  • [36] Buncic, S., Fitzgerald, S., Bell, C.M., Hudson, R.G., 1995. Individual and combined listericidal effects of sodium lactate, potassium sorbate, nisin and curing salts at refrigeration temperatures. Journal of Food Safety 15(3): 247-264.
  • [37] Nykänen, A., Weckman, K., Lapveteläinen, A., 2000. Synergistic inhibition of Listeria monocytogenes on cold-smoked rainbow trout by nisin and sodium lactate. International Journal of Food Microbiology 61(1): 63-72.
  • [38] Long, C., Phillips, C.A., 2003. The effect of sodium citrate, sodium lactate and nisin on the survival of Arcobacter butzleri NCTC 12481 on chicken. Food Microbiology 20(5): 495-502.
  • [39] Ukuku, D.O., Fett, W.F., 2004. Effect of nisin in combination with EDTA, sodium lactate, and potassium sorbate for reducing Salmonella on whole and fresh-cut cantaloupe. Journal of Food Protection 67(10): 2143-2150.
  • [40] Bari, M.L., Ukuku, D.O., Kawasaki, T., Inatsu, Y., Isshiki, K., Kawamoto, S., 2005. Combined efficacy of nisin and pediocin with sodium lactate, citric acid, phytic acid, and potassium sorbate and EDTA in reducing the Listeria monocytogenes population of inoculated fresh-cut produce. Journal of Food Protection 68(7): 1381-1387.
  • [41] Boziaris, I.S., Humpheson, I., Adams, M.R., 1998. Effect of nisin on heat injury and inactivation of Salmonella enteritidis PT4. International Journal of Food Microbiology 43(1-2): 7-13.
  • [42] Yethon, J.A., Whitfield, C., 2001. Lipopolysaccharide as a target for the development of novel therapeutics in Gram-negative bacteria. Current Drug Targets. Infectious Disorders 1(2): 91-106.
  • [43] Belfiore, C., Castellano, P., Vignolo, G., 2007. Reduction of Escherichia coli population following treatment with bacteriocins from lactic acid bacteria and chelators. Food Microbiology 24(3): 223-229.
  • [44] Stevens, K.A., Sheldon, B.W., Klapes, N.A., Klaenhammer, T.R., 1991. Nisin treatment for inactivation of Salmonella species and other Gram-negative bacteria. Applied and Environmental Microbiology 57(12): 3613-3615.
  • [45] Cutter, C.N., Siragusa, G.R., 1995. Treatments with nisin and chelators to reduce Salmonella and Escherichia coli on beef. Journal of Food Protection 58(9): 1028-1030.
  • [46] Boziaris, I.S., Adams, M.R., 1999. Effect of chelators and nisin produced in situ on inhibition and inactivation of Gram negatives. International Journal of Food Microbiology 53(2-3):105-113.
  • [47] Jill, K.B., Davidson, J.M., 2004. Enhancement of nisin, lysozyme, and monolaurin antimicrobial activities by ethylenediaminetetraacetic acid and lactoferrin. International Journal of Food Microbiology 90(1): 63-74.
  • [48] Periago, P.M., Palop, A., Fernandez, P.S., 2001. Combined effect of nisin, carvacrol and thymol on the viability of Bacillus cereus heat-treated vegetative cells. Food Science and Technology International 7(6): 487-492.
  • [49] Olasupo, N.A., Fitzgerald, D.J., Narrad, A., Gasson, M.J., 2004. Inhibition of Bacillus subtilis and Listeria innocua by nisin in combination with some naturally occurring organic compounds. Journal of Food Protection 67(3): 596-600.
  • [50] Burt, S., 2004. Essential oils: their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology 94(3): 223-253.
  • [51] Gálvez, A., Abriouel, H., López, R.L., Omar, N., 2007. Bacteriocin-based strategies for food biopreservation. International Journal of Food Microbiology 120(1-2): 51-70.
  • [52] Lee, S.Y., Jin, H.H., 2008. Inhibitory activity of natural antimicrobial compounds alone or in combination with nisin against Enterobacter sakazakii. Letters in Applied Microbiology 47(4): 315-321.
  • [53] Solomakos, N., Govaris, A., Koidis, P., Botsoglou, N., 2008. The antimicrobial effect of thyme essential oil, nisin and their combination against Escherichia coli O157:H7 in minced beef during refrigerated storage. Meat Science 80(2): 159-166.
  • [54] Yoon, J.I., Bajpai, V.K., Kang, S.C., 2011. Synergistic effect of nisin and cone essential oil of Metasequoia glyptostroboides Miki ex Hu against Listeria monocytogenes in milk samples. Food and Chemical Toxicology 49(1): 109-114.
  • [55] Rattanachaikunsopon, P., Phumkhachorn, P., 2010. Synergistic antimicrobial effect of nisin and p-cymene on Salmonella enterica serovar Typhi in vitro and on ready-to-eat food. Bioscience Biotechnology Biochemistry 74(3): 520-524.
  • [56] Pajohi, M.R., Tajik, H., Farshid, A.A., Basti, A.A., Hadian, M., 2011. Effects of Mentha longifolia L. essential oil and nisin alone and in combination on Bacillus cereus and Bacillus subtilis in a food model and bacterial ultrastructural changes. Foodborne Pathogen and Disease 8(2): 283-290.
  • [57] Pajohi, M.R., Tajik, H., Farshid, A.A., Hadian, M., 2011. Synergistic antibacterial activity of the essential oil of Cuminum cyminum L. seed and nisin in a food model. Journal of Applied Microbiology 110(4):943-951.
  • [58] Periago, P.M., Palop, A., Fernandez, P.S., 2001. Combined effect of nisin, carvacrol and thymol on the viability of Bacillus cereus heat-treated vegetative cells. Food Science Technology International 7(6): 487-492.
  • [59] Yamazaki, K., Yamamoto, T., Kawai, Y., Inoue, N., 2004. Enhancement of antilisterial activity of essential oil constituents by nisin and diglycerol fatty acid ester. Food Microbiology 21(3): 283-289.
  • [60] Yuste, J., Fung, D.Y., 2004. Inactivation of Salmonella typhimurium and Escherichia coli O157:H7 in apple juice by a combination of nisin and cinnamon. Journal of Food Protection 67(2): 371-377.
  • [61] Reichling, J., Schnitzler, P., Suschke, U., Saller, R., 2009. Essential oils of aromatic plants with antibacterial, antifungal, antiviral, and cytotoxic properties--an overview. Forsch Komplementmed. 16(2): 79-90.
  • [62] Lambert, R.J.W., Skandamis, P.N., Coote, P., Nychas, G.J.E., 2001. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. Journal of Applied Microbiology 91(3): 453-462.
  • [63] Brewer, R., Adams, M.R., Park, S.F., 2002. Enhanced inactivation of Listeria monocytogenes by nisin in the presence of ethanol. Letters in Applieed Microbiology 34(1):18-21.
  • [64] Tokarskyy, O., Marshall, L.D., 2008. Immunosensors for rapid detection of Escherichia coli O157:H7 — Perspectives for use in the meat processing industry. Food Microbiology 25(1): 1-12.
  • [65] Garcia, P., Martinez, B., Rodriguez, L., Rodriguez, A., 2010. Synergy between the phage endolysin LysH5 and nisin to kill Staphylococcus aureus in pasteurized milk. International Journal of Food Microbiology 141(3): 151-155.
  • [66] Chai, C., Lee, K.S., Imm, G.S., Kim, Y.S., Oh, S.W., 2017. Inactivation of Clostridium difficile spore outgrowth by synergistic effects of nisin and lysozyme. Canadian Journal of Microbiology (Baskıda) doi: 10.1139/cjm-2016-0550.
  • [67] Liu, F., Liu, M., Du, L., Wang, D., Geng, Z., Zhang, M., Sun, C., Xu, X., Zhu, Y., Xu, W., 2015. Synergistic antibacterial effect of the combination of ε-polylysine and nisin against Enterococcus faecalis. Journal of Food Protection 78(12): 2200-2206.
  • [68] Moreira, M,R., Álvarez, M.V., Martín-Belloso, O., Soliva-Fortuny, R., 2016. Effects of pulsed light treatments and pectin edible coatings on the quality of fresh-cut apples: a hurdle technology approach. Journal of The Science of Food and Agriculture doi: 10.1002/jsfa.7723.
  • [69] Luo, K., Oh, D.H., 2016. Inactivation kinetics of Listeria monocytogenes and Salmonella enterica serovar Typhimurium on fresh-cut bell pepper treated with slightly acidic electrolyzed water combined with ultrasound and mild heat. Food Microbiology 53(Pt B): 165-171.
  • [70] Montiel, R., Martín-Cabrejas, I., Medina, M., 2016. Natural antimicrobials and high-pressure treatments on the inactivation of Salmonella enteritidis and Escherichia coli O157:H7 in cold-smoked salmon. Journal of The Science of Food and Agriculture 96(7): 2573-2578.
  • [71] Liato, V., Labrie, S., Viel, C., Benali, M., Aïder, M., 2015. Study of the combined effect of electro-activated solutions and heat treatment on the destruction of spores of Clostridium sporogenes and Geobacillus stearothermophilus in model solution and vegetable puree. Anaerobe. 35(Pt B): 11-21.
  • [72] García-García, R., Escobedo-Avellaneda, Z., Tejada-Ortigoza, V., Martín-Belloso, O., Valdez-Fragoso, A., Welti-Chanes, J., 2015. Hurdle technology applied to prickly pear beverages for inhibiting Saccharomyces cerevisiae and Escherichia coli. Letters in Applied Microbiology 60(6): 558-564.
  • [73] Tango, C.N., Mansur, A.R., Kim, G.H., Oh, D.H., 2014. Synergetic effect of combined fumaric acid and slightly acidic electrolysed water on the inactivation of food-borne pathogens and extending the shelf life of fresh beef. Journal of Applied Microbiology 117(6): 1709-1720.
  • [74] Park, S.Y., Song, H.H., Ha, S.D., 2014. Synergistic effects of NaOCl and ultrasound combination on the reduction of Escherichia coli and Bacillus cereus in raw laver, Foodborne Pathogens and Disease 11(5): 373-378.
  • [75] Budu-Amoako, E., Ablett, R.F., Harris, J., Delves-Broughton, J., 1999. Combined effect of nisin and moderate heat on destruction of Listeria monocytogenes in cold-pack lobster meat. Journal of Food Protection 62(1): 46-50.
  • [76] Modi, K.D., Chikindas, M.L., Montville, T.J., 2000. Sensitivity of nisin-resistant Listeria monocytogenes to heat and the synergistic action of heat and nisin. Letters in Applied Microbiology 30(3): 249-253.
  • [77] Kalchayanand, N., Hanlin, M.B., Ray, B., 1992. Sublethal injury makes Gram negative and resistant Gram-positive bacteria sensitive to the bacteriocins pediocin AcH and nisin. Letters in Applied Microbiology 15(6): 239-243.
  • [78] Boziaris, I.S., Humpheson, I., Adams, M.R., 1998. Effect of nisin on heat injury and inactivation of Salmonella enteritidis PT4. International Journal of Food Microbiology 43(1-2): 7-13.
  • [79] Abriouel, H., Valdivia, E., Gálvez, A., Maqueda, M., 1998. Response of Salmonella choleraesuis LT2 spheroplasts and permeabilized cells to the bacteriocin AS-48. Applied and Environmental Microbiology 64(11): 4623-4626.
  • [80] Ananou, S., Gálvez, A., Martínez-Bueno, M., Maqueda, M., Valdivia, E., 2005. Synergistic effect of enterocin AS-48 in combination with outer membrane permeabilizing treatments against Escherichia coli O157:H7. Journal of Applied Microbiology 99(6): 1364-1372.
  • [81] Ros-Chumillas, M., Esteban, M.D., Huertas, J.P., Palop, A., 2015. Effect of Nisin and Thermal Treatments on the Heat Resistance of Clostridium sporogenes Spores. Journal of Food Protection 78(11): 2019-2023.
  • [82] Naim, F., Zareifard, M.R., Zhu, S., Huizing, R.H., Grabowski, S., Marcotte, M., 2008. Combined effects of heat, nisin and acidification on the inactivation of Clostridium sporogenes spores in carrot-alginate particles: from kinetics to process validation. Food Microbiology 25(7): 936-941.
  • [83] Aouadhi, C., Mejri, S., Maaroufi, A., 2015. Inhibitory effects of nisin and potassium sorbate alone or in combination on vegetative cells growth and spore germination of Bacillus sporothermodurans in milk. Food Microbiology 46: 40-45.
  • [84] Esteban, M.D., Aznar, A., Fernández, P.S., Palop, A., 2013. Combined effect of nisin, carvacrol and a previous thermal treatment on the growth of Salmonella enteritidis and Salmonella senftenberg. Food Science Technology International 19(4): 357-364.
  • [85] Faille, C., Membre, J.M., Kubaczka, M., Gavini, F., 2002. Altered ability of Bacillus cereus spores to grow under unfavorable conditions (presence of nisin, low temperature, acidic pH, presence of NaCl) following heat treatment during sporulation. Journal of Food Protection 65(12): 1930-1936.
  • [86] Vega-Mercado, H., Martín-Belloso, O., Qin, B.L., Chang, F.J., Góngora-Nieto, M.M., Barbosa-Cánovas, G.V., Swanson, B.G., 1997. Non-thermal food preservation: pulsed electric fields. Trends in Food Science and Technology 8(5): 151-157.
  • [87] Wouters, P., Álvarez, I., Raso, J., 2001. Critical factors determining inactivation kinetics by pulsed electric field food processing. Trends in Food Science and Technology 12(3-4): 112-121.
  • [88] Bendicho, S., Barbosa-Cánovas, G.V., Martín, O., 2002. Milk processing by high intensity pulsed electric fields. Trends in Food Science and Technology 13(6-7): 195-204.
  • [89] Heinz, V., Alvarez, I., Angersbach, A., Knorr, D., 2002. Preservation of liquid foods by high intensity pulsed electric fields-basic concepts for process design. Trends in Food Science and Technology 12(3-4): 103-111.
  • [90] Griffiths, S., Maclean, M., Macgregor, S.J., Anderson, J.G., Helen Grant, M., 2011. Decontamination of collagen biomatrices with combined pulsed electric field and nisin treatment. Journal of Biomedical Materials Research Part B: Applied Biomaterials 96(2): 287-293.
  • [91] Galvagno, M.A., Gil, G.R., Iannone, L.J., Cerrutti, P., 2007. Exploring the use of natural antimicrobial agents and pulsed electric fields to control spoilage bacteria during a beer production process. Revista Argentina de Microbiologia 39(3): 170-176.
  • [92] Santi, L., Cerrutti, P., Pilosof, A.M., de Huergo, M.S., 2003. Optimization of the conditions for electroporation and the addition nisin for Pseudomonas aeruginosa inhibition. Revista Argentina de Microbiología 35(4): 198-204.
  • [93] Terebiznik, M.R., Jagus, R.J., Cerrutti, P., De Huergo, M., Pilosof, A.M., 2002. Inactivation of Escherichia coli by a combination of nisin, pulsed electric fields, and water activity reduction by sodium chloride. J of Food Prot. 65(8): 1253-1258.
  • [94] Dutreux, N., Notermans, S., Góngora-Nieto, M.M., Barbosa-Cánovas, G.V., Swanson, B.G., 2000. Effects of combined exposure of Micrococcus luteus to nisin and pulsed electric fields. International Journal of Food Microbiology 60(2-3): 147-152.
  • [95] Ulmer, H.M., Heinz, V., Gänzle, M.G., Knorr, D., Vogel, R.F., 2002. Effects of pulsed electric fields on inactivation and metabolic activity of Lactobacillus plantarum in model beer. Journal of Applied Microbiology 93(2):326-335.
  • [96] Sobrino-Lopez, A., Martin Belloso, O., 2006. Enhancing inactivation of Staphylococcus aureus in skim milk by combining high-intensity pulsed electric fields and nisin. Journal of Food Protection 69(2):345-353.
  • [97] Pol, I.E., Mastwijk, H.C., Bartels, P.V., Smid, E.J., 2000. Pulsed-electric field treatment enhances the bactericidal action of nisin against Bacillus cereus. Applied and Environmental Microbiology 66(1): 428-430.
  • [98] Liang, Z., Mittal, G.S., Griffiths, M.W., 2002. Inactivation of Salmonella typhimurium in orange juice containing antimicrobial agents by pulsed electric field. Journal of Food Protection 65(7): 1081-1087.
  • [99] Iu, J., Mittal, G.S., Griffiths, MW. 2001. Reduction in levels of Escherichia coli O157:H7 in apple cider by pulsed electric fields. Journal of Food Protection 64(7): 964-969.
  • [100] Terebiznik, M.R., Jagus, R.J., Cerrutti, P., De Huergo, M., Pilosof, A.M., 2000. Combined effect of nisin and pulsed electric fields on the inactivation of Escherichia coli. Journal of Food Protection 63(6): 741-746.
  • [101] Farkas, D.F., Hoover, D.G., 2000. High pressure processing. In: Kinetics of microbial inactivation for alternative food processing Technologies. Journal of Food Science 12(3): 47-64.
  • [102] Zhao, L., Wang, Y., Wang, S., Li, H., Huang, W., Liao, X., 2014. Inactivation of naturally occurring microbiota in cucumber juice by pressure treatment. International Journal of Food Microbiology 174: 12-18.
  • [103] Qi, W., Qian, P., Yu, J., Zhang, X., Zhang, C., Lu, R., 2011. Synergistic inactivation of Bacillus subtilis by high hydrostatic pressure and nisin at neutral pH. Wei Sheng Wu Xue Bao. 51(1): 35-42.
  • [104] Hereu, A., Bover-Cid, S., Garriga, M., Aymerich, T., 2012. High hydrostatic pressure and biopreservation of dry-cured ham to meet the Food Safety Objectives for Listeria monocytogenes. International Journal of Food Microbiology 154(3): 107-112.
  • [105] Lee, J., Kaletunç, G., 2010. Inactivation of Salmonella enteritidis strains by combination of high hydrostatic pressure and nisin. International Journal of Food Microbiology 140(1): 49-56.
  • [106] López-Pedemonte, T., Roig-Sagués, A.X., Trujillo, A.J., Capellas, M., Guamis, B., 2003. Inactivation of spores of Bacillus cereus in cheese by high hydrostatic pressure with the addition of nisin or lysozyme. Journal of Dairy Science 86(10): 3075-3081.
  • [107] Kalchayanand, N., Sikes, A., Dunne, C.P., Ray, B., 1994. Hydrostatic pressure and electroporation have increased bactericidal efficiency in combination with bacteriocins. Applied and Environmental Microbiology 60(11): 4174-4177.
  • [108] Hauben, K.J.A., Wuytack, E.Y., Soontjens, C.C.F., Michiels, C.W., 1996. High pressure transient sensitization of Escherichia coli to lysozyme and nisin by disruption of outer membrane permeability. Journal of Food Protection 59(4): 350-355.
  • [109] Masschalck, B., Van Houdt, R., Michiels, C.W., 2001. High pressure increases bactericidal activity and spectrum of lactoferrin, lactoferricin and nisin. International Journal of Food Microbiology 64(3): 325-332.
  • [110] Black, E.P., Kelly, A.L., Fitzgerald, G.F., 2005. The combined effect of high pressure and nisin on inactivation of microorganisms in milk. Innovative Food Science and Emerging Technologies 6(3): 286-292.
  • [111] Kalchayanand, N., Dunne, C.P., Sikes, A., Ray, B., 2004. Germination induction and inactivation of Clostridium spores at medium-range hydrostatic pressure treatment. Innovative Food Science and Emerging Technologies 5(3): 277-283.
  • [112] Garcia-Graells, C., Masschalck, B., Michiels, C.W., 1999. Inactivation of Escherichia coli in milk by high-hydrostatic-pressure treatment in combination with antimicrobial peptides. Journal of Food Protection 62(11): 1248-1254.
  • [113] Proulx, J., Sullivan, G., Marostegan, L.F., VanWees, S., Hsu, L.C., Moraru, CI., 2017. Pulsed light and antimicrobial combination treatments for surface decontamination of cheese: Favorable and antagonistic effects. Journal of Dairy Science 100(3): 1664-1673.
  • [114] Uesugi, AR., Moraru, CI., 2009. Reduction of Listeria on ready-to-eat sausages after exposure to a combination of pulsed light and nisin. Journal of Food Protection 72(2): 347-53.
Toplam 114 adet kaynakça vardır.

Ayrıntılar

Bölüm Derleme Makaleler
Yazarlar

Burcu Özel

Ömer Şimşek

Yayımlanma Tarihi 22 Ekim 2017
Gönderilme Tarihi 20 Ekim 2017
Yayımlandığı Sayı Yıl 2017

Kaynak Göster

APA Özel, B., & Şimşek, Ö. (2017). Nisinin Sinerjistik Antimikrobiyel Etkisi. Akademik Gıda, 15(3), 288-299. https://doi.org/10.24323/akademik-gida.345270
AMA Özel B, Şimşek Ö. Nisinin Sinerjistik Antimikrobiyel Etkisi. Akademik Gıda. Ekim 2017;15(3):288-299. doi:10.24323/akademik-gida.345270
Chicago Özel, Burcu, ve Ömer Şimşek. “Nisinin Sinerjistik Antimikrobiyel Etkisi”. Akademik Gıda 15, sy. 3 (Ekim 2017): 288-99. https://doi.org/10.24323/akademik-gida.345270.
EndNote Özel B, Şimşek Ö (01 Ekim 2017) Nisinin Sinerjistik Antimikrobiyel Etkisi. Akademik Gıda 15 3 288–299.
IEEE B. Özel ve Ö. Şimşek, “Nisinin Sinerjistik Antimikrobiyel Etkisi”, Akademik Gıda, c. 15, sy. 3, ss. 288–299, 2017, doi: 10.24323/akademik-gida.345270.
ISNAD Özel, Burcu - Şimşek, Ömer. “Nisinin Sinerjistik Antimikrobiyel Etkisi”. Akademik Gıda 15/3 (Ekim 2017), 288-299. https://doi.org/10.24323/akademik-gida.345270.
JAMA Özel B, Şimşek Ö. Nisinin Sinerjistik Antimikrobiyel Etkisi. Akademik Gıda. 2017;15:288–299.
MLA Özel, Burcu ve Ömer Şimşek. “Nisinin Sinerjistik Antimikrobiyel Etkisi”. Akademik Gıda, c. 15, sy. 3, 2017, ss. 288-99, doi:10.24323/akademik-gida.345270.
Vancouver Özel B, Şimşek Ö. Nisinin Sinerjistik Antimikrobiyel Etkisi. Akademik Gıda. 2017;15(3):288-99.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).