Derleme
BibTex RIS Kaynak Göster

Changes in Phenolic Componds of Berries during Fermentation

Yıl 2018, , 101 - 108, 23.04.2018
https://doi.org/10.24323/akademik-gida.417902

Öz

Berries
are important fruits because they contain high amounts of aromatic compounds,
many minerals and vitamins. Especially, phenolic compounds present in berries
may have positive effects on human health. This study aims to demonstrate that
desired phenolic compounds in final products can be obtained via process
optimization for berries. Additionally, this study includes fermentation
applications of berries, changes in phenolic profiles and concentrations after
fermentation, other studies concerning fermentation types and new fermentation
applications. According to the literature reviewed, it is evident that phenolic
compounds in berries change by the type of fermentation, cultures used and processing
conditions. Under the light of the literature review, it might be concluded
that it si possible to obtain products with desired phenolic compunds by
process optimization.

Kaynakça

  • [1] Özarda, Ö., 2009. Üzümsü meyvelerden elde edilen ekstraktların antioksidan aktivitelerinin belirlenmesi ve meyveli içeceklerdeki raf ömrüne etkisi. Bitirme tezi. Gebze Yüksek Teknoloji Enstitüsü Kimya Mühendisliği Ana Bilim Dalı, Gebze.
  • [2] Hornedo-Ortega, R., Krisa, S., García-Parrilla, M.C., Richard, T., 2016. Effects of gluconic and alcoholic fermentation on anthocyanin composition and antioxidant activity of beverages made from strawberry. LWT - Food Science and Technology 69: 382-389.
  • [3] Watanabe, D., Kaneko, A., Sugimoto, Y., Ohnuki, S., Takagi, H., Ohya, Y., 2017. Promoter engineering of the Saccharomyces cerevisiae RIM15 gene for improvement of alcoholic fermentation rates under stress conditions. Journal of Bioscience and Bioengineering 123(2): 183-189.
  • [4] Nunez-Guerrero, M. E., Paez-Lerma, J. B., Rutiaga-Quinones, O. M., Gonzalez- Herrera, S. M., Soto-Cruz, N. O., 2016. Performance of mixtures of Saccharomyces and non-Saccharomyces native yeasts during alcoholic fermentation of Agave duranguensis juice. Food Microbiology 54: 91–97.
  • [5] Capobiango, M., Diniz, I.M., Andre, L.C., Oliveira, E.S., Cardeal, Z.L., 2016. Assessment of volatile organic compounds from banana Terra subjected to different alcoholic fermentation processes. Food Science and Technology 36(3): 510-519.
  • [6] Johnson, M.H., Gonzalez de Mejia, E., 2012. Comparison of chemical composition and antioxidant capacity of commercially available blueberry and blackberry wines in Illinois. Journal of Food Science 71(1): 141−148.
  • [7] Giaramida, P., Ponticello, G., Di Maio, S., Squadrito, M., Genna, G., Barone, E., Scacco, A., Corona, O., Amore, G., di Stefano, R., Oliva, D., 2013. Candida zemplinina for production of wines with less alcohol and more glycerol. South African Journal of Enology and Viticulture 34(2): 204–211.
  • [8] Tuberoso, C.I.G., Boban, M., Bifulco, E., Budimir, D., Pirisi, F.M., 2013. Antioxidant capacity and vasodilatory properties of Mediterranean food: The case of Cannonau wine, myrtle berries liqueur and strawberry-tree honey. Food Chemistry 140: 686–691.
  • [9] Cho, J.Y., Jeong, J.H., Kim, J.Y., Kim, S.R., Kim, S.J., Lee, H.J., Lee, S.H., Park, K.H., Moon, J.H., 2013. Change in the content of phenolic compounds and antioxidant activity during manufacturing of black raspberry (Rubus coreanus Miq.) wine. Food Science and Biotechnology 22(5): 1237–1244.
  • [10] Ortiz, J., Marín-Arroyo, M.R., Noriega-domínguez, M.J., Navarro, M., Arozarena, I., 2013. Color, phenolics, and antioxidant activity of blackberry (Rubus glaucus Benth.), blueberry (Vaccinium floribundum Kunth), and apple wines from Ecuador. Journal of Food Science 78(7): 985–993.
  • [11] Ordoudi, S.A., Mantzouridou, F., Daftsiou, E., Malo, C., Hatzidimitriou, E., Nenadis, N., Tsimidou, M.Z., 2014. Pomegranate juice functional constituents after alcoholic and acetic acid fermentation. Journal of Functional Foods 8: 161-168.
  • [12] Gullo, M., Zanichelli, G., Verzelloni, E., Lemmetti, F., Giudici, P., 2016. Feasible acetic acid fermentations of alcoholic and sugary substrates in combined operation mode. Process Biochemistry 51: 1129–1139.
  • [13] Tanino, T., Nara, Y., Tsujiguchi, T., Ohshima, T. 2013. Coproduction of acetic acid and electricity by application of microbial fuel cell technology to vinegar fermentation. Journal of Bioscience and Bioengineering 116(2): 219–223.
  • [14] Mounir, M., Shafiei, R., Zarmehrkhorshid, R., Hamouda, A., Ismaili Alaoui, M., Thonart, P., 2016. Simultaneous production of acetic and gluconic acids by a thermotolerant Acetobacter strain during acetous fermentation in a bioreactor. Journal of Bioscience Bioengineering 121(2): 166–171.
  • [15] Li, Y., He, D., Niu, D., Zhao, Y., 2015. Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation. Bioprocess and Biosystems Engineering 38: 863–869.
  • [16] Ehsanipour, M., Suko, A.V., Bura, R., 2016. Fermentation of lignocellulosic sugars to acetic acid by Moorella thermoacetica. Journal of Industrial Microbiology and Biotechnology 43: 807–816.
  • [17] Xu, J.F., Ren, N.Q., Su, D.X., Qiu, J., 2010. Bio-hydrogen production from acetic acid steam-exploded corn straws by simultaneous saccharification and fermentation with Ethanoligenens harbinense B49. International. Journal of Energy Research 34: 381–386.
  • [18] Di Cagno, R., Surico, R.F., Minervini, G., Rizzello, C.G., Lovino, R., Servili, M., Taticchi, A., Urbani, S., Gobbetti, M., 2011. Exploitation of sweet cherry (Prunus avium L.) puree added of stem ınfusion through fermentation by selected autochthonous lactic acid bacteria. Food Microbiology 28: 900-909.
  • [19] Lopez, R., Lopez-Alfaro, I., Gutierrez, A.R., Tenorio, C., Garijo, P., Gonzalez-Arenzana, L., Santamaria, P., 2011. Malolactic fermentation of Tempranillo wine: contribution of the lactic acid bacteria ınoculation to sensory quality and chemical composition. International Journal of Food Science and Technology 46: 2373–2381.
  • [20] Ünver, A., Özcan, M., Arslan, D., Akın, A., 2006. The lactic acid fermentation of three different grape leaves grown in Turkey. Journal of Food Processing and Preservation 31(1): 73–82.
  • [21] Gonzalez-Arenzana, L., López, R., Santamaría, P., Tenorio, C., Lopez-Alfaro, I., 2012. Dynamics of indigenous lactic acid bacteria populations in wine fermentations from La Rioja (Spain) during three vintages. Microbial Ecology 63(1): 12–19.
  • [22] Mousavi, Z.E., Mousavi, S.M., Razavi, S.H., Emam-Djomeh, Z., Kiani, H., 2011. Fermentation of pomegranate juice by probiotic lactic acid bacteria. World Journal of Microbiology and Biotechnology 27: 123–128.
  • [23] Filannino, P., Azzi, L., Cavoski, I., Vincentini, O., Rizzello, C.G., Gobbetti, M., Di Cagno, R., 2013. Exploitation of the health-promoting and sensory properties of organic pomegranate (Punica granatum L.) juice through lactic acid fermentation. International Journal of Food Microbiology 163: 184–192.
  • [24] Curiel, J.A., Pinto, D., Marzani, B., Filannino, P., Farris, G.A., Gobbetti, M., Rizzello, C.G., 2015. lactic acid fermentation as a tool to enhance the antioxidant properties of myrtus communis berries. Microbial Cell Factories 14(67): 1-10.
  • [25] Muñoz, V., Beccaria, B., Abreo, E., 2014. Simultaneous and successive inoculations of yeasts and lactic acid bacteria on the fermentation of an unsulfited tannat grape must. Brazilian Journal of Microbiology 45(1): 59-66.

Üzümsü Meyvelerdeki Fenolik Bileşiklerin Fermantasyon ile Değişimi

Yıl 2018, , 101 - 108, 23.04.2018
https://doi.org/10.24323/akademik-gida.417902

Öz

Üzümsü meyveler aromatik maddeleri, çeşitli mineral
ve vitaminleri yoğun miktarda

içermesinden dolayı özel öneme sahip meyvelerdir. Özellikle içerdikleri fenolik
bileşikler nedeni ile insan sağlığı üzerine olumlu etkileri bulunmaktadır. Bu çalışmada
üzümsü meyvelerin proses optimizasyonu ile son üründe istenilen fenolik
bileşiklerin elde edilebileceğini göstermek amaçlanmıştır. Ayrıca bu derlemede,
üzümsü meyvelerin fermantasyon uygulamalarında kullanımı ile ilgili yapılan
çalışmalardan, fermantasyonun sonunda fenolik bileşiklerin miktarlarındaki ve
profillerindeki değişimlerden, fermantasyon çeşitleri üzerine yapılan diğer
çalışmalardan ve fermantasyon işleminde yararlanılan yeni uygulamalardan
bahsedilmiştir. Derlenen literatür bilgilerine göre, üzümsü meyvelerdeki fenolik
bileşiklerin fermantasyon tipine, kullanılan kültürlere ve üretim koşullarına
göre değiştiği ortaya çıkmıştır. Bu bilgiler ışığında proses optimizasyonu ile
üründe istenen fenolik bileşikler elde etmenin mümkün olabileceği sonucuna
ulaşılmıştır.

Kaynakça

  • [1] Özarda, Ö., 2009. Üzümsü meyvelerden elde edilen ekstraktların antioksidan aktivitelerinin belirlenmesi ve meyveli içeceklerdeki raf ömrüne etkisi. Bitirme tezi. Gebze Yüksek Teknoloji Enstitüsü Kimya Mühendisliği Ana Bilim Dalı, Gebze.
  • [2] Hornedo-Ortega, R., Krisa, S., García-Parrilla, M.C., Richard, T., 2016. Effects of gluconic and alcoholic fermentation on anthocyanin composition and antioxidant activity of beverages made from strawberry. LWT - Food Science and Technology 69: 382-389.
  • [3] Watanabe, D., Kaneko, A., Sugimoto, Y., Ohnuki, S., Takagi, H., Ohya, Y., 2017. Promoter engineering of the Saccharomyces cerevisiae RIM15 gene for improvement of alcoholic fermentation rates under stress conditions. Journal of Bioscience and Bioengineering 123(2): 183-189.
  • [4] Nunez-Guerrero, M. E., Paez-Lerma, J. B., Rutiaga-Quinones, O. M., Gonzalez- Herrera, S. M., Soto-Cruz, N. O., 2016. Performance of mixtures of Saccharomyces and non-Saccharomyces native yeasts during alcoholic fermentation of Agave duranguensis juice. Food Microbiology 54: 91–97.
  • [5] Capobiango, M., Diniz, I.M., Andre, L.C., Oliveira, E.S., Cardeal, Z.L., 2016. Assessment of volatile organic compounds from banana Terra subjected to different alcoholic fermentation processes. Food Science and Technology 36(3): 510-519.
  • [6] Johnson, M.H., Gonzalez de Mejia, E., 2012. Comparison of chemical composition and antioxidant capacity of commercially available blueberry and blackberry wines in Illinois. Journal of Food Science 71(1): 141−148.
  • [7] Giaramida, P., Ponticello, G., Di Maio, S., Squadrito, M., Genna, G., Barone, E., Scacco, A., Corona, O., Amore, G., di Stefano, R., Oliva, D., 2013. Candida zemplinina for production of wines with less alcohol and more glycerol. South African Journal of Enology and Viticulture 34(2): 204–211.
  • [8] Tuberoso, C.I.G., Boban, M., Bifulco, E., Budimir, D., Pirisi, F.M., 2013. Antioxidant capacity and vasodilatory properties of Mediterranean food: The case of Cannonau wine, myrtle berries liqueur and strawberry-tree honey. Food Chemistry 140: 686–691.
  • [9] Cho, J.Y., Jeong, J.H., Kim, J.Y., Kim, S.R., Kim, S.J., Lee, H.J., Lee, S.H., Park, K.H., Moon, J.H., 2013. Change in the content of phenolic compounds and antioxidant activity during manufacturing of black raspberry (Rubus coreanus Miq.) wine. Food Science and Biotechnology 22(5): 1237–1244.
  • [10] Ortiz, J., Marín-Arroyo, M.R., Noriega-domínguez, M.J., Navarro, M., Arozarena, I., 2013. Color, phenolics, and antioxidant activity of blackberry (Rubus glaucus Benth.), blueberry (Vaccinium floribundum Kunth), and apple wines from Ecuador. Journal of Food Science 78(7): 985–993.
  • [11] Ordoudi, S.A., Mantzouridou, F., Daftsiou, E., Malo, C., Hatzidimitriou, E., Nenadis, N., Tsimidou, M.Z., 2014. Pomegranate juice functional constituents after alcoholic and acetic acid fermentation. Journal of Functional Foods 8: 161-168.
  • [12] Gullo, M., Zanichelli, G., Verzelloni, E., Lemmetti, F., Giudici, P., 2016. Feasible acetic acid fermentations of alcoholic and sugary substrates in combined operation mode. Process Biochemistry 51: 1129–1139.
  • [13] Tanino, T., Nara, Y., Tsujiguchi, T., Ohshima, T. 2013. Coproduction of acetic acid and electricity by application of microbial fuel cell technology to vinegar fermentation. Journal of Bioscience and Bioengineering 116(2): 219–223.
  • [14] Mounir, M., Shafiei, R., Zarmehrkhorshid, R., Hamouda, A., Ismaili Alaoui, M., Thonart, P., 2016. Simultaneous production of acetic and gluconic acids by a thermotolerant Acetobacter strain during acetous fermentation in a bioreactor. Journal of Bioscience Bioengineering 121(2): 166–171.
  • [15] Li, Y., He, D., Niu, D., Zhao, Y., 2015. Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation. Bioprocess and Biosystems Engineering 38: 863–869.
  • [16] Ehsanipour, M., Suko, A.V., Bura, R., 2016. Fermentation of lignocellulosic sugars to acetic acid by Moorella thermoacetica. Journal of Industrial Microbiology and Biotechnology 43: 807–816.
  • [17] Xu, J.F., Ren, N.Q., Su, D.X., Qiu, J., 2010. Bio-hydrogen production from acetic acid steam-exploded corn straws by simultaneous saccharification and fermentation with Ethanoligenens harbinense B49. International. Journal of Energy Research 34: 381–386.
  • [18] Di Cagno, R., Surico, R.F., Minervini, G., Rizzello, C.G., Lovino, R., Servili, M., Taticchi, A., Urbani, S., Gobbetti, M., 2011. Exploitation of sweet cherry (Prunus avium L.) puree added of stem ınfusion through fermentation by selected autochthonous lactic acid bacteria. Food Microbiology 28: 900-909.
  • [19] Lopez, R., Lopez-Alfaro, I., Gutierrez, A.R., Tenorio, C., Garijo, P., Gonzalez-Arenzana, L., Santamaria, P., 2011. Malolactic fermentation of Tempranillo wine: contribution of the lactic acid bacteria ınoculation to sensory quality and chemical composition. International Journal of Food Science and Technology 46: 2373–2381.
  • [20] Ünver, A., Özcan, M., Arslan, D., Akın, A., 2006. The lactic acid fermentation of three different grape leaves grown in Turkey. Journal of Food Processing and Preservation 31(1): 73–82.
  • [21] Gonzalez-Arenzana, L., López, R., Santamaría, P., Tenorio, C., Lopez-Alfaro, I., 2012. Dynamics of indigenous lactic acid bacteria populations in wine fermentations from La Rioja (Spain) during three vintages. Microbial Ecology 63(1): 12–19.
  • [22] Mousavi, Z.E., Mousavi, S.M., Razavi, S.H., Emam-Djomeh, Z., Kiani, H., 2011. Fermentation of pomegranate juice by probiotic lactic acid bacteria. World Journal of Microbiology and Biotechnology 27: 123–128.
  • [23] Filannino, P., Azzi, L., Cavoski, I., Vincentini, O., Rizzello, C.G., Gobbetti, M., Di Cagno, R., 2013. Exploitation of the health-promoting and sensory properties of organic pomegranate (Punica granatum L.) juice through lactic acid fermentation. International Journal of Food Microbiology 163: 184–192.
  • [24] Curiel, J.A., Pinto, D., Marzani, B., Filannino, P., Farris, G.A., Gobbetti, M., Rizzello, C.G., 2015. lactic acid fermentation as a tool to enhance the antioxidant properties of myrtus communis berries. Microbial Cell Factories 14(67): 1-10.
  • [25] Muñoz, V., Beccaria, B., Abreo, E., 2014. Simultaneous and successive inoculations of yeasts and lactic acid bacteria on the fermentation of an unsulfited tannat grape must. Brazilian Journal of Microbiology 45(1): 59-66.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Derleme Makaleler
Yazarlar

Tarık Çam Bu kişi benim 0000-0001-7475-1892

Hatice Kalkan Yıldırım 0000-0001-9698-9682

Yayımlanma Tarihi 23 Nisan 2018
Gönderilme Tarihi 9 Ağustos 2017
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Çam, T., & Kalkan Yıldırım, H. (2018). Üzümsü Meyvelerdeki Fenolik Bileşiklerin Fermantasyon ile Değişimi. Akademik Gıda, 16(1), 101-108. https://doi.org/10.24323/akademik-gida.417902
AMA Çam T, Kalkan Yıldırım H. Üzümsü Meyvelerdeki Fenolik Bileşiklerin Fermantasyon ile Değişimi. Akademik Gıda. Nisan 2018;16(1):101-108. doi:10.24323/akademik-gida.417902
Chicago Çam, Tarık, ve Hatice Kalkan Yıldırım. “Üzümsü Meyvelerdeki Fenolik Bileşiklerin Fermantasyon Ile Değişimi”. Akademik Gıda 16, sy. 1 (Nisan 2018): 101-8. https://doi.org/10.24323/akademik-gida.417902.
EndNote Çam T, Kalkan Yıldırım H (01 Nisan 2018) Üzümsü Meyvelerdeki Fenolik Bileşiklerin Fermantasyon ile Değişimi. Akademik Gıda 16 1 101–108.
IEEE T. Çam ve H. Kalkan Yıldırım, “Üzümsü Meyvelerdeki Fenolik Bileşiklerin Fermantasyon ile Değişimi”, Akademik Gıda, c. 16, sy. 1, ss. 101–108, 2018, doi: 10.24323/akademik-gida.417902.
ISNAD Çam, Tarık - Kalkan Yıldırım, Hatice. “Üzümsü Meyvelerdeki Fenolik Bileşiklerin Fermantasyon Ile Değişimi”. Akademik Gıda 16/1 (Nisan 2018), 101-108. https://doi.org/10.24323/akademik-gida.417902.
JAMA Çam T, Kalkan Yıldırım H. Üzümsü Meyvelerdeki Fenolik Bileşiklerin Fermantasyon ile Değişimi. Akademik Gıda. 2018;16:101–108.
MLA Çam, Tarık ve Hatice Kalkan Yıldırım. “Üzümsü Meyvelerdeki Fenolik Bileşiklerin Fermantasyon Ile Değişimi”. Akademik Gıda, c. 16, sy. 1, 2018, ss. 101-8, doi:10.24323/akademik-gida.417902.
Vancouver Çam T, Kalkan Yıldırım H. Üzümsü Meyvelerdeki Fenolik Bileşiklerin Fermantasyon ile Değişimi. Akademik Gıda. 2018;16(1):101-8.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).