Derleme
BibTex RIS Kaynak Göster

Tarımsal-Endüstriyel Atıklardan Katma Değeri Yüksek Pigmentlerin Biyoüretimi

Yıl 2018, , 205 - 209, 05.08.2018
https://doi.org/10.24323/akademik-gida.449616

Öz

Tahıl-baklagil ile
meyve-sebze atıkları, tarımsal uygulamalar ve endüstriyel işlemler sonucu ortaya
çıkmaktadır. Dünya çapında biyokitlesi en çok olan atıklar sınıfında yer
almakta ve zengin besinsel öğeler içermektedirler. Bu açıdan, söz konusu
atıkların gıda maddeleri üretiminde doğal bir hammadde kaynağı olarak kullanımı
önem taşımaktadır. Biyoteknolojik yöntemler (derin ve yüzey kültür
fermantasyonları) ile atıkların doğal içeriği değişmeden yeni, ucuz, katma
değeri yüksek ve doğal nitelikli ürünlere dönüşümü sağlanabilmekte ve bu
ürünler gıda katkı maddesi olarak kullanılabilmektedir. Pigmentler (gıda boyar
maddeleri), gıda ürünlerinde en çok kullanılan gıda katkı maddelerinden biri konumundadır.
Son yıllarda artan gıda tüketim bilinci ile oluşan doğal ve sağlıklı gıda
tüketme alışkanlığı, pigmentlerin doğal nitelik kazanmasının önemini
vurgulamaktadır. Ayrıca, ekonomik, çevreci ve verimli üretim teknolojilerinin,
yağlı tohumlar, buğday kepeği, melas, peynir altı suyu, narenciye kabukları
gibi tarımsal ve endüstriyel atıklardan karotenler, antosiyaninler, melanin,
karamel gibi pigmentlerin üretim çalışmalarında kullanılması ile gelişmeye açık
bir bilimsel alan oluşmaktadır. Pigmentler eczacılık, kozmetik, hayvan yemi,
fırıncılık, meyve suları, süt ürünleri gibi gıda ürünleri olmak üzere boyar
madde veya destek materyali olarak birçok sektörde kullanım alanı bulmaktadır.
Bu çalışmada, tahıl ve baklagil ile meyve ve sebze atıklarından biyoteknolojik
yöntemler ile üretilen pigmentler ve önemi sunulmaktadır.

Kaynakça

  • [1] Nigam, P.S., Pandey, A. (2009). Biotechnology for Agro-Industrial Residues Utilization. Springer Science+Business Media B.V. ISBN 978-1-4020-9941-0.
  • [2] Tavman, Ş., Kumcuoğlu, S., Akkaya, Z. (2009). Bitkisel ürünlerin atıklarından antioksidan maddelerin ultrason destekli ekstraksiyonu. Gıda, 34(3), 175-182.
  • [3] Lόpez, S., Davies, D.R., Giráldez, F.J., Dhanoa, M.S., Dijkstra, J., France, J. (2005). Assessment of nutritive value of cereal and legume straws based on chemical composition and in vitro digestibility. Journal of the Science of Food and Agriculture, 85, 1550-1557.
  • [4] Wang, M., Hettiarachchy, N.S., Qi, M., Burks, W., Siebenmorgen, T. (1999). Preparation and functional properties of rice bran protein isolate. Journal of Agriculture Food Chemistry, 47, 411-416.
  • [5] Wang, J., Suna, B., Caoa, Y., Wang, C. (2010). In vitro fermentation of xylooligosaccharides from wheat bran insoluble dietary fiber by Bifidobacteria. Carbohydrate Polymers, 82, 419-423.
  • [6] Zárate, I.O., Ezcurra, A., Lacauxb, J.P., Dinhb, P.V., Argandoña, J.D. (2005). Pollution by cereal waste burning in Spain. Atmospheric Research, 73, 161-170.
  • [7] Meyve ve Sebze Sanayi. (2012). http://eng.ege.edu.tr/~otles/foodwaste-fruit.tripod.com/id7.html. Erişim Tarihi: 15.02.2012.
  • [8] Laufenberg, G., Kunz, B., Nystroem, M. (2003). Tansformation of vegetable waste into value added products: (A) the upgrading concept; (B) practical implementations. Bioresource Technology, 87, 167-198.
  • [9] Joshi, V.K., Attri, D., Bala, A., Bhushan, S. (2003). Microbial pigments. Indian Journal of Biotechnology, 2, 362-369.
  • [10] Dufossé, L., Galaup, P., Yaron, A., Arad, S.M., Blanc, P., Murthy, K.N.C., Ravishankar, G.A. (2005). Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality? Trends in Food Science and Technology, 16, 389-406.
  • [11] Gupta, C., Garg, A.P., Prakash, D., Goyal, S., Gupta, S. (2011). Microbes as potential source of biocolours. Pharmacology, 2, 1309-1318.
  • [12] Karaali, A., Özçelik, B. (1993). Gıda katkısı olarak doğal ve sentetik boyalar. Gıda, 18(6), 389-396.
  • [13] Akyıl, S., İlter, I., Koç, M., Kaymak-Ertekin, F. (2016). Alglerden elde edilen yüksek değerlikli bileşiklerin biyoaktif/biyolojik uygulama alanları. Akademik Gıda, 14(4), 418-423.
  • [14] Dufossé, L. (2006). Microbial production of food grade pigments. Food Technology and Biotechnology, 44(3), 313-321.
  • [15] Uyar, F., Baysal, Z. (2004). Production and optimization of process parameters for alkaline protease production by a newly isolated Bacillus sp. under solid state fermentation. Process Biochemistry, 39, 1893-1898.
  • [16] Sanromán, M.A., Couto, S.R. (2006). Application of solid state fermentation to food industry-A review. Journal of Food Engineering, 76, 291-302.
  • [17] Bailey, R., Madden, K.T., Trueheart, J. (2010). Production of carotenoids in oleaginous yeast and fungi. US Patent No. US 7,851,199 B2. Washington, DC: U.S. Patent and Trademark Office.
  • [18] Yang, S.T. (2007). Bioprocessing for Value-added Products from Renewable Resources: New Technologies and Applications. Elsevier B.V. ISBN: 9780444521149.
  • [19] Joshi, V.K., Attri, D. (2006). Solid state fermentation of apple pomace for the production of value added products. Natural Product Radiance, 5(4), 289-296.
  • [20] Babitha, S., Soccol, C.R., Pandey, A. (2007). Solid-state fermentation for the production of Monascus pigments from jackfruit seed. Bioresource Technology,98, 1554-1560.
  • [21] Kahyaoğlu, M., Kıvanç, M. (2007). Endüstriyel atık maddelerden mikrobiyal yolla beta karoten üretimi. Tarım Bilimleri Dergisi, 17(2), 61-66.
  • [22] White, W.S., Tayie, F.A.K., Young, M.F., Rocheford, T., Li, S. (2007). Retention of provitamin a carotenoids in high β-carotene maize (zea mays) during traditional African household processing. Journal of Agriculture Food Chemistry, 55, 10744-10750.
  • [23] Valduga, E., Valério, A., Treichel, H., Furigo Júnior, A., Luccio, M. (2009). Kinetic and stoichiometric parameters in the production of carotenoids by Sporidiobolus salmonicolor (CBS 2636) in synthetic and agroindustrial media. Applied Biochemistry and Biotechnology, 157, 61-69.
  • [24] Kaur, H., Chakraborty, D., Kaur, B. (2008). Production and evaluation of physicochemical properties of red pigment from Monascus purpureus MTCC 410. The Internet Journal Microbiology, 7(1), 1-6.
  • [25] Brandelli, A., Daroit, D.J., Silveira, S.T. (2008). Pigment production by Monascus purpureus in grape waste using factorial design. LWT- Food Science and Technology, 41, 170-174.
  • [26] Taskin, M., Erdal, S. (2011). Production of carotenoids by Rhodotorula glutinis MT-5 in submerged fermentation using the extract from waste loquat kernels as substrate. Journal of the Science of Food and Agriculture, 91, 1440-1445.
  • [27] Dursun, D., Dalgıç, A.C. (2016). Optimization of astaxanthin pigment bioprocessing by four different yeast species using wheat wastes. Biocatalysis and Agricultural Biotechnology, 7, 1-6.
  • [28] Eryılmaz, E.B., Dursun, D., Dalgıç, A.C. (2016). Multiple optimization and statistical evaluation of astaxanthin production utilizing olive pomace. Biocatalysis and Agricultural Biotechnology, 7, 224-227.

Bioproduction of High Value-Added Pigments from Agro-Industrial Wastes

Yıl 2018, , 205 - 209, 05.08.2018
https://doi.org/10.24323/akademik-gida.449616

Öz

Cereal-legume and fruit
and vegetable wastes come out by agricultural applications and industrial
processes. Their use is important for producing food products, as they have a
major class and rich nutritional compounds among the world’s wastes. These
wastes could be transformed into new, cheap, high value-added and natural
products which may be used as food additives by biotechnological methods such
as submerged and solid state fermentations without any changing of raw material
composition. Pigments (food coloring agents) are one of the most used categories
of food additives among products. In recent years,
the habit of natural and healthy food consumption formed by raising awareness
of food consumption emphasizes the importance of the natural qualification of
pigments. However economic, eco-friendly and
productive technologies elicit a scientific area for the production of pigments
such as carotenes, anthocyanins, melanin, and caramel from agri-industrial
wastes such as oil seeds, wheat bran, molasses, whey, and citrus peels. Pigments
are used in many sectors as pharmaceuticals, cosmetics, animal feed, bakery,
food products such as fruit juices, dairy products, as stain or supplement
material. In this study, biotechnological methods of producing pigments and
their importance from cereals and legumes and fruit and vegetable wastes are
presented.

Kaynakça

  • [1] Nigam, P.S., Pandey, A. (2009). Biotechnology for Agro-Industrial Residues Utilization. Springer Science+Business Media B.V. ISBN 978-1-4020-9941-0.
  • [2] Tavman, Ş., Kumcuoğlu, S., Akkaya, Z. (2009). Bitkisel ürünlerin atıklarından antioksidan maddelerin ultrason destekli ekstraksiyonu. Gıda, 34(3), 175-182.
  • [3] Lόpez, S., Davies, D.R., Giráldez, F.J., Dhanoa, M.S., Dijkstra, J., France, J. (2005). Assessment of nutritive value of cereal and legume straws based on chemical composition and in vitro digestibility. Journal of the Science of Food and Agriculture, 85, 1550-1557.
  • [4] Wang, M., Hettiarachchy, N.S., Qi, M., Burks, W., Siebenmorgen, T. (1999). Preparation and functional properties of rice bran protein isolate. Journal of Agriculture Food Chemistry, 47, 411-416.
  • [5] Wang, J., Suna, B., Caoa, Y., Wang, C. (2010). In vitro fermentation of xylooligosaccharides from wheat bran insoluble dietary fiber by Bifidobacteria. Carbohydrate Polymers, 82, 419-423.
  • [6] Zárate, I.O., Ezcurra, A., Lacauxb, J.P., Dinhb, P.V., Argandoña, J.D. (2005). Pollution by cereal waste burning in Spain. Atmospheric Research, 73, 161-170.
  • [7] Meyve ve Sebze Sanayi. (2012). http://eng.ege.edu.tr/~otles/foodwaste-fruit.tripod.com/id7.html. Erişim Tarihi: 15.02.2012.
  • [8] Laufenberg, G., Kunz, B., Nystroem, M. (2003). Tansformation of vegetable waste into value added products: (A) the upgrading concept; (B) practical implementations. Bioresource Technology, 87, 167-198.
  • [9] Joshi, V.K., Attri, D., Bala, A., Bhushan, S. (2003). Microbial pigments. Indian Journal of Biotechnology, 2, 362-369.
  • [10] Dufossé, L., Galaup, P., Yaron, A., Arad, S.M., Blanc, P., Murthy, K.N.C., Ravishankar, G.A. (2005). Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality? Trends in Food Science and Technology, 16, 389-406.
  • [11] Gupta, C., Garg, A.P., Prakash, D., Goyal, S., Gupta, S. (2011). Microbes as potential source of biocolours. Pharmacology, 2, 1309-1318.
  • [12] Karaali, A., Özçelik, B. (1993). Gıda katkısı olarak doğal ve sentetik boyalar. Gıda, 18(6), 389-396.
  • [13] Akyıl, S., İlter, I., Koç, M., Kaymak-Ertekin, F. (2016). Alglerden elde edilen yüksek değerlikli bileşiklerin biyoaktif/biyolojik uygulama alanları. Akademik Gıda, 14(4), 418-423.
  • [14] Dufossé, L. (2006). Microbial production of food grade pigments. Food Technology and Biotechnology, 44(3), 313-321.
  • [15] Uyar, F., Baysal, Z. (2004). Production and optimization of process parameters for alkaline protease production by a newly isolated Bacillus sp. under solid state fermentation. Process Biochemistry, 39, 1893-1898.
  • [16] Sanromán, M.A., Couto, S.R. (2006). Application of solid state fermentation to food industry-A review. Journal of Food Engineering, 76, 291-302.
  • [17] Bailey, R., Madden, K.T., Trueheart, J. (2010). Production of carotenoids in oleaginous yeast and fungi. US Patent No. US 7,851,199 B2. Washington, DC: U.S. Patent and Trademark Office.
  • [18] Yang, S.T. (2007). Bioprocessing for Value-added Products from Renewable Resources: New Technologies and Applications. Elsevier B.V. ISBN: 9780444521149.
  • [19] Joshi, V.K., Attri, D. (2006). Solid state fermentation of apple pomace for the production of value added products. Natural Product Radiance, 5(4), 289-296.
  • [20] Babitha, S., Soccol, C.R., Pandey, A. (2007). Solid-state fermentation for the production of Monascus pigments from jackfruit seed. Bioresource Technology,98, 1554-1560.
  • [21] Kahyaoğlu, M., Kıvanç, M. (2007). Endüstriyel atık maddelerden mikrobiyal yolla beta karoten üretimi. Tarım Bilimleri Dergisi, 17(2), 61-66.
  • [22] White, W.S., Tayie, F.A.K., Young, M.F., Rocheford, T., Li, S. (2007). Retention of provitamin a carotenoids in high β-carotene maize (zea mays) during traditional African household processing. Journal of Agriculture Food Chemistry, 55, 10744-10750.
  • [23] Valduga, E., Valério, A., Treichel, H., Furigo Júnior, A., Luccio, M. (2009). Kinetic and stoichiometric parameters in the production of carotenoids by Sporidiobolus salmonicolor (CBS 2636) in synthetic and agroindustrial media. Applied Biochemistry and Biotechnology, 157, 61-69.
  • [24] Kaur, H., Chakraborty, D., Kaur, B. (2008). Production and evaluation of physicochemical properties of red pigment from Monascus purpureus MTCC 410. The Internet Journal Microbiology, 7(1), 1-6.
  • [25] Brandelli, A., Daroit, D.J., Silveira, S.T. (2008). Pigment production by Monascus purpureus in grape waste using factorial design. LWT- Food Science and Technology, 41, 170-174.
  • [26] Taskin, M., Erdal, S. (2011). Production of carotenoids by Rhodotorula glutinis MT-5 in submerged fermentation using the extract from waste loquat kernels as substrate. Journal of the Science of Food and Agriculture, 91, 1440-1445.
  • [27] Dursun, D., Dalgıç, A.C. (2016). Optimization of astaxanthin pigment bioprocessing by four different yeast species using wheat wastes. Biocatalysis and Agricultural Biotechnology, 7, 1-6.
  • [28] Eryılmaz, E.B., Dursun, D., Dalgıç, A.C. (2016). Multiple optimization and statistical evaluation of astaxanthin production utilizing olive pomace. Biocatalysis and Agricultural Biotechnology, 7, 224-227.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği
Bölüm Derleme Makaleler
Yazarlar

Derya Dursun Bu kişi benim 0000-0002-9858-6382

Ali Coşkun Dalgıç 0000-0001-6806-5917

Yayımlanma Tarihi 5 Ağustos 2018
Gönderilme Tarihi 28 Kasım 2016
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Dursun, D., & Dalgıç, A. C. (2018). Tarımsal-Endüstriyel Atıklardan Katma Değeri Yüksek Pigmentlerin Biyoüretimi. Akademik Gıda, 16(2), 205-209. https://doi.org/10.24323/akademik-gida.449616
AMA Dursun D, Dalgıç AC. Tarımsal-Endüstriyel Atıklardan Katma Değeri Yüksek Pigmentlerin Biyoüretimi. Akademik Gıda. Ağustos 2018;16(2):205-209. doi:10.24323/akademik-gida.449616
Chicago Dursun, Derya, ve Ali Coşkun Dalgıç. “Tarımsal-Endüstriyel Atıklardan Katma Değeri Yüksek Pigmentlerin Biyoüretimi”. Akademik Gıda 16, sy. 2 (Ağustos 2018): 205-9. https://doi.org/10.24323/akademik-gida.449616.
EndNote Dursun D, Dalgıç AC (01 Ağustos 2018) Tarımsal-Endüstriyel Atıklardan Katma Değeri Yüksek Pigmentlerin Biyoüretimi. Akademik Gıda 16 2 205–209.
IEEE D. Dursun ve A. C. Dalgıç, “Tarımsal-Endüstriyel Atıklardan Katma Değeri Yüksek Pigmentlerin Biyoüretimi”, Akademik Gıda, c. 16, sy. 2, ss. 205–209, 2018, doi: 10.24323/akademik-gida.449616.
ISNAD Dursun, Derya - Dalgıç, Ali Coşkun. “Tarımsal-Endüstriyel Atıklardan Katma Değeri Yüksek Pigmentlerin Biyoüretimi”. Akademik Gıda 16/2 (Ağustos 2018), 205-209. https://doi.org/10.24323/akademik-gida.449616.
JAMA Dursun D, Dalgıç AC. Tarımsal-Endüstriyel Atıklardan Katma Değeri Yüksek Pigmentlerin Biyoüretimi. Akademik Gıda. 2018;16:205–209.
MLA Dursun, Derya ve Ali Coşkun Dalgıç. “Tarımsal-Endüstriyel Atıklardan Katma Değeri Yüksek Pigmentlerin Biyoüretimi”. Akademik Gıda, c. 16, sy. 2, 2018, ss. 205-9, doi:10.24323/akademik-gida.449616.
Vancouver Dursun D, Dalgıç AC. Tarımsal-Endüstriyel Atıklardan Katma Değeri Yüksek Pigmentlerin Biyoüretimi. Akademik Gıda. 2018;16(2):205-9.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).