Derleme
BibTex RIS Kaynak Göster

Kırmızı Pancardan Renk Maddesi Üretimi ve Stabilitesinin Sağlanması

Yıl 2018, , 439 - 449, 31.12.2018
https://doi.org/10.24323/akademik-gida.505529

Öz

Gıdaların tercih edilebilirliğini etkileyen en önemli
kalite kriterlerinden biri renktir. Bu nedenle gıda endüstrisinde istenilen
rengin elde edilebilmesi veya mevcut rengin arttırılması amacıyla renklendirici
maddeler kullanılmaktadır. Doğal renk maddeleri genellikle çeşitli bitkisel
kaynaklardan elde edilmekte ve gıdaların duyusal özelliklerinin yanı sıra
besleyici özelliklerini de arttırdıkları için tercih edilmektedir. Kırmızı
pancar bitkisi (Beta vulgaris L.),
doğal gıda renklendiricisi olan betalainler yönünden oldukça zengin olması
nedeniyle bu konuda yapılan birçok çalışmada hammadde olarak kullanılmaktadır. Betalainler
ile ilgili yapılan çalışmalar, bu maddelerin gıda renklendiricisi olarak
kullanılabileceğini göstermiştir. Artan talep doğrultusunda en yüksek verimle
betalain ekstraksiyonu ve ekstrakte edilen betalainlerin stabilitesinin
sağlanması gibi konular önem kazanmaktadır. Bu çalışmada, kırmızı pancar ve
betalainler hakkında genel bilgi verilmiş, ekstraksiyonda kullanılan yöntemler ve
sonrasında betalain stabilitesi için yapılan enkapsülasyon uygulamaları
derlenmiştir.

Kaynakça

  • [1] Kujala, T., Loponen, J., Pihlaja, K. (2001). Betalains and phenolics in red beetroot (Beta vulgaris) peel extracts: extraction and characterisation. Z Naturforsch C, 56(5-6), 343-348.
  • [2] Er, T. (2011). Kırmızı pancarın bazı fiziksel ve fitokimyasal özellikleri üzerine farklı kurutma sıcaklıklarının etkisi. Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Konya.
  • [3] Eşiyok, D., Bozokalfa, M.K. (2007). Kırmızı pancar (Beta vulgaris L.) yetiştiriciliği ve besin içeriği. Dünya Gıda, http://www.dunyagida.com.tr/haber/kirmizi-pancar-beta-vulgaris-l-yetistiriciligi-ve-besin-iceri/2283.
  • [4] Chawla, H., Parle, M., Sharma, K., Yadav, M. (2016). Beetroot: A health promoting functional food. Inventi Rapid: Nutraceuticals, (1), 1-5.
  • [5] Anonim, (2017). Bügem Faaliyetleri. http://www.tarim.gov.tr/ (29.09.2017).
  • [6] Janiszewska, E., (2014). Microencapsulated beetroot juice as a potential source of betalain. Powder Technology, 64, 190-196.
  • [7] Gengatharan, A., Dykes, G.A., Choo, W.S. (2015). Betalains: Natural plant pigments with potential application in functional foods. LWT - Food Science and Technology, 64(2), 645-649.
  • [8] Kırca, A. (2004). Siyah Havuç Antosiyaninlerinin Bazı Meyve Ürünlerinde Isıl Stabilitesi. Ankara Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, Ankara.
  • [9] Fletcher, A. (2006). Lycopene colorant achieves regulatory approval. https://www.foodnavigator.com (06.10.2017).
  • [10] Gliszczyńska-Świgło, A., Szymusiak, H., Malinowska, P. (2011). Betanin, the main pigment of red beet: Molecular origin of its exceptionally high free radical-scavenging activity. Food Additives and Contaminants, 23(11), 1079.
  • [11] Azeredo, H., Santos, A., Spuza, A., Mendes, K., Andrade, M. (2007). Betacyanin stability during processing and storage of a microencapsulated red beetroot extract. American Journal of Food, 2(4), 307-312.
  • [12] Stintzing, F.C., Carle, R. (2007). Betalains-emerging prospects for food scientists. Trends in Food Science & Technology, 18(10), 514-525.
  • [13] Pavokovic, D., Krsnik-Rasol, M. (2011). Complex biochemistry and biotechnological production of betalains. Food Technology and Biotechnology, 49(2), 145.
  • [14] Gandia-Herrero, F., Garcia-Carmona, F. (2013). Biosynthesis of betalains: yellow and violet plant pigments. Trends in Plant Science, 18(6), 334-343.
  • [15] Herbach, K.M., Stintzing, F.C., Carle, R. (2006). Betalain stability and degradation-structural and chromatic aspects. Journal of Food Science, 71(4), 41-50.
  • [16] Cemeroğlu, B.S. (2013). Meyve ve Sebze İşleme Teknolojisi.Bizim Grup Basımevi, Kızılay, Ankara.
  • [17] Von Elbe, J.H., Schwartz, S.J. (1996). Colorants. In Food Chemistry, Edited by O.R. Fennema, Marcel Dekker, Inc., New York.
  • [18] Wasserman, B.P, Eiberger, L.L., Guilfoy, M.P. (1984). Effect of hydrogen peroxide and phenolic compounds on horseradish peroxidase-catalyzed decolorization of betalain pigments. Journal of Food Science, 49, 536.
  • [19] Shih, C.C., Wiley, R.C. (1981). Betacyanine and betaxanthine decolorizing enzymes in the beet (Beta vulgaris L.) root. Journal of Food Science, 47, 164.
  • [20] Stintzing, F.C., Carle, C. (2004). Functional properties of anthocyanins and betalains in plants, food, and in human nutrion. Trends Food Science Technology, 15, 19.
  • [21] Kanner,J., Harel, S., Granit, R. (2001). Betalains--a new class of dietary cationized antioxidants. Journal of Agricultural and Food Chemistry, 49, 5178.
  • [22] Celli, G.B., Brooks, M. (2016). Impact of extraction and processing conditions on betalains and comparison of properties with anthocyanins — A current review. Food Research International, 100(3), 501-509.
  • [23] Paciulli, M., Medina-Meza, I.G., Chivara, E., Barbosa-Canovas, G.V. (2016). Impact of thermal and high pressure processing on quality parameters of beetroot (Beta vulgaris L.). LWT - Food Science and Technology, 68, 98-104.
  • [24] Jaafar, M.S. (1992). Studies on the biosynthesis of betalains in cell cultures of beta vulgaris L. University of Edinburg, Scotland.
  • [25] Manus, V. (1994). Development and Characterisation of an Inducible System of Betalain Synthesis in Cell Cultures of Beetroot (Beta vulgaris). Dublin City University, Ireland.
  • [26] Scotter, M. (2010). Review and Evaluation Of Available Methods of Extraction and Analysis For Approved Natural Colours In Food And Drink, London, 59-60.
  • [27] Delgado-Vargas, F., Jiménez, A.R., Paredes-López, O. (2010). Natural pigments: Carotenoids, anthocyanins, and betalains — characteristics, biosynthesis, processing, and stability. Critical Reviews in Food Science and Nutrition, 40(3), 173-289.
  • [28] Bruno, E., Campanone, Martino, M. (2012). Some functional properties of pigment extracts from red cabbage (brassica oleracea) and redbeet (beta vulgaris). Latin American Applied Research, 42, 427-432.
  • [29] Suganyadevi, P., Saravanakumar, M., Aravinthan, K.M., Arunkumar, A., Krishna, R.K., Karthikeyani, S. (2010). Extraction of Betacyanin from Red Beet root (Beta vulgaris L.) and to evaluate its antioxidant potential. Journal of Pharmacy Research, 3(11), 2693-2696.
  • [30] Sturzoiu, A., Stroescu, M., Stoica, A., Dobre, T. (2011). Betanine extraction from beta vulgaris-experimental research and statistical modeling. U.P.B. Sci. Bull, 73(1), 145-156.
  • [31] Xu, H., Peng, Q., Yuan, F., Gao, Y. (2015). Mathematical modeling of betanin extraction from red beet (Beta vulgaris L.) by solid–liquid method. International Journal of Food Engineering, 11(1), 17-22.
  • [32] Azeredo, H., Pereira, A., Souza, A., Gouveia, S., Mendes, K. (2009). Study on efficiency of betacyanin extraction from red beetroots. International Journal of Food Science and Technology, 44, 2464-2469.
  • [33] Swamy, G.J., Sangamithra, A., Chandrasekar, V. (2014). Response surface modeling and process optimization of aqueous extraction of natural pigments from Beta vulgaris using Box-Behnken design of experiments. Dyes and Pigments, 111, 64-74.
  • [34] Loginova, K.V., Lebovka, N.I., Vorobiev, E. (2011). Pulsed electric field assisted aqueous extraction of colorants from red beet. Journal of Food Engineering, 106(2), 127-133.
  • [35] Lopez, N., Puertolas, E., Condon, S., Raso, J., Alvarez, I., 2009. Enhancement of the extraction of betanine from red beetroot by pulsed electric fields. Journal of Food Engineering, 90(1), 60-66.
  • [36] Luengo, E., Martinez, J.M., Alvarez, I., Raso, J. (2016). Effects of millisecond and microsecond pulsed electric fields on redbeet cell disintegration and extraction of betanines. Industrial Crops and Products, 84, 28-33.
  • [37] Zvitov, R., Nussinovitch, A. (2005). Low DC electrification of gel-plant tissue ‘sandwiches’ facilitates extraction and separation of substances from Beta vulgaris beetroots. Food Hydrocolloids, 19(6), 997-1004.
  • [38] Hunter, C.S., Kilby, N.J. (1988). Electropermeabilization and ultrasonic techniques for harvesting secondary metabolites freom plant cells in vitro. Manipulating Secondary Metabolism in Culture, Edited by R. J. Robins, & M. J. C. Rhodes, Cambridge University Press, New York, 285–290p.
  • [39] Cardoso-Ugarte, G.A., Sora-Morales, M.E., Ballard,T., Liceaga, A. (2014). Microwave-assisted extraction of betalains from red beet (Beta vulgaris). LWT - Food Science and Technology, 59(1), 276-282.
  • [40] Chethana, S., Nayak, C.A., Raghavarao, K.S.M.S. (2007). Aqueous two phase extraction for purification and concentration of betalains. Journal of Food Engineering, 81(4), 679-687.
  • [41] Chandrasekhar, J., Sonika, G., Madhusudhan, M.C., Raghavarao, K.S.M.S. (2015). Differential partitioning of betacyanins and betaxanthins employing aqueous two phase extraction. Journal of Food Engineering, 144, 156-163.
  • [42] Sivakumar, V., Anna, J.L., Vijayeeswarri, J., Swaminathan, G. (2009). Ultrasound assisted enhancement in natural dye extraction from beetroot for industrial applications and natural dyeing of leather. Ultrasonics Sonochemistry, 16(6), 782-789.
  • [43] Yıldız, H., Toprak, E. (2009). Meyve ve sebzelerden doğal renk maddelerinin ekstraksiyonu. Akademik Gıda 7(4): 28-34.
  • [44] Cai, Y.Z., Corke, H. (2000). Production and Properties of Spray-dried Amaranthus Betacyanin Pigments. Journal of Food Science, 65(6), 1248-1252.
  • [45] Janiszewska, E., Wlodarczyk, J. (2013). Influence of spray drying conditions on beetroot pigments retention after microencapsulation process. Acta Agrophysica, 20(2), 343-356.
  • [46] Khan, M.I. (2016). Stabilization of betalains: A review. Food Chemistry, 197, 1280-1285.
  • [47] Bazaria, B., Kumar, P. (2016a). Optimization of spray drying parameters for beetroot juice powder using response surface methodology (RSM). Journal of the Saudi Society of Agricultural Sciences, 1-8.
  • [48] Bazaria, B., Kumar, P. (2016b). Effect of whey protein concentrate as drying aid and drying parameters on physicochemical and functional properties of spray dried beetroot juice concentrate. Food Bioscience, 14, 21-27.
  • [49] Kaimainen, M., Laaksonen, O., Järvenpää, E., Sandell, M., Huopalahti, R., 2015a. Consumer acceptance and stability of spray dried betanin in model juices. Food Chemistry, 187, 398-406.
  • [50] Pitalua, E., Jimenez, M., Vernon-Carter, E.J., Beristain, C.I. (2010). Antioxidative activity of microcapsules with beetroot juice using gum Arabic as wall material. Food and Bioproducts Processing, 88, 253-258.
  • [51] Guadarrama-Lezama, A.Y., Cruz-Olivares, J., Martinez-Vargas, S.L., Carrillo-Navas,H., Roman-Guerrero, A., Perez-Alonso, C. (2014). Determination of the minimum integral entropy,water sorption and glass transition temperature to establishing critical storage conditıins of beetroot juice microcapsules by spray drying. Revista Mexicana de Ingeniería Química, 13(2), 405-416.
  • [52] Chranioti, C., Nikoloudaki, A., Tzia, C. 2015. Saffron and beetroot extracts encapsulated in maltodextrin,gum Arabic, modified starch and chitosan: Incorporationin a chewing gum system. Carbohydrate Polymers 127: 252-263.
  • [53] Šaponjac,V.T., Canadanovic-Brunet, J., Cetkovic, G., Jakišic, M., Djilas, S., Vulic, J., Stajcic, S. (2016). Encapsulation of Beetroot Pomace Extract: RSM Optimization, Storage and Gastrointestinal Stability. Molecules, 21(5), 1-16.
  • [54] Serris, G.S., Biliaderis, C.G. (2001). Degradation kinetics of beetroot pigment encapsulated in polymeric matrices. Journal of the Science of Food and Agriculture, 81(8), 691-700.
  • [55] Ibraheem, A.A., Makpoul, K.R., Amira, M.S. (2015). Improving Red Color of Some Food Products Using Red Beet Powder. International Journal of Science and Research, 5(12), 2319-7064.
  • [56] Ravichandran, K., Palaniraj, R., Saw, N.M.M.T., Gabr, M.M.A., Ahmed, A.R., Knorr, D., Smeranska, I. (2014). Effects of different encapsulation agents and drying process on stability of betalains extract. Journal of Food Science and Technology, 51(9), 2216-2221.
  • [57] Antigo, J., Bergamasco, R., Madrona, G. (2017). Effect of pH on the stability of red beet extract (Beta vulgaris L.) microcapsules produced by spray drying or freeze drying. Food Science and Technology, 38(1), 72-77.
  • [58] Kaimainen, M., Marze, S., Järvenpää, E., Anton, E. (2015b). Encapsulation of betalain into w/o/w double emulsion and release during in vitro intestinal lipid digestion. LWT - Food Science and Technology, 60(2), 899-904.
  • [59] Gandia-Herrero, F., Jimenez-Atienzar,M., Cabanes, J., Garcia-Carmona, F., Escribano, J. (2010). Stabilization of the bioactive pigment of opuntia fruits through maltodextrin encapsulation. J. Agric. Food Chemistry, 2010(58), 10646-10652.
  • [60] Saénz, C., Tapia, S., Cháve, J., Robert, P. (2009). Microencapsulation by spray drying of bioactive compounds from cactus pear (Opuntia ficus-indica). Food Chemistry, 114(2), 616-622.
  • [61] Ruiz-Gutiérrez, M.G., Amaya-Guerra, C.A., Quintero-Ramos, A., Ruiz-Anchondo, T., Gutiérrez-Uribe, J.A., Baez-González, J.G., Lardizabal-Gutiérrez, D., Campos-Venegas, K. (2014). Effect of soluble fiber on the physicochemical properties of Cactus Pear (Opuntia ficus indica) encapsulated using spray drying. Food Sci. Biotechnol, 23(3), 755-763.
  • [62] Robert, P., Torres, V., Garcia, P., Vergara, C., Saenz, C. (2015). The encapsulation of purple cactus pear (Opuntia ficus-indica) pulp by using polysaccharide-proteins as encapsulating agents. LWT - Food Science and Technology, 60(2), 1039-1045.
  • [63] Rodríguez-Sánchez, J.A., Cuatzo-Lozano, M.I., Perez-Loredo, M.G., Abarca-Sarro, D.I., Navarro, Y.G. (2017). Alginate Encapsulation as a Preservation Method of Pitaya Fruit Juice (Stenocereus spp.). Journal of Food Science and Engineering, 7, 127-134.
  • [64] Carolina-Otálora, M., Carriazo, J.G., Iturriaga, L., Osorio, C., Nazareno, M.A. (2016). Encapsulating betalains from Opuntia ficus-indica fruits by ionic gelation: Pigment chemical stability during storage of beads. Food Chemistry, 202, 373-382.
  • [65] Tze, N.L., Han, C.P., Yusof, Y.A., Ling, C.N., Talib, R.A., Taip, F.S., Aziz, M.G. (2012). Physicochemical and nutritional properties of spray-dried pitaya fruit powder as natural colorant. Food Sci. Biotechnol, 21(3), 675-682.
  • [67] Shaaruddin, S., Ghazali, H.M., Mirhosseini, S.H., Muhammad, K. (2017). Stability of betanin in pitaya powder and confection as affected by resistant maltodextrin. LWT - Food Science and Technology, 84, 129-134.
  • [68] Garcia-Lucas, K.A., Mendez-Lagunas, L.L., Rodriguez-Raminez, J., Campanella, O.H., Patel, B.K., Barriada-Bernal, L.G. (2016). Physical properties of spray dryed Stenocereus griseus pitaya juice powder. Journal of Food Process Engineering, 40, 1-9.

Production and Stability of Food Colorant from Red Beetroot

Yıl 2018, , 439 - 449, 31.12.2018
https://doi.org/10.24323/akademik-gida.505529

Öz

Color is one of the most important quality criteria
that affect the preference of foods. Therefore, food colorants are used in
order to obtain the desired color in the food industry or to improve current
color of foods. Natural colorants are generally obtained from various vegetable
sources and are preferred because they increase the nutritional properties of
foods as well as their sensory properties. Red beet plant (Beta vulgaris L.) is used as a raw material in many studies on this
subject because it is very rich in betalains, which are natural food colorants.
Studies on betalaines have shown that these substances can be used as food
colorants. With an increasing demand, the extraction of betalains with the
highest yield and the stability of the extracted betalains are gaining
importance. In this study, general information about red beetroot and betalains,
methods used in extraction and encapsulation applications for stability of
betalains were reviewed.

Kaynakça

  • [1] Kujala, T., Loponen, J., Pihlaja, K. (2001). Betalains and phenolics in red beetroot (Beta vulgaris) peel extracts: extraction and characterisation. Z Naturforsch C, 56(5-6), 343-348.
  • [2] Er, T. (2011). Kırmızı pancarın bazı fiziksel ve fitokimyasal özellikleri üzerine farklı kurutma sıcaklıklarının etkisi. Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Konya.
  • [3] Eşiyok, D., Bozokalfa, M.K. (2007). Kırmızı pancar (Beta vulgaris L.) yetiştiriciliği ve besin içeriği. Dünya Gıda, http://www.dunyagida.com.tr/haber/kirmizi-pancar-beta-vulgaris-l-yetistiriciligi-ve-besin-iceri/2283.
  • [4] Chawla, H., Parle, M., Sharma, K., Yadav, M. (2016). Beetroot: A health promoting functional food. Inventi Rapid: Nutraceuticals, (1), 1-5.
  • [5] Anonim, (2017). Bügem Faaliyetleri. http://www.tarim.gov.tr/ (29.09.2017).
  • [6] Janiszewska, E., (2014). Microencapsulated beetroot juice as a potential source of betalain. Powder Technology, 64, 190-196.
  • [7] Gengatharan, A., Dykes, G.A., Choo, W.S. (2015). Betalains: Natural plant pigments with potential application in functional foods. LWT - Food Science and Technology, 64(2), 645-649.
  • [8] Kırca, A. (2004). Siyah Havuç Antosiyaninlerinin Bazı Meyve Ürünlerinde Isıl Stabilitesi. Ankara Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, Ankara.
  • [9] Fletcher, A. (2006). Lycopene colorant achieves regulatory approval. https://www.foodnavigator.com (06.10.2017).
  • [10] Gliszczyńska-Świgło, A., Szymusiak, H., Malinowska, P. (2011). Betanin, the main pigment of red beet: Molecular origin of its exceptionally high free radical-scavenging activity. Food Additives and Contaminants, 23(11), 1079.
  • [11] Azeredo, H., Santos, A., Spuza, A., Mendes, K., Andrade, M. (2007). Betacyanin stability during processing and storage of a microencapsulated red beetroot extract. American Journal of Food, 2(4), 307-312.
  • [12] Stintzing, F.C., Carle, R. (2007). Betalains-emerging prospects for food scientists. Trends in Food Science & Technology, 18(10), 514-525.
  • [13] Pavokovic, D., Krsnik-Rasol, M. (2011). Complex biochemistry and biotechnological production of betalains. Food Technology and Biotechnology, 49(2), 145.
  • [14] Gandia-Herrero, F., Garcia-Carmona, F. (2013). Biosynthesis of betalains: yellow and violet plant pigments. Trends in Plant Science, 18(6), 334-343.
  • [15] Herbach, K.M., Stintzing, F.C., Carle, R. (2006). Betalain stability and degradation-structural and chromatic aspects. Journal of Food Science, 71(4), 41-50.
  • [16] Cemeroğlu, B.S. (2013). Meyve ve Sebze İşleme Teknolojisi.Bizim Grup Basımevi, Kızılay, Ankara.
  • [17] Von Elbe, J.H., Schwartz, S.J. (1996). Colorants. In Food Chemistry, Edited by O.R. Fennema, Marcel Dekker, Inc., New York.
  • [18] Wasserman, B.P, Eiberger, L.L., Guilfoy, M.P. (1984). Effect of hydrogen peroxide and phenolic compounds on horseradish peroxidase-catalyzed decolorization of betalain pigments. Journal of Food Science, 49, 536.
  • [19] Shih, C.C., Wiley, R.C. (1981). Betacyanine and betaxanthine decolorizing enzymes in the beet (Beta vulgaris L.) root. Journal of Food Science, 47, 164.
  • [20] Stintzing, F.C., Carle, C. (2004). Functional properties of anthocyanins and betalains in plants, food, and in human nutrion. Trends Food Science Technology, 15, 19.
  • [21] Kanner,J., Harel, S., Granit, R. (2001). Betalains--a new class of dietary cationized antioxidants. Journal of Agricultural and Food Chemistry, 49, 5178.
  • [22] Celli, G.B., Brooks, M. (2016). Impact of extraction and processing conditions on betalains and comparison of properties with anthocyanins — A current review. Food Research International, 100(3), 501-509.
  • [23] Paciulli, M., Medina-Meza, I.G., Chivara, E., Barbosa-Canovas, G.V. (2016). Impact of thermal and high pressure processing on quality parameters of beetroot (Beta vulgaris L.). LWT - Food Science and Technology, 68, 98-104.
  • [24] Jaafar, M.S. (1992). Studies on the biosynthesis of betalains in cell cultures of beta vulgaris L. University of Edinburg, Scotland.
  • [25] Manus, V. (1994). Development and Characterisation of an Inducible System of Betalain Synthesis in Cell Cultures of Beetroot (Beta vulgaris). Dublin City University, Ireland.
  • [26] Scotter, M. (2010). Review and Evaluation Of Available Methods of Extraction and Analysis For Approved Natural Colours In Food And Drink, London, 59-60.
  • [27] Delgado-Vargas, F., Jiménez, A.R., Paredes-López, O. (2010). Natural pigments: Carotenoids, anthocyanins, and betalains — characteristics, biosynthesis, processing, and stability. Critical Reviews in Food Science and Nutrition, 40(3), 173-289.
  • [28] Bruno, E., Campanone, Martino, M. (2012). Some functional properties of pigment extracts from red cabbage (brassica oleracea) and redbeet (beta vulgaris). Latin American Applied Research, 42, 427-432.
  • [29] Suganyadevi, P., Saravanakumar, M., Aravinthan, K.M., Arunkumar, A., Krishna, R.K., Karthikeyani, S. (2010). Extraction of Betacyanin from Red Beet root (Beta vulgaris L.) and to evaluate its antioxidant potential. Journal of Pharmacy Research, 3(11), 2693-2696.
  • [30] Sturzoiu, A., Stroescu, M., Stoica, A., Dobre, T. (2011). Betanine extraction from beta vulgaris-experimental research and statistical modeling. U.P.B. Sci. Bull, 73(1), 145-156.
  • [31] Xu, H., Peng, Q., Yuan, F., Gao, Y. (2015). Mathematical modeling of betanin extraction from red beet (Beta vulgaris L.) by solid–liquid method. International Journal of Food Engineering, 11(1), 17-22.
  • [32] Azeredo, H., Pereira, A., Souza, A., Gouveia, S., Mendes, K. (2009). Study on efficiency of betacyanin extraction from red beetroots. International Journal of Food Science and Technology, 44, 2464-2469.
  • [33] Swamy, G.J., Sangamithra, A., Chandrasekar, V. (2014). Response surface modeling and process optimization of aqueous extraction of natural pigments from Beta vulgaris using Box-Behnken design of experiments. Dyes and Pigments, 111, 64-74.
  • [34] Loginova, K.V., Lebovka, N.I., Vorobiev, E. (2011). Pulsed electric field assisted aqueous extraction of colorants from red beet. Journal of Food Engineering, 106(2), 127-133.
  • [35] Lopez, N., Puertolas, E., Condon, S., Raso, J., Alvarez, I., 2009. Enhancement of the extraction of betanine from red beetroot by pulsed electric fields. Journal of Food Engineering, 90(1), 60-66.
  • [36] Luengo, E., Martinez, J.M., Alvarez, I., Raso, J. (2016). Effects of millisecond and microsecond pulsed electric fields on redbeet cell disintegration and extraction of betanines. Industrial Crops and Products, 84, 28-33.
  • [37] Zvitov, R., Nussinovitch, A. (2005). Low DC electrification of gel-plant tissue ‘sandwiches’ facilitates extraction and separation of substances from Beta vulgaris beetroots. Food Hydrocolloids, 19(6), 997-1004.
  • [38] Hunter, C.S., Kilby, N.J. (1988). Electropermeabilization and ultrasonic techniques for harvesting secondary metabolites freom plant cells in vitro. Manipulating Secondary Metabolism in Culture, Edited by R. J. Robins, & M. J. C. Rhodes, Cambridge University Press, New York, 285–290p.
  • [39] Cardoso-Ugarte, G.A., Sora-Morales, M.E., Ballard,T., Liceaga, A. (2014). Microwave-assisted extraction of betalains from red beet (Beta vulgaris). LWT - Food Science and Technology, 59(1), 276-282.
  • [40] Chethana, S., Nayak, C.A., Raghavarao, K.S.M.S. (2007). Aqueous two phase extraction for purification and concentration of betalains. Journal of Food Engineering, 81(4), 679-687.
  • [41] Chandrasekhar, J., Sonika, G., Madhusudhan, M.C., Raghavarao, K.S.M.S. (2015). Differential partitioning of betacyanins and betaxanthins employing aqueous two phase extraction. Journal of Food Engineering, 144, 156-163.
  • [42] Sivakumar, V., Anna, J.L., Vijayeeswarri, J., Swaminathan, G. (2009). Ultrasound assisted enhancement in natural dye extraction from beetroot for industrial applications and natural dyeing of leather. Ultrasonics Sonochemistry, 16(6), 782-789.
  • [43] Yıldız, H., Toprak, E. (2009). Meyve ve sebzelerden doğal renk maddelerinin ekstraksiyonu. Akademik Gıda 7(4): 28-34.
  • [44] Cai, Y.Z., Corke, H. (2000). Production and Properties of Spray-dried Amaranthus Betacyanin Pigments. Journal of Food Science, 65(6), 1248-1252.
  • [45] Janiszewska, E., Wlodarczyk, J. (2013). Influence of spray drying conditions on beetroot pigments retention after microencapsulation process. Acta Agrophysica, 20(2), 343-356.
  • [46] Khan, M.I. (2016). Stabilization of betalains: A review. Food Chemistry, 197, 1280-1285.
  • [47] Bazaria, B., Kumar, P. (2016a). Optimization of spray drying parameters for beetroot juice powder using response surface methodology (RSM). Journal of the Saudi Society of Agricultural Sciences, 1-8.
  • [48] Bazaria, B., Kumar, P. (2016b). Effect of whey protein concentrate as drying aid and drying parameters on physicochemical and functional properties of spray dried beetroot juice concentrate. Food Bioscience, 14, 21-27.
  • [49] Kaimainen, M., Laaksonen, O., Järvenpää, E., Sandell, M., Huopalahti, R., 2015a. Consumer acceptance and stability of spray dried betanin in model juices. Food Chemistry, 187, 398-406.
  • [50] Pitalua, E., Jimenez, M., Vernon-Carter, E.J., Beristain, C.I. (2010). Antioxidative activity of microcapsules with beetroot juice using gum Arabic as wall material. Food and Bioproducts Processing, 88, 253-258.
  • [51] Guadarrama-Lezama, A.Y., Cruz-Olivares, J., Martinez-Vargas, S.L., Carrillo-Navas,H., Roman-Guerrero, A., Perez-Alonso, C. (2014). Determination of the minimum integral entropy,water sorption and glass transition temperature to establishing critical storage conditıins of beetroot juice microcapsules by spray drying. Revista Mexicana de Ingeniería Química, 13(2), 405-416.
  • [52] Chranioti, C., Nikoloudaki, A., Tzia, C. 2015. Saffron and beetroot extracts encapsulated in maltodextrin,gum Arabic, modified starch and chitosan: Incorporationin a chewing gum system. Carbohydrate Polymers 127: 252-263.
  • [53] Šaponjac,V.T., Canadanovic-Brunet, J., Cetkovic, G., Jakišic, M., Djilas, S., Vulic, J., Stajcic, S. (2016). Encapsulation of Beetroot Pomace Extract: RSM Optimization, Storage and Gastrointestinal Stability. Molecules, 21(5), 1-16.
  • [54] Serris, G.S., Biliaderis, C.G. (2001). Degradation kinetics of beetroot pigment encapsulated in polymeric matrices. Journal of the Science of Food and Agriculture, 81(8), 691-700.
  • [55] Ibraheem, A.A., Makpoul, K.R., Amira, M.S. (2015). Improving Red Color of Some Food Products Using Red Beet Powder. International Journal of Science and Research, 5(12), 2319-7064.
  • [56] Ravichandran, K., Palaniraj, R., Saw, N.M.M.T., Gabr, M.M.A., Ahmed, A.R., Knorr, D., Smeranska, I. (2014). Effects of different encapsulation agents and drying process on stability of betalains extract. Journal of Food Science and Technology, 51(9), 2216-2221.
  • [57] Antigo, J., Bergamasco, R., Madrona, G. (2017). Effect of pH on the stability of red beet extract (Beta vulgaris L.) microcapsules produced by spray drying or freeze drying. Food Science and Technology, 38(1), 72-77.
  • [58] Kaimainen, M., Marze, S., Järvenpää, E., Anton, E. (2015b). Encapsulation of betalain into w/o/w double emulsion and release during in vitro intestinal lipid digestion. LWT - Food Science and Technology, 60(2), 899-904.
  • [59] Gandia-Herrero, F., Jimenez-Atienzar,M., Cabanes, J., Garcia-Carmona, F., Escribano, J. (2010). Stabilization of the bioactive pigment of opuntia fruits through maltodextrin encapsulation. J. Agric. Food Chemistry, 2010(58), 10646-10652.
  • [60] Saénz, C., Tapia, S., Cháve, J., Robert, P. (2009). Microencapsulation by spray drying of bioactive compounds from cactus pear (Opuntia ficus-indica). Food Chemistry, 114(2), 616-622.
  • [61] Ruiz-Gutiérrez, M.G., Amaya-Guerra, C.A., Quintero-Ramos, A., Ruiz-Anchondo, T., Gutiérrez-Uribe, J.A., Baez-González, J.G., Lardizabal-Gutiérrez, D., Campos-Venegas, K. (2014). Effect of soluble fiber on the physicochemical properties of Cactus Pear (Opuntia ficus indica) encapsulated using spray drying. Food Sci. Biotechnol, 23(3), 755-763.
  • [62] Robert, P., Torres, V., Garcia, P., Vergara, C., Saenz, C. (2015). The encapsulation of purple cactus pear (Opuntia ficus-indica) pulp by using polysaccharide-proteins as encapsulating agents. LWT - Food Science and Technology, 60(2), 1039-1045.
  • [63] Rodríguez-Sánchez, J.A., Cuatzo-Lozano, M.I., Perez-Loredo, M.G., Abarca-Sarro, D.I., Navarro, Y.G. (2017). Alginate Encapsulation as a Preservation Method of Pitaya Fruit Juice (Stenocereus spp.). Journal of Food Science and Engineering, 7, 127-134.
  • [64] Carolina-Otálora, M., Carriazo, J.G., Iturriaga, L., Osorio, C., Nazareno, M.A. (2016). Encapsulating betalains from Opuntia ficus-indica fruits by ionic gelation: Pigment chemical stability during storage of beads. Food Chemistry, 202, 373-382.
  • [65] Tze, N.L., Han, C.P., Yusof, Y.A., Ling, C.N., Talib, R.A., Taip, F.S., Aziz, M.G. (2012). Physicochemical and nutritional properties of spray-dried pitaya fruit powder as natural colorant. Food Sci. Biotechnol, 21(3), 675-682.
  • [67] Shaaruddin, S., Ghazali, H.M., Mirhosseini, S.H., Muhammad, K. (2017). Stability of betanin in pitaya powder and confection as affected by resistant maltodextrin. LWT - Food Science and Technology, 84, 129-134.
  • [68] Garcia-Lucas, K.A., Mendez-Lagunas, L.L., Rodriguez-Raminez, J., Campanella, O.H., Patel, B.K., Barriada-Bernal, L.G. (2016). Physical properties of spray dryed Stenocereus griseus pitaya juice powder. Journal of Food Process Engineering, 40, 1-9.
Toplam 67 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Derleme Makaleler
Yazarlar

Kardelen Özcan Bu kişi benim 0000-0002-8759-4336

Seda Ersus Bilek 0000-0003-0475-4099

Yayımlanma Tarihi 31 Aralık 2018
Gönderilme Tarihi 1 Kasım 2017
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Özcan, K., & Ersus Bilek, S. (2018). Kırmızı Pancardan Renk Maddesi Üretimi ve Stabilitesinin Sağlanması. Akademik Gıda, 16(4), 439-449. https://doi.org/10.24323/akademik-gida.505529
AMA Özcan K, Ersus Bilek S. Kırmızı Pancardan Renk Maddesi Üretimi ve Stabilitesinin Sağlanması. Akademik Gıda. Aralık 2018;16(4):439-449. doi:10.24323/akademik-gida.505529
Chicago Özcan, Kardelen, ve Seda Ersus Bilek. “Kırmızı Pancardan Renk Maddesi Üretimi Ve Stabilitesinin Sağlanması”. Akademik Gıda 16, sy. 4 (Aralık 2018): 439-49. https://doi.org/10.24323/akademik-gida.505529.
EndNote Özcan K, Ersus Bilek S (01 Aralık 2018) Kırmızı Pancardan Renk Maddesi Üretimi ve Stabilitesinin Sağlanması. Akademik Gıda 16 4 439–449.
IEEE K. Özcan ve S. Ersus Bilek, “Kırmızı Pancardan Renk Maddesi Üretimi ve Stabilitesinin Sağlanması”, Akademik Gıda, c. 16, sy. 4, ss. 439–449, 2018, doi: 10.24323/akademik-gida.505529.
ISNAD Özcan, Kardelen - Ersus Bilek, Seda. “Kırmızı Pancardan Renk Maddesi Üretimi Ve Stabilitesinin Sağlanması”. Akademik Gıda 16/4 (Aralık 2018), 439-449. https://doi.org/10.24323/akademik-gida.505529.
JAMA Özcan K, Ersus Bilek S. Kırmızı Pancardan Renk Maddesi Üretimi ve Stabilitesinin Sağlanması. Akademik Gıda. 2018;16:439–449.
MLA Özcan, Kardelen ve Seda Ersus Bilek. “Kırmızı Pancardan Renk Maddesi Üretimi Ve Stabilitesinin Sağlanması”. Akademik Gıda, c. 16, sy. 4, 2018, ss. 439-4, doi:10.24323/akademik-gida.505529.
Vancouver Özcan K, Ersus Bilek S. Kırmızı Pancardan Renk Maddesi Üretimi ve Stabilitesinin Sağlanması. Akademik Gıda. 2018;16(4):439-4.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).