Derleme
BibTex RIS Kaynak Göster

Protein Emülsiyon Ağıyla Yapılandırılmış Oleojeller

Yıl 2019, , 410 - 416, 18.11.2019
https://doi.org/10.24323/akademik-gida.647730

Öz

Bitkisel
yağlar genellikle hidrojenasyon işlemi ile yapılandırılmakta, bu işlem sonucunda
ise trans veya doymuş yağ asitlerinin
seviyesinde artış gözlenmektedir. Doymuş ve trans
yağ asitlerinin diyetteki varlığı ile kalp-damar hastalıkları arasındaki
ilişki bilinmektedir. Doymuş ve/veya trans
yağ alımının azaltılmasına yönelik alternatif bir yol olarak ortaya konan
oleojelasyon teknolojisinde, bitkisel yağın viskoelastik jel benzeri bir yapıya
dönüştürülmesi için organojelatör ajanlar kullanılmakta, ancak ekonomik,
verimli ve gıda sınıfı yeni organojelatörlerin belirlenmesine ihtiyaç
duyulmaktadır. Son yıllarda bazı gıda kaynaklı proteinlerin ve
protein-karbonhidrat komplekslerinin bitkisel yağların yapılandırılmasında
kullanılması umut verici bir yenilik olarak ortaya çıkmıştır. Bu sebeple,
protein veya diğer polimerlerin bir yağ-su arayüzüne adsorbe edilmesi, ardından
su fazının uzaklaştırılmasına dayanan yüksek yağ içeriği ve elastikiyete sahip
yüksek iç fazlı emülsiyonların eldesi dikkat çekmektedir. Biyolojik olarak
bozunabilir bir protein jel matrisi içine sıvı yağın sabitlenmesiyle
gerçekleşitirilen yağ yapılandırma işlemi, gıda, farmasötik, nutrasötik ve diğer
uygulamalarında yeni ürünler geliştirmek için yeni bir teknik olarak dikkat
çekmektedir. Bu derlemenin amacı protein ağ yapılarıyla sıvı yağların
yapılandırılmasına (oleojel) ait güncel çalışmaların değerlendirilmesi ve yeni
araştırma ihtiyaçlarının ortaya konulmasıdır.

Kaynakça

  • [1] Patel, A.R., Dewettinck, K. (2016). Edible oil structuring: An overview and recent updates. Food & Function, 7(1), 20-29.
  • [2] Mozaffarian, D., Clarke, R. (2009). Quantitative effects on cardiovascular risk factors and coronary heart disease risk of replacing partially hydrogenated vegetable oils with other fats and oils. European Journal of Clinical Nutrition, 63, S22-S33.
  • [3] Liu, X., Chen, X-W., Guo, J., Yin, S-W., Yang, X-Q. (2016). Wheat gluten based percolating emulsion gels as simple strategy for structuring liquid oil. Food Hydrocolloid, 61, 747-755.
  • [4] Co, E.D., Marangoni, A.G. (2012). Organogels: An alternative edible oil-structuring method. Journal of American Oil Chemical Society, 89(5),749–780.
  • [5] Rogers, M.A., Wright A.J., Marangoni A.G. (2009). Oil organogels: the fat of the future? Soft Matter, 5, 1594-1596.
  • [6] Patel, A.R., Schatteman, D., Lesaffer A., Dewettinck, K. (2013a). A foam-templated approach for fabricating organogels using a water-soluble polymer. RSC Advances, 3, 22900-22903.
  • [7] Patel, A.R., Schatteman D., De Vos W.H., Dewettinck, K. (2013b). Shellac as a natural material to structure a liquid oil-based thermo reversible soft matter system. RSC Advances, 3, 5324–5327.
  • [8] Pernetti, M., van Malssen, K.F., Flöter, E., Bot, A. (2007a). Structuring of edible oils by alternatives to crystalline fat. Current Opinion in Colloid & Interface Science, 12(4-5), 221–231.
  • [9] De Vries, A., Hendriks, J., van der Linden, E., Scholten, E. (2015). Protein oleogels from protein hydrogels via a stepwise solvent exchange route. Langmuir, 31(51), 13850−13859.
  • [10] Patel, A.R., Cludts, N., Sintang, M.D.B., Lesaffer, A., Dewettinck, K. (2014a). Edible oleogels based on water soluble food polymers: Preparation, characterization and potential application. Food & Function, 5(11), 2833-2841.
  • [11] Rogers, M.A., Strober, T., Bot, A., Toro-Vazquez, J.F., Stortz, T., Marangoni, A.G. (2014). Edible oleogels in molecular gastronomy. International Journal of Gastronomy and Food Science, 2, 22–31.
  • [12] Rogers, M.A. (2009). Novel structuring strategies for unsaturated fats-meeting the zero-trans, zero-saturated fat challenge: A review. Food Research International, 42(7), 747–753.
  • [13] Blake, A.I., Co, E.D., Marangoni, A.G. (2014). Structure and physical properties of plant waxcrystal networks and their relationship to oil binding capacity. Journal of American Oil Chemical Society, 91(6), 885-903.
  • [14] Nikiforidis, C.V., Scholten, E. (2014). Self-assemblies of lecithin and α-tocopherol as gelatorsof lipid material. RSC Advances, 4(5), 2466-2473.
  • [15] Pernetti, M.,van Malssen, K.F., Kalnin, D., Flöter, E. (2007b). Structuring edible oil with lecithin and sorbitan tri-stearate. Food Hydrocolloid, 21(5-6), 855-861.
  • [16] Bot, A., Agterof, W.G.M. (2006). Structuring of edible oils by mixtures of γ-oryzanol with β- sitosterol or related phytosterols. Journal of American Oil Chemical Society, 83(6), 513-521.
  • [17] Da Pieve, S., Calligaris, S., Co, E., Nicoli, M.C., Marangoni, A.G. (2010). Shear nanostructuring of monoglyceride organogels. Food Biophysics, 5(3), 211-217.
  • [18] Patel, A.R., Rajarethinem, P.S., Grȩdowska, A., Turhan, O., Lesaffer, A., De Vos, W.H., Van De Walle, D., Dewettinck, K. (2014b). Edible applications of shellac oleogels: spreads, chocolate paste and cakes. Food & Function, 5, 645–652.
  • [19] Sagiri, S.S., Samateh, M., John, G. (2018). Biobased molecular structuring agents. In: Edible oil structuring: concepts, methods and applications. Edited by A.R., Patel. Royal Soc. Chem, Cambridge, UK. pp. 25-52.
  • [20] Patel, A.R., Dewettinck, K. (2015). Comperative evaluation of structured oil systems: Shellac oleogel, HPMC oleogel and HIPE gel. European Journal Lipid Science and Technology, 117(11), 1772-1781.
  • [21] Bonnet, J., Suissa, G., Raynal, M., Bouteiller, L. (2014). Organogel formation rationalized by hansen solubility parameters: dos and don’ts. Soft Matter, 10, 3154-3160.
  • [22] Marangoni, A.G., Garti, N. (2011). Food oil gels: new strategies for structuring edible oils. In: Edible oleogels: Structure and health implications. Edited by A.G., Marangoni, N., Garti. AOCS Press, Urbana, Illinois, 352s.
  • [23] Patel, A.R. (2015). Alternative routes to oil structuring. Springer International Publishing, AG Switzerland. 70p. [24] Scholten, E., De Vries, A. (2018). Proteins as building blocks for oil structuring. In: Edible oil structuring: concepts, methods and applications. Edited by A.R., Patel. Royal Soc. Chem, Cambridge, UK. pp. 150-174.
  • [25] Sutherland, I.W. (2007). Biotechnology of microbial polysaccharides in food. In: Food Biotechnology, Shetty, K., Paliyath, G., Pometto, A., Levin, E. (2nd Eds.), CRC Press, Boca Raton, FL, pp. 193–220.
  • [26] Banerjee, S., Bhattacharya, S. (2012). Food gels: gelling process and new applications. Critical Reviews in Food Science and Nutrition, 52, 334-346.
  • [27] Ward, A.G., Courts, A. (1977). The science and technology of gelatin. Academic Press, London, New York, 564p.
  • [28] Schrieber, R., Gareis, H. (2007). Gelatine Handbook: Theory and Industrial Practice. Wiley-VCH, Weinheim, Germany. 347p.
  • [29] Oakenfull, D. (1987). Gelling agents. Critical Reviews Food Science and Nutrition, 26(1),1–25.
  • [30] Aguilera, J.M., Rademacher, B. (2004). Protein gels. In: Proteins in Food Processing. Edited by, R.Y. Yada. Woodhead Publishing Limited and CRC Press LLC, New York, pp. 468–482.
  • [31] Bhattacharya, S., Jena, R. (2007). Gelling behavior of defatted soybean flour dispersions due to microwave treatment: Textural, oscillatory, microstructural and sensory properties. Journal of Food Engineering, 78(4), 1305-1314.
  • [32] Shahidi R, Synowiecky, J. (1991). Isolation and characterization of nutrients and value added products from snow crab (Chionocetes opilio) and shrimp (Pandalus borealis) processing discards. Journal of Agricultural and Food Chemistry, 39(8), 1527–1532.
  • [33] De Vries A., Wesseling, A., van der Linden, E, Scholten, E. (2017a). Protein oleogels from heat-set whey protein aggregates. Journal of Colloid and Interface Science, 486, 75–83.
  • [34] De Vries, A., Gomez, Y.L., van der Linden, E., Scholten E. (2017b). The effect of oil type on network formation by protein aggregatesinto oleogels. RSC Advences, 19, 11803-11812.
  • [35] Liu, X., Yang, X-Q. (2018). Cereal protein-based emulsion gels for edible oil structuring. . In: Edible oil structuring: concepts, methods and applications. Edited by A.R., Patel, Royal Soc. Chem, Cambridge, UK. pp. 198-216.
  • [36] Zou, Y., Guo, J., Yin, S.W., Wang, J.M., Yang, X.Q. (2015). Pickering emulsion gels prepared by hydrogen-bonded zein/tannic acid complex colloidal particles. Journal of Agricultural and Food Chemistry, 63, 7405-7414.
  • [37] Osborne, T.B. (1987). The amount and properties of the proteins of the maize kernel. 2. Journal of the American Chemical Society, 19(7), 525-532.
  • [38] De Vries, A., Nikiforidis, C.V., Scholten, E. (2014). Natural amphiphilic proteins as tri-block Janus particles: Self-sorting into thermo-responsive gels. Europhysics Letter, 107, 58003.
  • [39] Chen, X.W., Fu, S.Y., Hou, J.J., Guo, J., Wang, J.M., Yang, X.Q. (2016). Zein based oil-in-glycerol emulgels enriched with β-carotene as margarine alternatives. Food Chemistry, 211(15), 836–844.
  • [40] Xiao, J., Wang, X.A., Gonzalez, A.J.P., Huang, Q. (2016). Kafirin nanoparticles-stabilized Pickering emulsions: Microsctucture and rheological behavior. Food Hydrocolloids, 54, 30-39.
  • [41] Wijaya, W., Van Der meeren, P., Patel, A.R. (2018). Oleogels from emulsion (HIPE) templates stabilized by protein-polysaccharide complexes. In: Edible oil structuring: concepts, methods and applications. Edited by A.R., Patel. Royal Soc. Chem, Cambridge, UK. pp. 175-197.
  • [42] Romoscanu, A.I., Mezzenga, R. (2006). Emulsion-templated fully reversible protein-in-oil gels. Langmuir, 22(18), 7812-7818.
  • [43] Romoscanu, A., Mezzenga, R. (2005). Cross linking and rheological characterization of adsorbed protein layers at the oil-water interface. Langmuir, 21(21), 9689–9697.
  • [44] Kellerby, S.S., Gu, Y.S., McClements, D.J., Decker, E.A. (2006). Lipid oxidation in a menhaden oil-inwater emulsion stabilized by sodium caseinate cross-linked with transglutaminase. Journal of Agricultal and Food Chemistry, 54(26), 10222-10227. [45] Cho, Y.H., Shim, H.K., Park, J., 2003. Encapsulation of fish oil by an enzymatic gelation process using transglutaminase cross-linked proteins. Journal of Food Science, 68(9), 2717-2723.
  • [46] Lynch, S.A., Mullen, A.M., O’Neill E.E., Garcὶa, C.A. (2017). Harnessing the potential of blood proteins as functional ingredients: A review of the state of the art in blood processing. Comprehensive Reviews in Food Science and Food Safety, 16(2), 330-344.
  • [47] Mezzenga, R. (2011). Protein-templated oil gels and powders. In: Edible oleogels: structure and health implications. Edited by A.G., Marangoni, N., Garti. AOCS Press, Urbana, Illinois, pp. 271-294.
  • [48] Patel, A.R., Rajarethinem, P.S., Cludts, N., Lewille, B., De Vos, W.H., Lesaffer, A., Dewettinck, K. (2015). Biopolymer-based structuring of liquid oil into soft solids and oleogels using water-continuous emulsions as templates. Langmuir, 31(7), 2065-2073.

Oleogels Structured with Protein Emulsion Network

Yıl 2019, , 410 - 416, 18.11.2019
https://doi.org/10.24323/akademik-gida.647730

Öz

Edible
liquid oils are usually structured with hydrogenation process, therefore trans and saturated fatty acid contents are
enhanced. The relationship between saturated and trans fatty acids and cardio-vascular diseases are well documented.
In the oleogelation technology, which took attendance as an alternative way of
reducing saturated and trans fats in
diet, the liquid oil is converted into viscoelastic gel liked structure by
addition of organogelators, and feasible, economical and food grade organogelators
are demanded. It was stated that as structuring agents, the use of proteins and
protein-carbohydrate complexes are quite promising. For this reason, protein
and other polimers are adsorbed onto the oil-water interface and then water was
removed to yield high internal phase emulsions. These emulsions could be used
to create the oleogels. Oleogels produced by immobilization of liquid oil in
bio-degradable protein matrix could be used in foods, pharmaceutics and other
areas to develop new products, and this technique has recently drawn attention
for research. The aims of this review are to evaluate the current studies about
protein networks for oil structuring (oleogel), and to identify further research
needs in this field.

Kaynakça

  • [1] Patel, A.R., Dewettinck, K. (2016). Edible oil structuring: An overview and recent updates. Food & Function, 7(1), 20-29.
  • [2] Mozaffarian, D., Clarke, R. (2009). Quantitative effects on cardiovascular risk factors and coronary heart disease risk of replacing partially hydrogenated vegetable oils with other fats and oils. European Journal of Clinical Nutrition, 63, S22-S33.
  • [3] Liu, X., Chen, X-W., Guo, J., Yin, S-W., Yang, X-Q. (2016). Wheat gluten based percolating emulsion gels as simple strategy for structuring liquid oil. Food Hydrocolloid, 61, 747-755.
  • [4] Co, E.D., Marangoni, A.G. (2012). Organogels: An alternative edible oil-structuring method. Journal of American Oil Chemical Society, 89(5),749–780.
  • [5] Rogers, M.A., Wright A.J., Marangoni A.G. (2009). Oil organogels: the fat of the future? Soft Matter, 5, 1594-1596.
  • [6] Patel, A.R., Schatteman, D., Lesaffer A., Dewettinck, K. (2013a). A foam-templated approach for fabricating organogels using a water-soluble polymer. RSC Advances, 3, 22900-22903.
  • [7] Patel, A.R., Schatteman D., De Vos W.H., Dewettinck, K. (2013b). Shellac as a natural material to structure a liquid oil-based thermo reversible soft matter system. RSC Advances, 3, 5324–5327.
  • [8] Pernetti, M., van Malssen, K.F., Flöter, E., Bot, A. (2007a). Structuring of edible oils by alternatives to crystalline fat. Current Opinion in Colloid & Interface Science, 12(4-5), 221–231.
  • [9] De Vries, A., Hendriks, J., van der Linden, E., Scholten, E. (2015). Protein oleogels from protein hydrogels via a stepwise solvent exchange route. Langmuir, 31(51), 13850−13859.
  • [10] Patel, A.R., Cludts, N., Sintang, M.D.B., Lesaffer, A., Dewettinck, K. (2014a). Edible oleogels based on water soluble food polymers: Preparation, characterization and potential application. Food & Function, 5(11), 2833-2841.
  • [11] Rogers, M.A., Strober, T., Bot, A., Toro-Vazquez, J.F., Stortz, T., Marangoni, A.G. (2014). Edible oleogels in molecular gastronomy. International Journal of Gastronomy and Food Science, 2, 22–31.
  • [12] Rogers, M.A. (2009). Novel structuring strategies for unsaturated fats-meeting the zero-trans, zero-saturated fat challenge: A review. Food Research International, 42(7), 747–753.
  • [13] Blake, A.I., Co, E.D., Marangoni, A.G. (2014). Structure and physical properties of plant waxcrystal networks and their relationship to oil binding capacity. Journal of American Oil Chemical Society, 91(6), 885-903.
  • [14] Nikiforidis, C.V., Scholten, E. (2014). Self-assemblies of lecithin and α-tocopherol as gelatorsof lipid material. RSC Advances, 4(5), 2466-2473.
  • [15] Pernetti, M.,van Malssen, K.F., Kalnin, D., Flöter, E. (2007b). Structuring edible oil with lecithin and sorbitan tri-stearate. Food Hydrocolloid, 21(5-6), 855-861.
  • [16] Bot, A., Agterof, W.G.M. (2006). Structuring of edible oils by mixtures of γ-oryzanol with β- sitosterol or related phytosterols. Journal of American Oil Chemical Society, 83(6), 513-521.
  • [17] Da Pieve, S., Calligaris, S., Co, E., Nicoli, M.C., Marangoni, A.G. (2010). Shear nanostructuring of monoglyceride organogels. Food Biophysics, 5(3), 211-217.
  • [18] Patel, A.R., Rajarethinem, P.S., Grȩdowska, A., Turhan, O., Lesaffer, A., De Vos, W.H., Van De Walle, D., Dewettinck, K. (2014b). Edible applications of shellac oleogels: spreads, chocolate paste and cakes. Food & Function, 5, 645–652.
  • [19] Sagiri, S.S., Samateh, M., John, G. (2018). Biobased molecular structuring agents. In: Edible oil structuring: concepts, methods and applications. Edited by A.R., Patel. Royal Soc. Chem, Cambridge, UK. pp. 25-52.
  • [20] Patel, A.R., Dewettinck, K. (2015). Comperative evaluation of structured oil systems: Shellac oleogel, HPMC oleogel and HIPE gel. European Journal Lipid Science and Technology, 117(11), 1772-1781.
  • [21] Bonnet, J., Suissa, G., Raynal, M., Bouteiller, L. (2014). Organogel formation rationalized by hansen solubility parameters: dos and don’ts. Soft Matter, 10, 3154-3160.
  • [22] Marangoni, A.G., Garti, N. (2011). Food oil gels: new strategies for structuring edible oils. In: Edible oleogels: Structure and health implications. Edited by A.G., Marangoni, N., Garti. AOCS Press, Urbana, Illinois, 352s.
  • [23] Patel, A.R. (2015). Alternative routes to oil structuring. Springer International Publishing, AG Switzerland. 70p. [24] Scholten, E., De Vries, A. (2018). Proteins as building blocks for oil structuring. In: Edible oil structuring: concepts, methods and applications. Edited by A.R., Patel. Royal Soc. Chem, Cambridge, UK. pp. 150-174.
  • [25] Sutherland, I.W. (2007). Biotechnology of microbial polysaccharides in food. In: Food Biotechnology, Shetty, K., Paliyath, G., Pometto, A., Levin, E. (2nd Eds.), CRC Press, Boca Raton, FL, pp. 193–220.
  • [26] Banerjee, S., Bhattacharya, S. (2012). Food gels: gelling process and new applications. Critical Reviews in Food Science and Nutrition, 52, 334-346.
  • [27] Ward, A.G., Courts, A. (1977). The science and technology of gelatin. Academic Press, London, New York, 564p.
  • [28] Schrieber, R., Gareis, H. (2007). Gelatine Handbook: Theory and Industrial Practice. Wiley-VCH, Weinheim, Germany. 347p.
  • [29] Oakenfull, D. (1987). Gelling agents. Critical Reviews Food Science and Nutrition, 26(1),1–25.
  • [30] Aguilera, J.M., Rademacher, B. (2004). Protein gels. In: Proteins in Food Processing. Edited by, R.Y. Yada. Woodhead Publishing Limited and CRC Press LLC, New York, pp. 468–482.
  • [31] Bhattacharya, S., Jena, R. (2007). Gelling behavior of defatted soybean flour dispersions due to microwave treatment: Textural, oscillatory, microstructural and sensory properties. Journal of Food Engineering, 78(4), 1305-1314.
  • [32] Shahidi R, Synowiecky, J. (1991). Isolation and characterization of nutrients and value added products from snow crab (Chionocetes opilio) and shrimp (Pandalus borealis) processing discards. Journal of Agricultural and Food Chemistry, 39(8), 1527–1532.
  • [33] De Vries A., Wesseling, A., van der Linden, E, Scholten, E. (2017a). Protein oleogels from heat-set whey protein aggregates. Journal of Colloid and Interface Science, 486, 75–83.
  • [34] De Vries, A., Gomez, Y.L., van der Linden, E., Scholten E. (2017b). The effect of oil type on network formation by protein aggregatesinto oleogels. RSC Advences, 19, 11803-11812.
  • [35] Liu, X., Yang, X-Q. (2018). Cereal protein-based emulsion gels for edible oil structuring. . In: Edible oil structuring: concepts, methods and applications. Edited by A.R., Patel, Royal Soc. Chem, Cambridge, UK. pp. 198-216.
  • [36] Zou, Y., Guo, J., Yin, S.W., Wang, J.M., Yang, X.Q. (2015). Pickering emulsion gels prepared by hydrogen-bonded zein/tannic acid complex colloidal particles. Journal of Agricultural and Food Chemistry, 63, 7405-7414.
  • [37] Osborne, T.B. (1987). The amount and properties of the proteins of the maize kernel. 2. Journal of the American Chemical Society, 19(7), 525-532.
  • [38] De Vries, A., Nikiforidis, C.V., Scholten, E. (2014). Natural amphiphilic proteins as tri-block Janus particles: Self-sorting into thermo-responsive gels. Europhysics Letter, 107, 58003.
  • [39] Chen, X.W., Fu, S.Y., Hou, J.J., Guo, J., Wang, J.M., Yang, X.Q. (2016). Zein based oil-in-glycerol emulgels enriched with β-carotene as margarine alternatives. Food Chemistry, 211(15), 836–844.
  • [40] Xiao, J., Wang, X.A., Gonzalez, A.J.P., Huang, Q. (2016). Kafirin nanoparticles-stabilized Pickering emulsions: Microsctucture and rheological behavior. Food Hydrocolloids, 54, 30-39.
  • [41] Wijaya, W., Van Der meeren, P., Patel, A.R. (2018). Oleogels from emulsion (HIPE) templates stabilized by protein-polysaccharide complexes. In: Edible oil structuring: concepts, methods and applications. Edited by A.R., Patel. Royal Soc. Chem, Cambridge, UK. pp. 175-197.
  • [42] Romoscanu, A.I., Mezzenga, R. (2006). Emulsion-templated fully reversible protein-in-oil gels. Langmuir, 22(18), 7812-7818.
  • [43] Romoscanu, A., Mezzenga, R. (2005). Cross linking and rheological characterization of adsorbed protein layers at the oil-water interface. Langmuir, 21(21), 9689–9697.
  • [44] Kellerby, S.S., Gu, Y.S., McClements, D.J., Decker, E.A. (2006). Lipid oxidation in a menhaden oil-inwater emulsion stabilized by sodium caseinate cross-linked with transglutaminase. Journal of Agricultal and Food Chemistry, 54(26), 10222-10227. [45] Cho, Y.H., Shim, H.K., Park, J., 2003. Encapsulation of fish oil by an enzymatic gelation process using transglutaminase cross-linked proteins. Journal of Food Science, 68(9), 2717-2723.
  • [46] Lynch, S.A., Mullen, A.M., O’Neill E.E., Garcὶa, C.A. (2017). Harnessing the potential of blood proteins as functional ingredients: A review of the state of the art in blood processing. Comprehensive Reviews in Food Science and Food Safety, 16(2), 330-344.
  • [47] Mezzenga, R. (2011). Protein-templated oil gels and powders. In: Edible oleogels: structure and health implications. Edited by A.G., Marangoni, N., Garti. AOCS Press, Urbana, Illinois, pp. 271-294.
  • [48] Patel, A.R., Rajarethinem, P.S., Cludts, N., Lewille, B., De Vos, W.H., Lesaffer, A., Dewettinck, K. (2015). Biopolymer-based structuring of liquid oil into soft solids and oleogels using water-continuous emulsions as templates. Langmuir, 31(7), 2065-2073.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Derleme Makaleler
Yazarlar

Eda Keskin Uslu Bu kişi benim 0000-0001-5876-3826

Emin Yılmaz 0000-0003-1527-5042

Yayımlanma Tarihi 18 Kasım 2019
Gönderilme Tarihi 11 Haziran 2018
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Keskin Uslu, E., & Yılmaz, E. (2019). Protein Emülsiyon Ağıyla Yapılandırılmış Oleojeller. Akademik Gıda, 17(3), 410-416. https://doi.org/10.24323/akademik-gida.647730
AMA Keskin Uslu E, Yılmaz E. Protein Emülsiyon Ağıyla Yapılandırılmış Oleojeller. Akademik Gıda. Kasım 2019;17(3):410-416. doi:10.24323/akademik-gida.647730
Chicago Keskin Uslu, Eda, ve Emin Yılmaz. “Protein Emülsiyon Ağıyla Yapılandırılmış Oleojeller”. Akademik Gıda 17, sy. 3 (Kasım 2019): 410-16. https://doi.org/10.24323/akademik-gida.647730.
EndNote Keskin Uslu E, Yılmaz E (01 Kasım 2019) Protein Emülsiyon Ağıyla Yapılandırılmış Oleojeller. Akademik Gıda 17 3 410–416.
IEEE E. Keskin Uslu ve E. Yılmaz, “Protein Emülsiyon Ağıyla Yapılandırılmış Oleojeller”, Akademik Gıda, c. 17, sy. 3, ss. 410–416, 2019, doi: 10.24323/akademik-gida.647730.
ISNAD Keskin Uslu, Eda - Yılmaz, Emin. “Protein Emülsiyon Ağıyla Yapılandırılmış Oleojeller”. Akademik Gıda 17/3 (Kasım 2019), 410-416. https://doi.org/10.24323/akademik-gida.647730.
JAMA Keskin Uslu E, Yılmaz E. Protein Emülsiyon Ağıyla Yapılandırılmış Oleojeller. Akademik Gıda. 2019;17:410–416.
MLA Keskin Uslu, Eda ve Emin Yılmaz. “Protein Emülsiyon Ağıyla Yapılandırılmış Oleojeller”. Akademik Gıda, c. 17, sy. 3, 2019, ss. 410-6, doi:10.24323/akademik-gida.647730.
Vancouver Keskin Uslu E, Yılmaz E. Protein Emülsiyon Ağıyla Yapılandırılmış Oleojeller. Akademik Gıda. 2019;17(3):410-6.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).