Araştırma Makalesi
BibTex RIS Kaynak Göster

Drying Blueberry (Vaccinium corymbosum L.) Juice Concentrate by Spray Dryer: Optimization by Response Surface Methodology

Yıl 2017, Cilt: 15 Sayı: 2, 139 - 148, 11.08.2017
https://doi.org/10.24323/akademik-gida.333667

Öz

In this study, fruit powder was produced by a spray dryer from fruit
juice concentrate of blueberry which is high in phenolics and antioxidant
activity. Maltodextrin (DE8) was used as a drying agent. The effects of drying
parameters and optimum drying conditions were determined by using response
surface methodology (RSM). While the inlet air temperature (110-150°C) and the
amount of maltodextrin (20-80%) were independent variables, the phenolic
recovery and drying yield were dependent variables. At optimum drying
conditions, inlet air temperature and amount of maltodextrin were 130°C and 71%,
respectively. Outlet air temperature at an optimum condition was 76°C. The
total yield and phenolic recovery obtained at optimum conditions for fruit
powder (3.51% moisture) were
75.8% and 86.1%, respectively. The solubility, density,
hygroscopicity, porosity, cohesiveness, flowability, glass transition
temperature, total phenolic content, total anthocyanin content, antioxidant
capacity, and color were used as quality parameters.

Kaynakça

  • [1] Koca, I., Karadeniz, B., 2009. Antioxidant properties of blackberry and blueberry fruits grown in the Black Sea Region of Turkey. Scientia Horticulturae 121(4): 447-450.
  • [2] de Souza, V.R., Pereira, P.A.P., da Silva, T.L.T., de Oliveira Lima, L.C., Pio, R., Queiroz, F., 2014. Determination of the bioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry and sweet cherry fruits. Food Chemistry 156: 362-368.
  • [3] Cho, M.J., Howard, L.R., Prior, R.L., Clark, J.R., 2005. Flavonol glycosides and antioxidant capacity of various blackberry and blueberry genotypes determined by high-performance liquid chromatography/mass spectrometry. Journal of the Science of Food and Agriculture 85(13): 2149-2158.
  • [4] Fang, Z., Bhandari, B., 2011. Effect of spray drying and storage on the stability of bayberry polyphenols. Food Chemistry 129(3): 1139-1147.
  • [5] Koç, M., Kaymak-Ertekin, F., 2016. Şeker İçeriği Yüksek Gıdaların Püskürtülerek Kurutulması: Ürün Kazanımı ve Toz Ürün Özelliklerinin Geliştirilmesi. Türk Tarım – Gıda Bilim ve Teknoloji Dergisi 4(5): 336-344.
  • [6] Shahidi, F., Han, X.Q., 1993. Encapsulation of food ingredients. Critical reviews in Food Science and Nutrition 33(6): 501–47.
  • [7] Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., Saurel, R., 2007. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International 40(9): 1107-1121.
  • [8] Yousefi, S., Emam-Djomeh, Z., Mousavi, M., Kobarfard, F., Zbicinski, I., 2015. Developing spray-dried powders containing anthocyanins of black raspberry juice encapsulated based on fenugreek gum. Advanced Powder Technology 26(2): 462-469.
  • [9] Igual, M., Ramires, S., Mosquera, L., Martínez-Navarrete, N., 2014. Optimization of spray drying conditions for lulo (Solanum quitoense L.) pulp. Powder Technology 256: 233-238.
  • [10] Patil, V., Chauhan, A., Singh, R., 2014. Optimization of the spray-drying process for developing guava powder using response surface methodology. Powder Technology 253: 230-236.
  • [11] Fang, Z., Bhandari, B., 2012. Comparing the efficiency of protein and maltodextrin on spray drying of bayberry juice. Food Research International 48(2): 478-483.
  • [12] Kosaraju, S.L., Labbett, D., Emin, M., Konczak, I., Lundin, L., 2008. Delivering polyphenols for healthy ageing. Nutrition & Dietetics 65(3): 48-52.
  • [13] Tan, S., Kha, T., Parks, S., Stathopoulos, C., Roach, P., 2015. Effects of the spray-drying temperatures on the physiochemical properties of an encapsulated bitter melon aqueous extract powder. Powder Technology 281: 65-75. [14] Fazaeli, M., Emam-Djomeh, Z., Ashtari, A., Omid, M., 2012. Effect of spray drying conditions and feed composition on the physical properties of black mulberry juice powder. Food and Bioproducts Processing 90(4): 667-675.
  • [15] Bakowska-Barczak, A., Kolodziejczyk, P., 2011. Black currant polyphenols: Their storage stability and microencapsulation. Industrial Crops and Products 34(2): 1301-1309.
  • [16] Ersus, S., Yurdagel, U., 2007. Microencapsulation of anthocyanin pigments of black carrot (Daucus carota L.) by spray drier. Journal of Food Engineering 80(3): 805-812.
  • [17] Flores, F.P., Singh, R.K., Kerr, W.L., Pegg, R.B., Kong, F., 2014. Total phenolics content and antioxidant capacities of microencapsulated blueberry anthocyanins during in vitro digestion. Food Chemistry 153: 272-278.
  • [18] Jiménez-Aguilar, D.M., Ortega-Regules, A.E., Lozada-Ramírez, J.D., Pérez-Pérez, M.C.I., Vernon-Carter, E.J., Welti-Chanes, J., 2011. Color and chemical stability of spray-dried blueberry extract using mesquite gum as wall material. Journal of Food Composition and Analysis 24(6): 889-894.
  • [19] Turan, F.T., Cengiz, A., Kahyaoglu, T., 2015. Evaluation of ultrasonic nozzle with spray-drying as a novel method for the microencapsulation of blueberry’s bioactive compounds. Innovative Food Science & Emerging Technologies 32: 136-145.
  • [20] Flores, F.P., Singh, R.K., Kerr, W.L., Phillips, D.R., Kong, F., 2015. In vitro release properties of encapsulated blueberry (Vaccinium ashei) extracts. Food Chemistry 168: 225-232.
  • [21] Flores, F.P., Singh, R.K., Kong, F., 2014. Physical and storage properties of spray-dried blueberry pomace extract with whey protein isolate as wall material. Journal of Food Engineering 137: 1-6.
  • [22] Candia-Muñoz, N., Ramirez-Bunster, M., Vargas-Hernández, Y., Gaete-Garretón, L., 2015. Ultrasonic Spray Drying vs High Vacuum and Microwaves Technology for Blueberries. Physics Procedia 70: 867-871.
  • [23] Singleton, V., Orthofer, R., Lamuela-Raventós, R., 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Oxidants and Antioxidants Part A Methods in Enzymology 299: 152-178.
  • [24] Lee, J., Durst, R.W., Wrolstad, R.E., 2005. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. Journal of AOAC International 88(5): 1269-1278.
  • [25] Brand-Williams, W., Cuvelier, M.E., Berset, C.L.W.T., 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology 28(1): 25-30.
  • [26] Benzie, I., Strain, J., 1996. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Analytical Biochemistry 239(1): 70-76.
  • [27] Eastman, J.E., Moore, C.O. 1984. "Cold-water-soluble granular starch for gelled food compositions. U.S. Patent No. 4,465,702. Washington, DC: U.S. Patent and Trademark Office.
  • [28] Cano-Chauca, M., Stringheta, P., Ramos, A., Cal-Vidal, J., 2005. Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innovative Food Science & Emerging Technologies 6(4): 420-428.
  • [29] Santhalakshmy, S., Bosco, S., Francis, S., Sabeena, M., 2015. Effect of inlet temperature on physicochemical properties of spray-dried jamun fruit juice powder. Powder Technology 274: 37-43. [30] Suhag, Y., Nayik, G.A., Nanda, V., 2016. Effect of gum arabic concentration and inlet temperature during spray drying on physical and antioxidant properties of honey powder. Journal of Food Measurement and Characterization 10(2): 350-356.
  • [31] Jinapong, N., Suphantharika, M., Jamnong, P., 2008. Production of instant soymilk powders by ultrafiltration, spray drying and fluidized bed agglomeration. Journal of Food Engineering 84(2): 194-205.
  • [32] Bhandari, B.R., Datta, N., Howes, T., 1997. Problems associated with spray drying of sugar-rich foods. Drying Technology 15(2): 671–684.
  • [33] Papadakis, S.E., Gardeli, C., Tzia, C., 2006. Spray drying of raisin juice concentrate. Drying Technology 24(2): 173-180.
  • [34] Vardin, H., Yasar, M., 2012. Optimisation of pomegranate (Punica granatum L.) juice spray‐drying as affected by temperature and maltodextrin content. International Journal of Food Science & Technology 47(1): 167-176. [35] Saikia, S., Mahnot, N.K., Mahanta, C.L., 2015. Optimisation of phenolic extraction from Averrhoa carambola pomace by response surface methodology and its microencapsulation by spray and freeze drying. Food Chemistry 171: 144-152.
  • [36] Caparino, O.A., Tang, J., Nindo, C.I., Sablani, S.S., Powers, J.R., Fellman, J.K., 2012. Effect of drying methods on the physical properties and microstructures of mango (Philippine ‘Carabao’var.) powder. Journal of Food Engineering 111(1): 135-148.
  • [37] Cai, Y., Corke, H., 2000. Production and properties of spray-dried Amaranthus Betacyanin pigments. Journal of Food Science 65(7): 1248-1252.
  • [38] Tuyen, C.K., Nguyen, M.H., Roach, P.D., 2010. Effects of spray drying conditions on the physicochemical and antioxidant properties of the Gac (Momordica cochinchinensis) fruit aril powder. Journal of Food Engineering 98(3): 385-392.

Yaban Mersini (Vaccinium corymbosum L.) Suyu Konsantresinin Püskürtmeli Kurutucuda Kurutulması: Tepki Yüzey Yöntemiyle Optimizasyon

Yıl 2017, Cilt: 15 Sayı: 2, 139 - 148, 11.08.2017
https://doi.org/10.24323/akademik-gida.333667

Öz

Bu çalışmada, fenolik madde içeriği ve antioksidan
aktivitesi yüksek olan yaban mersininden elde edilen meyve suyu
konsantresinden püskürtmeli kurutucu ile meyve tozu üretim koşullarının
tepki yüzey yöntemiyle optimize edilmesi amaçlanmıştır. Çalışmada
kurutma
ajanı olarak maltodekstrin (
DE8)
kullanılmıştır. Hava giriş sıcaklığı (110-150°C) ve maltodekstrin oranı (%20-80)
bağımsız değişkenler; fenolik madde geri kazanımı ve kurutma verimi ise bağımlı
değişkenler olarak seçilmiştir. Verimin ve fenolik madde geri kazanımının
maksimum olduğu optimum kurutma şartları hava giriş sıcaklığı için 130°C,
maltodekstrin oranı için ise %71 olarak belirlenmiştir. Bu optimum koşulda hava
çıkış sıcaklığı 76°C olarak kaydedilmiştir. Optimum koşullarda elde edilen toz
yaban mersini (%3.51 nem) için verim ve fenolik madde geri kazanımı sırasıyla
%75.8 ve %86.1 olarak belirlenmiştir. Elde edilen toz üründe
çözünürlük, yoğunluk, higroskopisite, gözeneklilik,
yapışkanlık, akabilirlik, camsı geçiş sıcaklığı, toplam fenolik madde miktarı,
toplam antosiyanin miktarı, antioksidan kapasite ve renk,

kalite parametreleri olarak incelenmiştir.

Kaynakça

  • [1] Koca, I., Karadeniz, B., 2009. Antioxidant properties of blackberry and blueberry fruits grown in the Black Sea Region of Turkey. Scientia Horticulturae 121(4): 447-450.
  • [2] de Souza, V.R., Pereira, P.A.P., da Silva, T.L.T., de Oliveira Lima, L.C., Pio, R., Queiroz, F., 2014. Determination of the bioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry and sweet cherry fruits. Food Chemistry 156: 362-368.
  • [3] Cho, M.J., Howard, L.R., Prior, R.L., Clark, J.R., 2005. Flavonol glycosides and antioxidant capacity of various blackberry and blueberry genotypes determined by high-performance liquid chromatography/mass spectrometry. Journal of the Science of Food and Agriculture 85(13): 2149-2158.
  • [4] Fang, Z., Bhandari, B., 2011. Effect of spray drying and storage on the stability of bayberry polyphenols. Food Chemistry 129(3): 1139-1147.
  • [5] Koç, M., Kaymak-Ertekin, F., 2016. Şeker İçeriği Yüksek Gıdaların Püskürtülerek Kurutulması: Ürün Kazanımı ve Toz Ürün Özelliklerinin Geliştirilmesi. Türk Tarım – Gıda Bilim ve Teknoloji Dergisi 4(5): 336-344.
  • [6] Shahidi, F., Han, X.Q., 1993. Encapsulation of food ingredients. Critical reviews in Food Science and Nutrition 33(6): 501–47.
  • [7] Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., Saurel, R., 2007. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International 40(9): 1107-1121.
  • [8] Yousefi, S., Emam-Djomeh, Z., Mousavi, M., Kobarfard, F., Zbicinski, I., 2015. Developing spray-dried powders containing anthocyanins of black raspberry juice encapsulated based on fenugreek gum. Advanced Powder Technology 26(2): 462-469.
  • [9] Igual, M., Ramires, S., Mosquera, L., Martínez-Navarrete, N., 2014. Optimization of spray drying conditions for lulo (Solanum quitoense L.) pulp. Powder Technology 256: 233-238.
  • [10] Patil, V., Chauhan, A., Singh, R., 2014. Optimization of the spray-drying process for developing guava powder using response surface methodology. Powder Technology 253: 230-236.
  • [11] Fang, Z., Bhandari, B., 2012. Comparing the efficiency of protein and maltodextrin on spray drying of bayberry juice. Food Research International 48(2): 478-483.
  • [12] Kosaraju, S.L., Labbett, D., Emin, M., Konczak, I., Lundin, L., 2008. Delivering polyphenols for healthy ageing. Nutrition & Dietetics 65(3): 48-52.
  • [13] Tan, S., Kha, T., Parks, S., Stathopoulos, C., Roach, P., 2015. Effects of the spray-drying temperatures on the physiochemical properties of an encapsulated bitter melon aqueous extract powder. Powder Technology 281: 65-75. [14] Fazaeli, M., Emam-Djomeh, Z., Ashtari, A., Omid, M., 2012. Effect of spray drying conditions and feed composition on the physical properties of black mulberry juice powder. Food and Bioproducts Processing 90(4): 667-675.
  • [15] Bakowska-Barczak, A., Kolodziejczyk, P., 2011. Black currant polyphenols: Their storage stability and microencapsulation. Industrial Crops and Products 34(2): 1301-1309.
  • [16] Ersus, S., Yurdagel, U., 2007. Microencapsulation of anthocyanin pigments of black carrot (Daucus carota L.) by spray drier. Journal of Food Engineering 80(3): 805-812.
  • [17] Flores, F.P., Singh, R.K., Kerr, W.L., Pegg, R.B., Kong, F., 2014. Total phenolics content and antioxidant capacities of microencapsulated blueberry anthocyanins during in vitro digestion. Food Chemistry 153: 272-278.
  • [18] Jiménez-Aguilar, D.M., Ortega-Regules, A.E., Lozada-Ramírez, J.D., Pérez-Pérez, M.C.I., Vernon-Carter, E.J., Welti-Chanes, J., 2011. Color and chemical stability of spray-dried blueberry extract using mesquite gum as wall material. Journal of Food Composition and Analysis 24(6): 889-894.
  • [19] Turan, F.T., Cengiz, A., Kahyaoglu, T., 2015. Evaluation of ultrasonic nozzle with spray-drying as a novel method for the microencapsulation of blueberry’s bioactive compounds. Innovative Food Science & Emerging Technologies 32: 136-145.
  • [20] Flores, F.P., Singh, R.K., Kerr, W.L., Phillips, D.R., Kong, F., 2015. In vitro release properties of encapsulated blueberry (Vaccinium ashei) extracts. Food Chemistry 168: 225-232.
  • [21] Flores, F.P., Singh, R.K., Kong, F., 2014. Physical and storage properties of spray-dried blueberry pomace extract with whey protein isolate as wall material. Journal of Food Engineering 137: 1-6.
  • [22] Candia-Muñoz, N., Ramirez-Bunster, M., Vargas-Hernández, Y., Gaete-Garretón, L., 2015. Ultrasonic Spray Drying vs High Vacuum and Microwaves Technology for Blueberries. Physics Procedia 70: 867-871.
  • [23] Singleton, V., Orthofer, R., Lamuela-Raventós, R., 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Oxidants and Antioxidants Part A Methods in Enzymology 299: 152-178.
  • [24] Lee, J., Durst, R.W., Wrolstad, R.E., 2005. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. Journal of AOAC International 88(5): 1269-1278.
  • [25] Brand-Williams, W., Cuvelier, M.E., Berset, C.L.W.T., 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology 28(1): 25-30.
  • [26] Benzie, I., Strain, J., 1996. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Analytical Biochemistry 239(1): 70-76.
  • [27] Eastman, J.E., Moore, C.O. 1984. "Cold-water-soluble granular starch for gelled food compositions. U.S. Patent No. 4,465,702. Washington, DC: U.S. Patent and Trademark Office.
  • [28] Cano-Chauca, M., Stringheta, P., Ramos, A., Cal-Vidal, J., 2005. Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innovative Food Science & Emerging Technologies 6(4): 420-428.
  • [29] Santhalakshmy, S., Bosco, S., Francis, S., Sabeena, M., 2015. Effect of inlet temperature on physicochemical properties of spray-dried jamun fruit juice powder. Powder Technology 274: 37-43. [30] Suhag, Y., Nayik, G.A., Nanda, V., 2016. Effect of gum arabic concentration and inlet temperature during spray drying on physical and antioxidant properties of honey powder. Journal of Food Measurement and Characterization 10(2): 350-356.
  • [31] Jinapong, N., Suphantharika, M., Jamnong, P., 2008. Production of instant soymilk powders by ultrafiltration, spray drying and fluidized bed agglomeration. Journal of Food Engineering 84(2): 194-205.
  • [32] Bhandari, B.R., Datta, N., Howes, T., 1997. Problems associated with spray drying of sugar-rich foods. Drying Technology 15(2): 671–684.
  • [33] Papadakis, S.E., Gardeli, C., Tzia, C., 2006. Spray drying of raisin juice concentrate. Drying Technology 24(2): 173-180.
  • [34] Vardin, H., Yasar, M., 2012. Optimisation of pomegranate (Punica granatum L.) juice spray‐drying as affected by temperature and maltodextrin content. International Journal of Food Science & Technology 47(1): 167-176. [35] Saikia, S., Mahnot, N.K., Mahanta, C.L., 2015. Optimisation of phenolic extraction from Averrhoa carambola pomace by response surface methodology and its microencapsulation by spray and freeze drying. Food Chemistry 171: 144-152.
  • [36] Caparino, O.A., Tang, J., Nindo, C.I., Sablani, S.S., Powers, J.R., Fellman, J.K., 2012. Effect of drying methods on the physical properties and microstructures of mango (Philippine ‘Carabao’var.) powder. Journal of Food Engineering 111(1): 135-148.
  • [37] Cai, Y., Corke, H., 2000. Production and properties of spray-dried Amaranthus Betacyanin pigments. Journal of Food Science 65(7): 1248-1252.
  • [38] Tuyen, C.K., Nguyen, M.H., Roach, P.D., 2010. Effects of spray drying conditions on the physicochemical and antioxidant properties of the Gac (Momordica cochinchinensis) fruit aril powder. Journal of Food Engineering 98(3): 385-392.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Bölüm Araştırma Makaleleri
Yazarlar

Kübra Atacan Bu kişi benim

Derya Koçak Yanık

Yayımlanma Tarihi 11 Ağustos 2017
Gönderilme Tarihi 9 Ağustos 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 15 Sayı: 2

Kaynak Göster

APA Atacan, K., & Koçak Yanık, D. (2017). Yaban Mersini (Vaccinium corymbosum L.) Suyu Konsantresinin Püskürtmeli Kurutucuda Kurutulması: Tepki Yüzey Yöntemiyle Optimizasyon. Akademik Gıda, 15(2), 139-148. https://doi.org/10.24323/akademik-gida.333667
AMA Atacan K, Koçak Yanık D. Yaban Mersini (Vaccinium corymbosum L.) Suyu Konsantresinin Püskürtmeli Kurutucuda Kurutulması: Tepki Yüzey Yöntemiyle Optimizasyon. Akademik Gıda. Ağustos 2017;15(2):139-148. doi:10.24323/akademik-gida.333667
Chicago Atacan, Kübra, ve Derya Koçak Yanık. “Yaban Mersini (Vaccinium Corymbosum L.) Suyu Konsantresinin Püskürtmeli Kurutucuda Kurutulması: Tepki Yüzey Yöntemiyle Optimizasyon”. Akademik Gıda 15, sy. 2 (Ağustos 2017): 139-48. https://doi.org/10.24323/akademik-gida.333667.
EndNote Atacan K, Koçak Yanık D (01 Ağustos 2017) Yaban Mersini (Vaccinium corymbosum L.) Suyu Konsantresinin Püskürtmeli Kurutucuda Kurutulması: Tepki Yüzey Yöntemiyle Optimizasyon. Akademik Gıda 15 2 139–148.
IEEE K. Atacan ve D. Koçak Yanık, “Yaban Mersini (Vaccinium corymbosum L.) Suyu Konsantresinin Püskürtmeli Kurutucuda Kurutulması: Tepki Yüzey Yöntemiyle Optimizasyon”, Akademik Gıda, c. 15, sy. 2, ss. 139–148, 2017, doi: 10.24323/akademik-gida.333667.
ISNAD Atacan, Kübra - Koçak Yanık, Derya. “Yaban Mersini (Vaccinium Corymbosum L.) Suyu Konsantresinin Püskürtmeli Kurutucuda Kurutulması: Tepki Yüzey Yöntemiyle Optimizasyon”. Akademik Gıda 15/2 (Ağustos 2017), 139-148. https://doi.org/10.24323/akademik-gida.333667.
JAMA Atacan K, Koçak Yanık D. Yaban Mersini (Vaccinium corymbosum L.) Suyu Konsantresinin Püskürtmeli Kurutucuda Kurutulması: Tepki Yüzey Yöntemiyle Optimizasyon. Akademik Gıda. 2017;15:139–148.
MLA Atacan, Kübra ve Derya Koçak Yanık. “Yaban Mersini (Vaccinium Corymbosum L.) Suyu Konsantresinin Püskürtmeli Kurutucuda Kurutulması: Tepki Yüzey Yöntemiyle Optimizasyon”. Akademik Gıda, c. 15, sy. 2, 2017, ss. 139-48, doi:10.24323/akademik-gida.333667.
Vancouver Atacan K, Koçak Yanık D. Yaban Mersini (Vaccinium corymbosum L.) Suyu Konsantresinin Püskürtmeli Kurutucuda Kurutulması: Tepki Yüzey Yöntemiyle Optimizasyon. Akademik Gıda. 2017;15(2):139-48.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).