Derleme
PDF EndNote BibTex RIS Kaynak Göster

Gıdaların Elektriksel Yöntemlerle İşlenmesinde Uygulanan Farklı Frekans ve Dalga Şekillerinin Proses Etkinliği Üzerine Etkisi

Yıl 2018, Cilt 16, Sayı 4, 470 - 482, 31.12.2018
https://doi.org/10.24323/akademik-gida.505542

Öz

Gıda işleme teknolojilerinde, daha kaliteli ürün eldesi amacıyla minimal işleme yöntemlerinin kullanımı yaygın hale gelmiştir. Minimal işleme yöntemleri arasında yer alan elektriksel yöntemler, gıdaların işlenmesinde farklı amaçlarla (kurutma, ekstraksiyon, pastörizasyon, sterilizasyon, pişirme, çözündürme vb.) uygulanmaktadır. Elektriksel işlemin etkinliği uygulanan frekans ve dalga tipinden etkilenmektedir. İşlem için seçilen parametreler, uygulamanın verimi ve ürün kalitesi üzerine etkili olmaktadır. Bu konuda yapılan çalışmalarda, yüksek frekans uygulamalarının gıda içerisinde ve elektrot yüzeylerinde meydana gelen elektrokimyasal reaksiyonları minimize ettiği, farklı dalga tiplerinin ürün kalitesi üzerine etkisinin olmadığı, ancak kare dalga tipi uygulamasının elektriksel iletkenlik değerini düşürerek işlem süresini arttırdığı ifade edilmektedir. Bu derleme çalışmasında, gıdaların elektriksel yöntemlerle işlenmesinde farklı frekans ve dalga tipi uygulamalarının işlem süresi, işlem verimliliği, ürün kalitesi ve mikroorganizmaların inaktivasyonu üzerine etkileri incelenmiştir.

Kaynakça

  • [1] Ohlsson, T., Bengtsson, N. (2002). Minimal Processing Technologies in the Food Industry. Woodhead Publishing, London, United Kingdom.
  • [2] Sun, D.W. (2012). Thermal Food Processing: New Technologies and Quality Issues. CRC Press, Florida, USA.
  • [3] Sun, D.W. (2014). Emerging Technologies for Food Processing, Elsevier, United Kingdom.
  • [4] Baysal, T., İcier, F. (2012). Gıda Mühendisliğinde Isıl Olmayan Güncel Teknikler, Nobel Akademik Yayıncılık, Ankara.
  • [5] Bilek, S.E. (2010). Pulsed electric field (PEF) technology. Akademik Gıda, 8(3), 33-37.
  • [6] Ağçam, E., Akyıldız, A., Evrendilek, G.A. (2014). Vurgulu elektrik alan teknolojisi (PEF): Sistem ve uygulama odacıkları. Akademik Gıda, 12(2), 85-91.
  • [7] Anlı, E.A., Gürsel Kiral, A. (2013). Vurgulu elektrik alan uygulamasının süt teknolojisinde kullanımı. Akademik Gıda, 11(1), 64-68.
  • [8] Bozkır, H., Baysal, T., Ergün, A.R. (2014). Gıda endüstrisinde uygulanan yeni çözündürme teknikleri. Akademik Gıda, 12(3), 38-44.
  • [9] Çokgezme, Ö.F., İçier, F. (2016). Dondurulmuş gıdaların çözündürülmesinde alternatif bir yöntem: Ohmik çözündürme. Akademik Gıda, 14(2), 166-171.
  • [10] Anonim, (2017). https://universe-review.ca/R01-08-spectrum.htm, Son Erişim Tarihi: 29.04.2017.
  • [11] Imai, T., Uemura, K., Yoshizaki, S., Noguchi, A. (1996). Changes in heating rate of egg albumin solution during ohmic heating. Nippon Shokuhin Kagaku Kaishi, 43(12), 1249-1255.
  • [12] Cho, W.I., Yi, J.Y., Chung, M.S. (2016). Pasteurization of fermented red pepper paste by ohmic heating. Innovative Food Science & Emerging Technologies, 34(1), 180-186.
  • [13] Lee, S.Y., Ryu, S., Kang, D.H. (2013). Effect of frequency and waveform on inactivation of Escherichia coli O157: H7 and Salmonella enterica Serovar typhimurium in salsa by ohmic heating. Applied and Environmental Microbiology, 79(1), 10-17.
  • [14] Imai, T., Uemura, K., Ishida, N., Yoshizaki, S., Noguchi, A. (1995). Ohmic heating of Japanese white radish Rhaphanus sativus L. International Journal of Food Science & Technology, 30(4), 461-472.
  • [15] Yun, C.G., Lee, D.H., Park, J.Y. (1998). Ohmic thawing of a frozen meat chunk. Korean Journal of Food Science and Technology, 30(4), 842-847.
  • [16] Liu, L., Llave, Y., Jin, Y., Zheng, D.Y., Fukuoka, M., Sakai, N. (2016). Electrical conductivity and ohmic thawing of frozen tuna at high frequencies. Journal of Food Engineering, 197(1), 68-77.
  • [17] Alfaifi, B., Wang, S., Tang, J., Rasco, B., Sablani, S., Jiao, Y. (2013). Radio frequency disinfestation treatments for dried fruits: Dielectric properties. LWT – Food Science and Technology, 50(2), 746–754.
  • [18] Moyer, J.C., Stotz, E. (1947). The blanching of vegetables by electronics. Food Technology, 1(2), 252-257.
  • [19] Marra, F., Zhang, L., Lyng, J.G. (2009). Radio frequency treatment of foods: Review of recent advances. Journal of Food Engineering, 91(4), 497-508.
  • [20] Jason, A.C., Sanders, H.R. (1962). Dielectric thawing of fish 2. Experiments with frozen white fish. Food Technology, 16(6), 107.
  • [21] Hashimoto, A., Igarashi, H., Shimizu, M. (1993). Irradiation power effect on pasteurization below lethal temperature of bacteria. Journal of Chemical Engineering in Japan, 26(3), 31–33.
  • [22] Sakai, N., Mao, W. (2005). Infrared Heating. Thermal Food Processing, Edited by Sun, D-W., CRC Press, Boca Raton, Florida, USA, 493p.
  • [23] Liu, C.M., Sakai, N., Hanzawa, T. (1999). Three dimensional analysis of heat transfer during food thawing by far-infrared Radiation. Food Science and Technology Research, 5(3), 294-299.
  • [24] Kim, J., Pyun, Y. (1995). Extraction of soy milk using ohmic heating. 9th Congress of Food Science Technology, July 31–August 4, 1995, Budapest, Hungary, Book of Proceedings, 102-120p.
  • [25] Kulshrestha, S., Sastry, S. (2003). Frequency and voltage effects on enhanced diffusion during moderate electric field (MEF) treatment. Innovative Food Science & Emerging Technologies, 4(2), 189-194.
  • [26] Sensoy, I., Sastry, S.K. (2004). Ohmic blanching of mushrooms. Journal of Food Process Engineering, 27(1), 1-15.
  • [27] Shynkaryk, M.V., Ji, T., Alvarez, V.B., Sastry, S.K. (2010). Ohmic heating of peaches in the wide range of frequencies (50 Hz to 1 MHz). Journal of Food Science, 75(7), 493-500.
  • [28] Gavahian, M., Farhoosh, R., Javidnia, K., Shahidi, F., Farahnaky, A. (2015). Effect of applied voltage and frequency on extraction parameters and extracted essential oils from Mentha piperita by ohmic assisted hydrodistillation. Innovative Food Science & Emerging Technologies, 29, 161-169.
  • [29] Lima, M., Sastry, S.K. (1999). The effects of ohmic heating frequency on hot-air drying rate and juice yield. Journal of Food Engineering, 41(2), 115-119.
  • [30] Sakai, N., Hanzawa, T. (1994). Applications and advances in far-infrared heating in Japan. Trends in Food Science and Technology, 5(11), 357–362p.
  • [31] Nindo, C., Mwithiga, G. (2010). Infrared Drying. Infrared Heating for Food and Agricultural Processing, Edited by Zhongli Pan and Griffiths Gregory Atungulu, CRC Press, Florida, USA, 89-99.
  • [32] Lebovka N.I., Bazhal M.I., Vorobiev E. (2000). Simulation and experimental investigation of food material breakage using pulsed electric field treatment. Journal of Food Engineering, 44(4), 213–23.
  • [33] Lebovka N.I., Bazhal M.I., Vorobiev E. (2001). Pulsed electric field breakage of cellular tissues: visualization of percolative properties. Innovative Food Science & Emerging Technologies, 2(4), 113–25.
  • [34] Asavasanti, S., Ristenpart, W., Stroeve, P., Barrett, D.M. (2011). Permeabilization of plant tissues by monopolar pulsed electric fields: effect of frequency. Journal of Food Science, 76(1), E98-E111.
  • [35] Tekgül, Y., Özcan, K.Ç., Baysal, T., Ergün, A.R., Bozkır, H. (2015). Investigating the effects of current and wave form of electrical pre-treatments on the yield and quality of tomato juice. International Journal of Food Engineering, 11(4), 527-532.
  • [36] Regier, M., Knoerzer, K., Schubert, H. (2016). The Microwave Processing of Foods. Woodhead Publishing, United Kingdom.
  • [37] Baysal, T., İçier, F., Baysal, A.H. (2011). Güncel Elektriksel Isıtma Yöntemleri (1.Baskı). Sidas Yayıncılık, İzmir.
  • [38] Yolacaner, E.T., Sumnu, G., Sahin, S. (2017). Microwave Assisted Baking. The microwave processing of foods, Second Edition, Edited by Regier, M., Knoerzer, K., Schubert, H., Woodhead Publishing. United Kingdom, 117.
  • [39] Içier, F., Baysal, T. (2004). Dielectrical properties of food materials—1: Factors affecting and industrial uses. Critical Reviews İn Food Science and Nutrition, 44(6), 465-471.
  • [40] Içier, F., Baysal, T. (2004). Dielectrical properties of food materials—2: Measurement techniques. Critical Reviews in Food Science and Nutrition, 44(6), 473-478.
  • [41] Bengtsson, N.E., Green, W., Valle, F.D. (1970). Radio‐frequency pasteurization of cured hams. Journal of Food Science, 35(5), 682-687.
  • [42] Guan, D., Cheng, M., Wang, Y., Tang, J. (2004). Dielectric properties of mashed potatoes relevant to microwave and radio-frequency pasteurization and sterilization processes. Journal of Food Science, 69(1), FEP30-FEP37.
  • [43] Kulshrestha, S.A., Sastry, S.K. (2006). Low-frequency dielectric changes in cellular food material from ohmic heating: effect of end point temperature. Innovative Food Science & Emerging Technologies, 7(4), 257-262.
  • [44] Sarang, S., Sastry, S.K., Knipe, L. (2008). Electrical conductivity of fruits and meats during ohmic heating. Journal of Food Engineering, 87(3), 351-356.
  • [45] Wu, H., Kolbe, E., Flugstad, B., Park, J.W., Yongsawatdigul, J. (1998). electrical properties of fish mince during multi‐frequency ohmic heating. Journal of Food Science, 63(6), 1028-1032.
  • [46] Lima, M., Heskıtt, B.F., Sastry, S.K. (1999). The effect of frequency and wave form on the electrical conductivity‐temperature profiles of turnip tissue 1. Journal of Food Process Engineering, 22(1), 41-54.
  • [47] Seyhun, N., Ramaswamy, H.S., Zhu, S., Sumnu, G., Sahin, S. (2013). Ohmic tempering of frozen potato puree. Food and Bioprocess Technology, 6(11), 3200-3205.
  • [48] Jin, Z.T., Su, Y., Tuhela, L., Zhang, Q.H., Sastry, S.K., Yousef, A.E. (2001). Inactivation Of Bacillus Subtilis Spores Using High Voltage Pulsed Electric Field. Pulsed Electric Fields in Food Processing: Fundamental Aspects and Applications, Edited by Gustavo V. Barbosa-Canovas Q. Howard Zhang, Gipsy Tabilo-Munizaga, CRC Press, Pennsylvania, USA, 167p.
  • [49] Qin, B.L., Zhang, Q., Barbosa-Canovas, G.V., Swanson, B.G., Pedrow, P.D. (1994). Inactivation of microorganisms by pulsed electric fields of different voltage waveforms. IEEE Transactions on Dielectrics and Electrical Insulation, 1(6), 1047-1057.
  • [50] Canovas, G.V., Pothakamury, U.R., Gongora-Nieto, M.M., Swanson, B.G. (1999). Preservation of Foods with Pulsed Electric Fields. Academic Press, California, USA.
  • [51] Geveke, D.J., Brunkhorst, C., Fan, X. (2007). Radio frequency electric fields processing of orange juices. Innovative Food Science and Emerging Technologies, 8(1), 549-554.
  • [52] Geveke, D.J., Brunkhorst, C. (2008). Radio frequency electric fields inactivation of Escherichia coli in apple cider. Journal of Food Engineering, 85(1), 215-221.
  • [53] Geveke, D.J., Gurtler, J., Zhang, H.Q. (2009). Inactivation of Lactobacillus plantarum in apple cider, using radio frequency electric fields. Journal of Food Protection, 72(3,: 656-661.
  • [54] Fabian, F.W., Graham, H.T. (1933). Influence of high frequency displacement currents on bacteria. Journal of Infectious Diseases, 53(1), 76-88.
  • [55] Fleming, H., (1944). Effect of high frequency fields on microorganisms. Electric Engineering, 63(1), 18-21.
  • [56] Brown, G.H., Morrison, W.C. (1954). An exploration of the effects of strong radio-frequency fields on microorganisms in aqueous solutions. Food Technology, 8(1), 361-366.
  • [57] Blanco J.F., Dawson L.E. (1974). Survival of Clostridium perfringens on chicken cooked with microwave energy. Poultry Science, 53(5), 1823–1830.
  • [58] Ansari, A.M., Majidzadeh-A.K., Darvishi, B., Sanati, H., Farahmand, L., Norouzian, D. (2017). Extremely low frequency magnetic field enhances glucose oxidase expression in Pichia pastoris GS115. Enzyme and Microbial Technology, 98, 67-75.
  • [59] Dunn, J., Ott, T., Clark, W. (1995). Pulsed-light treatment of food and packaging. Food Technology, 49(9), 95-98.
  • [60] Ho, S.Y., Mittal, G.S., Cross, J.D., Griffiths, M.W. (1995). Inactivation of Pseudomonas fluorescens by high voltage electric pulses. Journal of food Science, 60(6), 1337-1340.
  • [61] Mercali, G.D., Schwartz, S., Marczak, L.D.F., Tessaro, I.C., Sastry, S. (2014). Ascorbic acid degradation and color changes in acerola pulp during ohmic heating: Effect of electric field frequency. Journal of Food Engineering, 123, 1-7.
  • [62] Sumnu, G., Sahin, S. (2005). Recent developments in microwave heating. Emerging Technologies for Food Processing, Edited by Da-Wen Sun, Food Science and Technology, International Series, Elsevier Academic Press, UK, 419p.
  • [63] Cathcart, W.H., Parker, J.J., Beattie, H.G. (1947). The treatment of packaged bread with high frequency heat. Food technology, 1(2), 174-177.
  • [64] Sumnu, G. (2001). A review on microwave baking of foods. International Journal of Food Science & Technology, 36(2), 117-127.
  • [65] Sumnu, G., Sahin, S., Sevimli, M. (2005). Microwave, infrared and infrared-microwave combination baking of cakes. Journal of Food Engineering, 71(2), 150-155.
  • [66] Pan, Z., Atungulu, G.G. (2010). Infrared Heating for Food and Agricultural Processing. CRC Press, Florida, USA.
  • [67] Sumnu, S.G., Ozkoc, S.O. (2010). Infrared baking and roasting. In Infrared Heating for Food and Agricultural Processing, Edited by Zhongli Pan and Griffiths Gregory Atungulu. CRC Press, Florida, USA, 203-223p.
  • [68] Shilton, N., Mallikarjunan, P. Sheridan, P. (2002). Modeling of heat transfer and evaporative mass losses during the cooking of beef patties using far-infrared Radiation. Journal of Food Engineering, 55(3), 217–222.

Effect of Different Frequencies and Waveforms Applied during Processing of Foods by Electrical Methods on Process Efficiency

Yıl 2018, Cilt 16, Sayı 4, 470 - 482, 31.12.2018
https://doi.org/10.24323/akademik-gida.505542

Öz

In food processing technologies, minimally processing technologies have been commonly used for the purpose of enhancing the quality of foods. Electrical methods, minimal processing techniques such as drying, extraction, pasteurization, sterilization, cooking and thawing, have been used for different purposes in food industry. The efficiency of electrical process is influenced by the frequency and wave form applied. Selected process parameters influence the process yield and product quality to be obtained. Studies conducted on these subjects reported that high frequency applications minimized electrochemical reactions in foods and on electrode surfaces, and the effect of different wave forms on the product quality was insignificant, but the application of square waveform increased the process time by decreasing the electrical conductivity value. In this study, the effect of different frequencies and wave forms during processing by electrical methods on process time, process efficiency, product quality and inactivation of microorganisms was reviewed.

Kaynakça

  • [1] Ohlsson, T., Bengtsson, N. (2002). Minimal Processing Technologies in the Food Industry. Woodhead Publishing, London, United Kingdom.
  • [2] Sun, D.W. (2012). Thermal Food Processing: New Technologies and Quality Issues. CRC Press, Florida, USA.
  • [3] Sun, D.W. (2014). Emerging Technologies for Food Processing, Elsevier, United Kingdom.
  • [4] Baysal, T., İcier, F. (2012). Gıda Mühendisliğinde Isıl Olmayan Güncel Teknikler, Nobel Akademik Yayıncılık, Ankara.
  • [5] Bilek, S.E. (2010). Pulsed electric field (PEF) technology. Akademik Gıda, 8(3), 33-37.
  • [6] Ağçam, E., Akyıldız, A., Evrendilek, G.A. (2014). Vurgulu elektrik alan teknolojisi (PEF): Sistem ve uygulama odacıkları. Akademik Gıda, 12(2), 85-91.
  • [7] Anlı, E.A., Gürsel Kiral, A. (2013). Vurgulu elektrik alan uygulamasının süt teknolojisinde kullanımı. Akademik Gıda, 11(1), 64-68.
  • [8] Bozkır, H., Baysal, T., Ergün, A.R. (2014). Gıda endüstrisinde uygulanan yeni çözündürme teknikleri. Akademik Gıda, 12(3), 38-44.
  • [9] Çokgezme, Ö.F., İçier, F. (2016). Dondurulmuş gıdaların çözündürülmesinde alternatif bir yöntem: Ohmik çözündürme. Akademik Gıda, 14(2), 166-171.
  • [10] Anonim, (2017). https://universe-review.ca/R01-08-spectrum.htm, Son Erişim Tarihi: 29.04.2017.
  • [11] Imai, T., Uemura, K., Yoshizaki, S., Noguchi, A. (1996). Changes in heating rate of egg albumin solution during ohmic heating. Nippon Shokuhin Kagaku Kaishi, 43(12), 1249-1255.
  • [12] Cho, W.I., Yi, J.Y., Chung, M.S. (2016). Pasteurization of fermented red pepper paste by ohmic heating. Innovative Food Science & Emerging Technologies, 34(1), 180-186.
  • [13] Lee, S.Y., Ryu, S., Kang, D.H. (2013). Effect of frequency and waveform on inactivation of Escherichia coli O157: H7 and Salmonella enterica Serovar typhimurium in salsa by ohmic heating. Applied and Environmental Microbiology, 79(1), 10-17.
  • [14] Imai, T., Uemura, K., Ishida, N., Yoshizaki, S., Noguchi, A. (1995). Ohmic heating of Japanese white radish Rhaphanus sativus L. International Journal of Food Science & Technology, 30(4), 461-472.
  • [15] Yun, C.G., Lee, D.H., Park, J.Y. (1998). Ohmic thawing of a frozen meat chunk. Korean Journal of Food Science and Technology, 30(4), 842-847.
  • [16] Liu, L., Llave, Y., Jin, Y., Zheng, D.Y., Fukuoka, M., Sakai, N. (2016). Electrical conductivity and ohmic thawing of frozen tuna at high frequencies. Journal of Food Engineering, 197(1), 68-77.
  • [17] Alfaifi, B., Wang, S., Tang, J., Rasco, B., Sablani, S., Jiao, Y. (2013). Radio frequency disinfestation treatments for dried fruits: Dielectric properties. LWT – Food Science and Technology, 50(2), 746–754.
  • [18] Moyer, J.C., Stotz, E. (1947). The blanching of vegetables by electronics. Food Technology, 1(2), 252-257.
  • [19] Marra, F., Zhang, L., Lyng, J.G. (2009). Radio frequency treatment of foods: Review of recent advances. Journal of Food Engineering, 91(4), 497-508.
  • [20] Jason, A.C., Sanders, H.R. (1962). Dielectric thawing of fish 2. Experiments with frozen white fish. Food Technology, 16(6), 107.
  • [21] Hashimoto, A., Igarashi, H., Shimizu, M. (1993). Irradiation power effect on pasteurization below lethal temperature of bacteria. Journal of Chemical Engineering in Japan, 26(3), 31–33.
  • [22] Sakai, N., Mao, W. (2005). Infrared Heating. Thermal Food Processing, Edited by Sun, D-W., CRC Press, Boca Raton, Florida, USA, 493p.
  • [23] Liu, C.M., Sakai, N., Hanzawa, T. (1999). Three dimensional analysis of heat transfer during food thawing by far-infrared Radiation. Food Science and Technology Research, 5(3), 294-299.
  • [24] Kim, J., Pyun, Y. (1995). Extraction of soy milk using ohmic heating. 9th Congress of Food Science Technology, July 31–August 4, 1995, Budapest, Hungary, Book of Proceedings, 102-120p.
  • [25] Kulshrestha, S., Sastry, S. (2003). Frequency and voltage effects on enhanced diffusion during moderate electric field (MEF) treatment. Innovative Food Science & Emerging Technologies, 4(2), 189-194.
  • [26] Sensoy, I., Sastry, S.K. (2004). Ohmic blanching of mushrooms. Journal of Food Process Engineering, 27(1), 1-15.
  • [27] Shynkaryk, M.V., Ji, T., Alvarez, V.B., Sastry, S.K. (2010). Ohmic heating of peaches in the wide range of frequencies (50 Hz to 1 MHz). Journal of Food Science, 75(7), 493-500.
  • [28] Gavahian, M., Farhoosh, R., Javidnia, K., Shahidi, F., Farahnaky, A. (2015). Effect of applied voltage and frequency on extraction parameters and extracted essential oils from Mentha piperita by ohmic assisted hydrodistillation. Innovative Food Science & Emerging Technologies, 29, 161-169.
  • [29] Lima, M., Sastry, S.K. (1999). The effects of ohmic heating frequency on hot-air drying rate and juice yield. Journal of Food Engineering, 41(2), 115-119.
  • [30] Sakai, N., Hanzawa, T. (1994). Applications and advances in far-infrared heating in Japan. Trends in Food Science and Technology, 5(11), 357–362p.
  • [31] Nindo, C., Mwithiga, G. (2010). Infrared Drying. Infrared Heating for Food and Agricultural Processing, Edited by Zhongli Pan and Griffiths Gregory Atungulu, CRC Press, Florida, USA, 89-99.
  • [32] Lebovka N.I., Bazhal M.I., Vorobiev E. (2000). Simulation and experimental investigation of food material breakage using pulsed electric field treatment. Journal of Food Engineering, 44(4), 213–23.
  • [33] Lebovka N.I., Bazhal M.I., Vorobiev E. (2001). Pulsed electric field breakage of cellular tissues: visualization of percolative properties. Innovative Food Science & Emerging Technologies, 2(4), 113–25.
  • [34] Asavasanti, S., Ristenpart, W., Stroeve, P., Barrett, D.M. (2011). Permeabilization of plant tissues by monopolar pulsed electric fields: effect of frequency. Journal of Food Science, 76(1), E98-E111.
  • [35] Tekgül, Y., Özcan, K.Ç., Baysal, T., Ergün, A.R., Bozkır, H. (2015). Investigating the effects of current and wave form of electrical pre-treatments on the yield and quality of tomato juice. International Journal of Food Engineering, 11(4), 527-532.
  • [36] Regier, M., Knoerzer, K., Schubert, H. (2016). The Microwave Processing of Foods. Woodhead Publishing, United Kingdom.
  • [37] Baysal, T., İçier, F., Baysal, A.H. (2011). Güncel Elektriksel Isıtma Yöntemleri (1.Baskı). Sidas Yayıncılık, İzmir.
  • [38] Yolacaner, E.T., Sumnu, G., Sahin, S. (2017). Microwave Assisted Baking. The microwave processing of foods, Second Edition, Edited by Regier, M., Knoerzer, K., Schubert, H., Woodhead Publishing. United Kingdom, 117.
  • [39] Içier, F., Baysal, T. (2004). Dielectrical properties of food materials—1: Factors affecting and industrial uses. Critical Reviews İn Food Science and Nutrition, 44(6), 465-471.
  • [40] Içier, F., Baysal, T. (2004). Dielectrical properties of food materials—2: Measurement techniques. Critical Reviews in Food Science and Nutrition, 44(6), 473-478.
  • [41] Bengtsson, N.E., Green, W., Valle, F.D. (1970). Radio‐frequency pasteurization of cured hams. Journal of Food Science, 35(5), 682-687.
  • [42] Guan, D., Cheng, M., Wang, Y., Tang, J. (2004). Dielectric properties of mashed potatoes relevant to microwave and radio-frequency pasteurization and sterilization processes. Journal of Food Science, 69(1), FEP30-FEP37.
  • [43] Kulshrestha, S.A., Sastry, S.K. (2006). Low-frequency dielectric changes in cellular food material from ohmic heating: effect of end point temperature. Innovative Food Science & Emerging Technologies, 7(4), 257-262.
  • [44] Sarang, S., Sastry, S.K., Knipe, L. (2008). Electrical conductivity of fruits and meats during ohmic heating. Journal of Food Engineering, 87(3), 351-356.
  • [45] Wu, H., Kolbe, E., Flugstad, B., Park, J.W., Yongsawatdigul, J. (1998). electrical properties of fish mince during multi‐frequency ohmic heating. Journal of Food Science, 63(6), 1028-1032.
  • [46] Lima, M., Heskıtt, B.F., Sastry, S.K. (1999). The effect of frequency and wave form on the electrical conductivity‐temperature profiles of turnip tissue 1. Journal of Food Process Engineering, 22(1), 41-54.
  • [47] Seyhun, N., Ramaswamy, H.S., Zhu, S., Sumnu, G., Sahin, S. (2013). Ohmic tempering of frozen potato puree. Food and Bioprocess Technology, 6(11), 3200-3205.
  • [48] Jin, Z.T., Su, Y., Tuhela, L., Zhang, Q.H., Sastry, S.K., Yousef, A.E. (2001). Inactivation Of Bacillus Subtilis Spores Using High Voltage Pulsed Electric Field. Pulsed Electric Fields in Food Processing: Fundamental Aspects and Applications, Edited by Gustavo V. Barbosa-Canovas Q. Howard Zhang, Gipsy Tabilo-Munizaga, CRC Press, Pennsylvania, USA, 167p.
  • [49] Qin, B.L., Zhang, Q., Barbosa-Canovas, G.V., Swanson, B.G., Pedrow, P.D. (1994). Inactivation of microorganisms by pulsed electric fields of different voltage waveforms. IEEE Transactions on Dielectrics and Electrical Insulation, 1(6), 1047-1057.
  • [50] Canovas, G.V., Pothakamury, U.R., Gongora-Nieto, M.M., Swanson, B.G. (1999). Preservation of Foods with Pulsed Electric Fields. Academic Press, California, USA.
  • [51] Geveke, D.J., Brunkhorst, C., Fan, X. (2007). Radio frequency electric fields processing of orange juices. Innovative Food Science and Emerging Technologies, 8(1), 549-554.
  • [52] Geveke, D.J., Brunkhorst, C. (2008). Radio frequency electric fields inactivation of Escherichia coli in apple cider. Journal of Food Engineering, 85(1), 215-221.
  • [53] Geveke, D.J., Gurtler, J., Zhang, H.Q. (2009). Inactivation of Lactobacillus plantarum in apple cider, using radio frequency electric fields. Journal of Food Protection, 72(3,: 656-661.
  • [54] Fabian, F.W., Graham, H.T. (1933). Influence of high frequency displacement currents on bacteria. Journal of Infectious Diseases, 53(1), 76-88.
  • [55] Fleming, H., (1944). Effect of high frequency fields on microorganisms. Electric Engineering, 63(1), 18-21.
  • [56] Brown, G.H., Morrison, W.C. (1954). An exploration of the effects of strong radio-frequency fields on microorganisms in aqueous solutions. Food Technology, 8(1), 361-366.
  • [57] Blanco J.F., Dawson L.E. (1974). Survival of Clostridium perfringens on chicken cooked with microwave energy. Poultry Science, 53(5), 1823–1830.
  • [58] Ansari, A.M., Majidzadeh-A.K., Darvishi, B., Sanati, H., Farahmand, L., Norouzian, D. (2017). Extremely low frequency magnetic field enhances glucose oxidase expression in Pichia pastoris GS115. Enzyme and Microbial Technology, 98, 67-75.
  • [59] Dunn, J., Ott, T., Clark, W. (1995). Pulsed-light treatment of food and packaging. Food Technology, 49(9), 95-98.
  • [60] Ho, S.Y., Mittal, G.S., Cross, J.D., Griffiths, M.W. (1995). Inactivation of Pseudomonas fluorescens by high voltage electric pulses. Journal of food Science, 60(6), 1337-1340.
  • [61] Mercali, G.D., Schwartz, S., Marczak, L.D.F., Tessaro, I.C., Sastry, S. (2014). Ascorbic acid degradation and color changes in acerola pulp during ohmic heating: Effect of electric field frequency. Journal of Food Engineering, 123, 1-7.
  • [62] Sumnu, G., Sahin, S. (2005). Recent developments in microwave heating. Emerging Technologies for Food Processing, Edited by Da-Wen Sun, Food Science and Technology, International Series, Elsevier Academic Press, UK, 419p.
  • [63] Cathcart, W.H., Parker, J.J., Beattie, H.G. (1947). The treatment of packaged bread with high frequency heat. Food technology, 1(2), 174-177.
  • [64] Sumnu, G. (2001). A review on microwave baking of foods. International Journal of Food Science & Technology, 36(2), 117-127.
  • [65] Sumnu, G., Sahin, S., Sevimli, M. (2005). Microwave, infrared and infrared-microwave combination baking of cakes. Journal of Food Engineering, 71(2), 150-155.
  • [66] Pan, Z., Atungulu, G.G. (2010). Infrared Heating for Food and Agricultural Processing. CRC Press, Florida, USA.
  • [67] Sumnu, S.G., Ozkoc, S.O. (2010). Infrared baking and roasting. In Infrared Heating for Food and Agricultural Processing, Edited by Zhongli Pan and Griffiths Gregory Atungulu. CRC Press, Florida, USA, 203-223p.
  • [68] Shilton, N., Mallikarjunan, P. Sheridan, P. (2002). Modeling of heat transfer and evaporative mass losses during the cooking of beef patties using far-infrared Radiation. Journal of Food Engineering, 55(3), 217–222.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Derleme Makaleler
Yazarlar

Deniz DÖNER Bu kişi benim (Sorumlu Yazar)

0000-0002-5889-9798


Filiz İÇİER>

0000-0002-9555-3390

Yayımlanma Tarihi 31 Aralık 2018
Başvuru Tarihi 2 Mayıs 2017
Kabul Tarihi 20 Temmuz 2017
Yayınlandığı Sayı Yıl 2018, Cilt 16, Sayı 4

Kaynak Göster

Bibtex @derleme { akademik-gida505542, journal = {Akademik Gıda}, issn = {1304-7582}, eissn = {2148-015X}, address = {Fevzipaşa Bulv. Çelik İş Merkezi, No: 162, Kat: 3, D:302, Çankaya, İzmir}, publisher = {Sidas Medya A.Ş.}, year = {2018}, volume = {16}, number = {4}, pages = {470 - 482}, doi = {10.24323/akademik-gida.505542}, title = {Gıdaların Elektriksel Yöntemlerle İşlenmesinde Uygulanan Farklı Frekans ve Dalga Şekillerinin Proses Etkinliği Üzerine Etkisi}, key = {cite}, author = {Döner, Deniz and İçier, Filiz} }
APA Döner, D. & İçier, F. (2018). Gıdaların Elektriksel Yöntemlerle İşlenmesinde Uygulanan Farklı Frekans ve Dalga Şekillerinin Proses Etkinliği Üzerine Etkisi . Akademik Gıda , 16 (4) , 470-482 . DOI: 10.24323/akademik-gida.505542
MLA Döner, D. , İçier, F. "Gıdaların Elektriksel Yöntemlerle İşlenmesinde Uygulanan Farklı Frekans ve Dalga Şekillerinin Proses Etkinliği Üzerine Etkisi" . Akademik Gıda 16 (2018 ): 470-482 <https://dergipark.org.tr/tr/pub/akademik-gida/issue/42005/505542>
Chicago Döner, D. , İçier, F. "Gıdaların Elektriksel Yöntemlerle İşlenmesinde Uygulanan Farklı Frekans ve Dalga Şekillerinin Proses Etkinliği Üzerine Etkisi". Akademik Gıda 16 (2018 ): 470-482
RIS TY - JOUR T1 - Gıdaların Elektriksel Yöntemlerle İşlenmesinde Uygulanan Farklı Frekans ve Dalga Şekillerinin Proses Etkinliği Üzerine Etkisi AU - DenizDöner, Filizİçier Y1 - 2018 PY - 2018 N1 - doi: 10.24323/akademik-gida.505542 DO - 10.24323/akademik-gida.505542 T2 - Akademik Gıda JF - Journal JO - JOR SP - 470 EP - 482 VL - 16 IS - 4 SN - 1304-7582-2148-015X M3 - doi: 10.24323/akademik-gida.505542 UR - https://doi.org/10.24323/akademik-gida.505542 Y2 - 2017 ER -
EndNote %0 Akademik Gıda Gıdaların Elektriksel Yöntemlerle İşlenmesinde Uygulanan Farklı Frekans ve Dalga Şekillerinin Proses Etkinliği Üzerine Etkisi %A Deniz Döner , Filiz İçier %T Gıdaların Elektriksel Yöntemlerle İşlenmesinde Uygulanan Farklı Frekans ve Dalga Şekillerinin Proses Etkinliği Üzerine Etkisi %D 2018 %J Akademik Gıda %P 1304-7582-2148-015X %V 16 %N 4 %R doi: 10.24323/akademik-gida.505542 %U 10.24323/akademik-gida.505542
ISNAD Döner, Deniz , İçier, Filiz . "Gıdaların Elektriksel Yöntemlerle İşlenmesinde Uygulanan Farklı Frekans ve Dalga Şekillerinin Proses Etkinliği Üzerine Etkisi". Akademik Gıda 16 / 4 (Aralık 2018): 470-482 . https://doi.org/10.24323/akademik-gida.505542
AMA Döner D. , İçier F. Gıdaların Elektriksel Yöntemlerle İşlenmesinde Uygulanan Farklı Frekans ve Dalga Şekillerinin Proses Etkinliği Üzerine Etkisi. Akademik Gıda. 2018; 16(4): 470-482.
Vancouver Döner D. , İçier F. Gıdaların Elektriksel Yöntemlerle İşlenmesinde Uygulanan Farklı Frekans ve Dalga Şekillerinin Proses Etkinliği Üzerine Etkisi. Akademik Gıda. 2018; 16(4): 470-482.
IEEE D. Döner ve F. İçier , "Gıdaların Elektriksel Yöntemlerle İşlenmesinde Uygulanan Farklı Frekans ve Dalga Şekillerinin Proses Etkinliği Üzerine Etkisi", Akademik Gıda, c. 16, sayı. 4, ss. 470-482, Ara. 2018, doi:10.24323/akademik-gida.505542

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).