Derleme
BibTex RIS Kaynak Göster

Yağ Rafinasyonu Sırasında İnsan Beslenmesinde Önemli Fonksiyonel Bileşenlerde Değişimler ve Zararlı Rafinasyon Bileşenlerinin Oluşumu

Yıl 2020, Cilt: 18 Sayı: 3, 331 - 338, 29.10.2020
https://doi.org/10.24323/akademik-gida.818207

Öz

Bitkisel yağlar, içerdikleri ve biyoaktif olarak tanımlanan bileşenler sayesinde sağlık açısından birçok fayda sağlamaktadırlar. Yağlar sadece vücuda enerji sağlamakla kalmayıp, ayrıca vücut ısısının ve dokularının korunmasında, içerisinde çözünen vitaminlerin taşınmasında ve daha birçok önemli fonksiyonların yürütülmesinde rol oynamaktadır. Bitkisel yağlarda bulunan en önemli biyoaktif maddeler arasında bitkisel steroller, karotenler, tokoller, fenolik maddeler ve skualen gibi hidrokarbonlar gelmektedir. Uygulanan rafinasyon şartlarına bağlı olarak, değerli bileşenler kayba uğramakla birlikte, yine rafinasyon şartlarına bağlı olarak yağda meydana gelen reaksiyonlar sonucunda, sağlık açısından risk taşıyan bileşenler de (3-monokloropropan-1-2-diol ve glisidil esterleri) meydana gelebilmektedir. Bu derlemenin ilk kısmında yağ rafinasyon basamakları ve bu süreçler içerisinde fonksiyonel bileşenlerde meydana gelen kayıplar ve nedenleri, ikinci kısmında ise yağ rafinasyonu sırasında meydana gelen zararlı maddelerin oluşumu ve miktarlarının azaltılması konusunda yapılan çalışmalar ele alınmıştır.

Kaynakça

  • [1] Ostfeld, R., Howarth, D., Reiner, D., Krasny, P. (2019). Peeling back the label exploring sustainable palm oil ecolabelling and consumption in the United Kingdom. Environmental Research Letters, 14(1), 014001.
  • [2] Mahlia, T.M.I., Ismail, N., Hossain, N., Silitonga, A.S., Shamsuddin, A.H. (2019). Palm oil and its wastes as bioenergy sources: a comprehensive review. Environmental Science and Pollution Research, 26, 1-18.
  • [3] Yang, R., Zhang, L., Li, P., Yu, L., Mao, J., Wang, X., Zhang, Q. (2018). A review of chemical composition and nutritional properties of minor vegetable oils in China. Trends in Food Science and Technology, 74, 26-32.
  • [4] Oey, S.B., Van der Fels‐Klerx, H.J., Fogliano, V., Van Leeuwen, S.P. (2019). Mitigation Strategies for the Reduction of 2‐and 3‐MCPD Esters and Glycidyl Esters in the Vegetable Oil Processing Industry. Comprehensive Reviews in Food Science and Food Safety, 18(2), 349-361.
  • [5] World Health Organization. (2013). Some chemicals present in industrial and consumer products, food and drinking‐water. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 101, 349-374.
  • [6] Mancini, A., Imperlini, E., Nigro, E., Montagnese, C., Daniele, A., Orrù, S., Buono, P. (2015). Biological and nutritional properties of palm oil and palmitic acid: effects on health. Molecules, 20(9), 17339-17361.
  • [7] Hidalgo, F.J., Zamora, R. (2006). Peptides and proteins in edible oils: Stability, allergenicity, and new processing trends. Trends in Food Science and Technology, 17(2), 56-63.
  • [8] Cheng, W.W., Liu, G.Q., Wang, L.Q., Liu, Z.S. (2017). Glycidyl fatty acid esters in refined edible oils: a review on formation, occurrence, analysis, and elimination methods. Comprehensive Reviews in Food Science and Food Safety, 16(2), 263-281.
  • [9] Demirkol, E. (2015). Rafine yağ tesislerinde deodorize kolonu seviye ölçümü. Gıda2000 Gıda Teknolojisi ve Tarım Dergisi. http://www.gida2000.com/rafine-yag-tesislerinde-deodorize-kolonu-seviye-olcumu.html. Son erişim tarihi: 23.09.2019.
  • [10] Teberikler, L., Koseoglu, S., Akgerman, A. (2001). Selective extraction of phosphatidylcholine from lecithin by supercritical carbon dioxide/ethanol mixture. Journal of the American Oil Chemists' Society, 78(2), 115-120.
  • [11] Kamal‐Eldin, A., Appelqvist, L.Å. (1996). The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids, 31(7), 671-701.
  • [12] Niki, E. (2019). Vitamin E: Chemistry and Nutritional Benefits. Vitamin E: Structure, Properties and Functions. Edited by E. Niki, Royal Society of Chemistry, Croydon CR044YY, England, 269p.
  • [13] Garcia, R.A., Schulte, E., Esteves, W., Brühl, L., Mukherjee, K.D. (1996). Minor constituents of vegetable oils during industrial processing. Journal of the American Oil Chemists' Society, 73(5), 587-592.
  • [14] Gutfinger, T., Letan, A. (1974). Quantitative changes in some unsaponifiable components of soya bean oil due to refining. Journal of the Science of Food and Agriculture, 25(9), 1143-1147.
  • [15] Wei, P.C., May, C.Y., Ngan, M.A., Hock, C.C. (2004). Degumming and bleaching: effect on selected constituents of palm oil. Journal of Oil Palm Research, 16(2), 57-63.
  • [16] Liu, R., Shi, L., Zhang, Z., Zhang, T., Lu, M., Wang, X. (2019). Effect of refining process on physicochemical parameters, chemical compositions and in vitro antioxidant activities of rice bran oil. LWT- Journal of Science and Technology, 109, 26-32.
  • [17] Jung, M.Y., Yoon, S.H., Min, D.B. (1989). Effects of processing steps on the contents of minor compounds and oxidation of soybean oil. Journal of the American Oil Chemists' Society, 66(1), 118-120.
  • [18] Kreps, F., Vrbiková, L., Schmidt, Š. (2014). Influence of industrial physical refining on tocopherol, chlorophyll and beta‐carotene content in sunflower and rapeseed oil. European Journal of Lipid Science and Technology, 116(11), 1572-1582.
  • [19] Tasan, M., Demirci, M. (2005). Total and individual tocopherol contents of sunflower oil at different steps of refining. European Food Research and Technology, 220(3-4), 251-254.
  • [20] Karaali, A. (1985). The effects of refining on the chemical composition of Turkish sunflower seed oil. Fette, Seifen, Anstrichmittel, 87(3), 112-117.
  • [21] Ogbe, R.J., Ochalefu, D.O., Mafulul, S.G., Olaniru, O.B. (2015). A review on dietary phytosterols: Their occurrence, metabolism and health benefits. Asian Jounal of Plant Science Research, 5(4), 10-21.
  • [22] Ortega-García, J., Gámez-Meza, N., Noriega-Rodriguez, J.A., Dennis-Quiñonez, O., García-Galindo, H.S., Angulo-Guerrero, J.O., Medina-Juárez, L.A. (2006). Refining of high oleic safflower oil: effect on the sterols and tocopherols content. European Food Research and Technology, 223(6), 775-779.
  • [23] Verleyen, T., Sosinska, U., Ioannidou, S., Verhé, R., Dewettinck, K., Huyghebaert, A., De Greyt, W. (2002). Influence of the vegetable oil refining process on free and esterified sterols. Journal of the American Oil Chemists' Society, 79(10), 947-953.
  • [24] Ghazani, S.M., Marangoni, A.G. (2013). Minor components in canola oil and effects of refining on these constituents: A review. Journal of the American Oil Chemists' Society, 90(7), 923-932.
  • [25] Pal, U.S., Patra, R.K., Sahoo, N.R., Bakhara, C.K., Panda, M.K. (2015). Effect of refining on quality and composition of sunflower oil. Journal of Food Science and Technology, 52(7), 4613-4618.
  • [26] Durmaz, G., Gökmen, V. (2019). Effect of refining on bioactive composition and oxidative stability of hazelnut oil. Food Research International, 116, 586-591.
  • [27] Mirzaee Ghazani, S. (2012). The Influence of Traditional and Minimal Refining on the Minor Constituents of Canola Oil (Doctoral dissertation).
  • [28] Essid, K., Trabelsi, M., Frikha, M.H. (2006). Effects of neutralization with lime on the quality of acid olive oil. Journal of the American Oil Chemists' Society, 83(10), 879-884.
  • [29] Dunford T.N. (2004). Nutritionally Enhanced Edible Oil and Oilseed Processing. Effects of Processing on Nutritional and Bioactive Components of Oil and Oilseeds. Edited by Dunford T. N., Dunford H. B, AOCS Publishing, USA, 303p.
  • [30] Smith, D., Espino-Montoro, A., Perez-Jimenez, F., Pedro-Botet, J., Pereperez, J.J., Ordovas, J.M. (2000). Effect of a high saturated fat and cholesterol diet supplemented with squalene or β-sitosterol on lipoprotein profile in fib hamsters. Nutrition Research, 20(9), 1309-1318.
  • [31] Nergiz, C., Çelikkale, D. (2011). The effect of consecutive steps of refining on squalene content of vegetable oils. Journal of Food Science and Technology, 48(3), 382-385.
  • [32] Neuman T.D., Dunford T.N. (2004). Nutritionally Enhanced Edible Oil and Oilseed Processing. Edible Oil Bleaching. Edited by Dunford T.N., Dunford H.B, AOCS Publishing, USA, 303p.
  • [33] Fine, F., Brochet, C., Gaud, M., Carre, P., Simon, N., Ramli, F., Joffre, F. (2016). Micronutrients in vegetable oils: the impact of crushing and refining processes on vitamins and antioxidants in sunflower, rapeseed, and soybean oils. European Journal of Lipid Science and Technology, 118(5), 680-697.
  • [34] Alpaslan, M., Tepe, S., Simsek, O. (2001). Effect of refining processes on the total and individual tocopherol content in sunflower oil. International Journal of Food Science and Technology, 36, 737-739.
  • [35] Ergönül P.G, Köseoğlu O. (2014). Changes in α-, β-, γ- and δ- tocopherol contents of mostly consumed vegetable oils during refining process. CyTA-Journal of Food, 12, 199-202.
  • [36] Wu, Y., Zhou, R., Wang, Z., Wang, B., Yang, Y., Ju, X., He, R. (2019). The effect of refining process on the physicochemical properties and micronutrients of rapeseed oils. Plos One, 14(3), e0212879.
  • [37] Abedi, E., Sahari, M.A., Barzegar, M., Azizi, M.H. (2015). Optimisation of soya bean oil bleaching by ultrasonic processing and investigate the physico-chemical properties of bleached soya bean oil. International Journal of Food Science and Technology, 50, 857-863.
  • [38] Verleyen, T., Cortes, E., Verhe, R., Dewettinck, K., Huyghebaert, A., De Greyt, W. (2002). Factors determining the steradiene formation in bleaching and deodorisation. European Journal of Lipid Science and Technology, 104(6), 331-339.
  • [39] Szydłowska-Czerniak, A., Trokowski, K., Karlovits, G., Szłyk, E. (2011). Effect of refining processes on antioxidant capacity, total contents of phenolics and carotenoids in palm oils. Food Chemistry, 129(3), 1187-1192.
  • [40] Rong, N., Ausman, L.M., Nicolosi, R.J. (1997). Oryzanol decreases cholesterol absorption and aortic fatty streaks in hamsters. Lipids, 32, 303-309.
  • [41] Sugano, M., Tsuji, E. (1997). Rice bran oil and cholesterol metabolism. Journal of Nutrition, 127, 521-524.
  • [42] Yokoyama, W.H. (2004). Plasma LDL cholesterol lowering by plant phytosterols in a hamster model. Trends in Food Science and Technology, 15, 528-531.
  • [43] Seetharamaiah, G.S., Krishnakantha, T.P., Chandrasekhara, N. (1990). Influence of oryzanol on platelet aggregation in rats. Journal of Nutritional Science and Vitaminology, 36, 291-297.
  • [44] Juliano C., Cossu M., Alamanni M.C., Piu L. (2005). Antioxidant activity of gamma-oryzanol: Mechanism of action and its effect on oxidative stability of pharmaceutical oils. International Journal of Pharmaceutics, 299, 146-154.
  • [45] Jha A.B., Panchal S.S. (2017). Neuroprotection and cognitive enhancement by treatment with γ-oryzanol in sporadic Alzheimer’s disease. Journal of Applied Biomedicine, 15(4), 265-281.
  • [46] Strieder, M.M., Engelmann, J.I., Pohndorf, R.S., Rodrigues, P.A., Juliano, R.S., Dotto, G.L., Pinto, L.A.A. (2019). The effect of temperature on rice oil bleaching to reduce oxidation and loss in bioactive compounds. Grasas y Aceites, 70(1), e287.
  • [47] Naz S., Sherazi S.T.H., Talpur F.N. (2011). Changes of Total Tocopherol and Tocopherol Species During Sunflower Oil Processing. Journal of the American Oil Chemists' Society, 88(1),127-132.
  • [48] Garcia, J.O., Gamez-Meza, N., Noriega-Rodriguez, J.A., Dennis-Quinonez O., Garcia-Galindo H.S., Angulo-Guerrero J.O., Medina-Juarez L.A. (2006) Refining of High Oleic Safflower Oil: Effect on the Sterols and Tocopherols Content. European Food Research and Technology, 223(6), 775-779.
  • [49] Ferrari, R.A., Schulte, E., Esteves, W., Brühl, L., Mukherjee, K.D. (1996). Minor constituents of vegetable oils during industrial processing. Journal of the American Oil Chemists' Society, 73(5), 587-592.
  • [50] Weißhaar, R., Perz, R. (2010). Fatty acid esters of glycidol in refined fats and oils. European Journal of Lipid Science and Technology, 112(2), 158-165.
  • [51] Hrncirik, K., Van Duijn, G. (2011). An initial study on the formation of 3‐MCPD esters during oil refining. European Journal of Lipid Science and Technology, 113(3), 374-379.
  • [52] Matthäus, B., Pudel, F., Fehling, P., Vosmann, K., Freudenstein, A. (2011). Strategies for the reduction of 3‐MCPD esters and related compounds in vegetable oils. European Journal of Lipid Science and Technology, 113(3), 380-386.
  • [53] Li, C., Zhou, Y., Zhu, J., Wang, S., Nie, S., Xie, M. (2016). Formation of 3-chloropropane-1-2-diol esters in model systems simulating thermal processing of edible oil. LWT-Food Science and Technology, 69, 586-592.
  • [54] Bakhiya, N., Abraham, K., Gürtler, R., Appel, K.E., Lampen, A. (2011). Toxicological assessment of 3‐chloropropane‐1-2‐diol and glycidol fatty acid esters in food. Molecular Nutrition and Food Research, 55(4), 509-521.
  • [55] Collier, P.D., Cromie, D.D.O., Davies, A.P. (1991). Mechanism of formation of chloropropanols present in protein hydrolysates. Journal of the American Oil Chemists Society, 68(10), 785-790.
  • [56] Hamlet, C.G., Sadd, P.A., Gray, D.A. (2004). Generation of monochloropropan ediols (MCPDs) in model dough systems. 2. Unleavened doughs. Journal of Agricultural and Food Chemistry, 52(7), 2067–2072.
  • [57] Matthaus B., Pudel F., Fehling P., Vosmann, K., Freudenstein, A. (2011). Strategies for the reduction of 3-MCPD esters and related compounds in vegetable oils. European Journal of Lipid Science and Technology, 113(3), 380–386.
  • [58] Hrncirik K., Zelinkova Z., Ermacora A. (2011). Critical factors of indirect determination of 3-chloropropane-1-2-diol esters. European Journal of Lipid Science and Technology, 113(3) ,361–367.
  • [59] Velíšek J., Calta P., Crews C., Hasnip, S., Doležal, M. (2003). 3-Chloropropane-1-2-diol in models simulating processed foods: Precursors and agents causing its decomposition. Czech Journal of Food Sciences, 21, 153–161.
  • [60] Zelinková, Z., Svejkovská, B., Velíšek, J., Doležal, M. (2006). Fatty acid esters of 3-chloropropane-1-2-diol in edible oils. Food Additives and Contaminants, 23(12), 1290-1298.
  • [61] Seefelder, W., Varga, N., Studer, N.A., Williamson, G. (2008). Esters of 3-chloro-1-2-propanediol (3-MCPD) in vegetable oils: Significance in the formation of 3-MCPD. Food Additives and Contaminants, 25(4), 391-400.
  • [62] Özdikicierler, O., Yemişçioğlu, F., Gümüşkesen, A. S. (2016). Effects of process parameters on 3-MCPD and glycidyl ester formation during steam distillation of olive oil and olive pomace oil. European Food Research and Technology, 242(5), 805-813.
  • [63] Li, C., Li, L., Jia, H., Wang, Y., Shen, M., Nie, S., Xie, M. (2016). Formation and reduction of 3-monochloropropane-1-2-diol esters in peanut oil during physical refining. Food Chemistry, 199, 605-611.
  • [64] Ramli, M.R., Siew, W.L., Ibrahim, N.A., Hussein, R., Kuntom, A., Abd. Razak, R.A., Nesaretnam, K. (2011). Effects of degumming and bleaching on 3-MCPD esters formation during physical refining. Journal of the American Oil Chemists' Society, 88(11), 1839-1844.
  • [65] Hew, K.S., Asis, A.J., Tan, T.B., Yusoff, M.M., Lai, O.M., Nehdi, I.A., Tan, C.P. (2020). Revising degumming and bleaching processes of palm oil refining for the mitigation of 3-monochloropropane-1-2-diol esters (3-MCPDE) and glycidyl esters (GE) contents in refined palm oil. Food Chemistry, 307, 125545.
  • [66] Strijowski, U., Heinz, V., Franke, K. (2011). Removal of 3‐MCPD esters and related substances after refining by adsorbent material. European Journal of Lipid Science and Technology, 113(3), 387-392.
  • [67] Yemişçioğlu, F., Özdikicierler, O., Gümüşkesen, A.S. (2016). Bitkisel yağ rafinasyonunda yeni bir yaklaşım: minimal rafinasyon. Akademik Gıda, 14(2), 172-179.

Changes in Important Functional Components for Human Nutrition during Oil Refining and Formation of Harmful Refining Components

Yıl 2020, Cilt: 18 Sayı: 3, 331 - 338, 29.10.2020
https://doi.org/10.24323/akademik-gida.818207

Öz

Vegetable oils provide many health benefits because of their ingredients defined as bioactive. Oils not only provide energy to the body, but also play a role in maintaining body temperature and tissues, carrying vitamins dissolved in their structure, and carrying out many other important functions. Among the most important bioactive substances found in vegetable oils are vegetable sterols, carotenes, tocols, phenolic substances and hydrocarbons like squalene. Valuable components are lost depending on refining conditions applied, and health-hazard components (3-monochloropropane-1-2-diol and glycidyl esters) may occur as a result of reactions occurring in oils. In the first part of this review, oil refining steps and losses in functional components during these processes and their causes are presented while, in the second part, studies on the formation and reduction of harmful substances that take place during oil refining are discussed.

Kaynakça

  • [1] Ostfeld, R., Howarth, D., Reiner, D., Krasny, P. (2019). Peeling back the label exploring sustainable palm oil ecolabelling and consumption in the United Kingdom. Environmental Research Letters, 14(1), 014001.
  • [2] Mahlia, T.M.I., Ismail, N., Hossain, N., Silitonga, A.S., Shamsuddin, A.H. (2019). Palm oil and its wastes as bioenergy sources: a comprehensive review. Environmental Science and Pollution Research, 26, 1-18.
  • [3] Yang, R., Zhang, L., Li, P., Yu, L., Mao, J., Wang, X., Zhang, Q. (2018). A review of chemical composition and nutritional properties of minor vegetable oils in China. Trends in Food Science and Technology, 74, 26-32.
  • [4] Oey, S.B., Van der Fels‐Klerx, H.J., Fogliano, V., Van Leeuwen, S.P. (2019). Mitigation Strategies for the Reduction of 2‐and 3‐MCPD Esters and Glycidyl Esters in the Vegetable Oil Processing Industry. Comprehensive Reviews in Food Science and Food Safety, 18(2), 349-361.
  • [5] World Health Organization. (2013). Some chemicals present in industrial and consumer products, food and drinking‐water. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 101, 349-374.
  • [6] Mancini, A., Imperlini, E., Nigro, E., Montagnese, C., Daniele, A., Orrù, S., Buono, P. (2015). Biological and nutritional properties of palm oil and palmitic acid: effects on health. Molecules, 20(9), 17339-17361.
  • [7] Hidalgo, F.J., Zamora, R. (2006). Peptides and proteins in edible oils: Stability, allergenicity, and new processing trends. Trends in Food Science and Technology, 17(2), 56-63.
  • [8] Cheng, W.W., Liu, G.Q., Wang, L.Q., Liu, Z.S. (2017). Glycidyl fatty acid esters in refined edible oils: a review on formation, occurrence, analysis, and elimination methods. Comprehensive Reviews in Food Science and Food Safety, 16(2), 263-281.
  • [9] Demirkol, E. (2015). Rafine yağ tesislerinde deodorize kolonu seviye ölçümü. Gıda2000 Gıda Teknolojisi ve Tarım Dergisi. http://www.gida2000.com/rafine-yag-tesislerinde-deodorize-kolonu-seviye-olcumu.html. Son erişim tarihi: 23.09.2019.
  • [10] Teberikler, L., Koseoglu, S., Akgerman, A. (2001). Selective extraction of phosphatidylcholine from lecithin by supercritical carbon dioxide/ethanol mixture. Journal of the American Oil Chemists' Society, 78(2), 115-120.
  • [11] Kamal‐Eldin, A., Appelqvist, L.Å. (1996). The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids, 31(7), 671-701.
  • [12] Niki, E. (2019). Vitamin E: Chemistry and Nutritional Benefits. Vitamin E: Structure, Properties and Functions. Edited by E. Niki, Royal Society of Chemistry, Croydon CR044YY, England, 269p.
  • [13] Garcia, R.A., Schulte, E., Esteves, W., Brühl, L., Mukherjee, K.D. (1996). Minor constituents of vegetable oils during industrial processing. Journal of the American Oil Chemists' Society, 73(5), 587-592.
  • [14] Gutfinger, T., Letan, A. (1974). Quantitative changes in some unsaponifiable components of soya bean oil due to refining. Journal of the Science of Food and Agriculture, 25(9), 1143-1147.
  • [15] Wei, P.C., May, C.Y., Ngan, M.A., Hock, C.C. (2004). Degumming and bleaching: effect on selected constituents of palm oil. Journal of Oil Palm Research, 16(2), 57-63.
  • [16] Liu, R., Shi, L., Zhang, Z., Zhang, T., Lu, M., Wang, X. (2019). Effect of refining process on physicochemical parameters, chemical compositions and in vitro antioxidant activities of rice bran oil. LWT- Journal of Science and Technology, 109, 26-32.
  • [17] Jung, M.Y., Yoon, S.H., Min, D.B. (1989). Effects of processing steps on the contents of minor compounds and oxidation of soybean oil. Journal of the American Oil Chemists' Society, 66(1), 118-120.
  • [18] Kreps, F., Vrbiková, L., Schmidt, Š. (2014). Influence of industrial physical refining on tocopherol, chlorophyll and beta‐carotene content in sunflower and rapeseed oil. European Journal of Lipid Science and Technology, 116(11), 1572-1582.
  • [19] Tasan, M., Demirci, M. (2005). Total and individual tocopherol contents of sunflower oil at different steps of refining. European Food Research and Technology, 220(3-4), 251-254.
  • [20] Karaali, A. (1985). The effects of refining on the chemical composition of Turkish sunflower seed oil. Fette, Seifen, Anstrichmittel, 87(3), 112-117.
  • [21] Ogbe, R.J., Ochalefu, D.O., Mafulul, S.G., Olaniru, O.B. (2015). A review on dietary phytosterols: Their occurrence, metabolism and health benefits. Asian Jounal of Plant Science Research, 5(4), 10-21.
  • [22] Ortega-García, J., Gámez-Meza, N., Noriega-Rodriguez, J.A., Dennis-Quiñonez, O., García-Galindo, H.S., Angulo-Guerrero, J.O., Medina-Juárez, L.A. (2006). Refining of high oleic safflower oil: effect on the sterols and tocopherols content. European Food Research and Technology, 223(6), 775-779.
  • [23] Verleyen, T., Sosinska, U., Ioannidou, S., Verhé, R., Dewettinck, K., Huyghebaert, A., De Greyt, W. (2002). Influence of the vegetable oil refining process on free and esterified sterols. Journal of the American Oil Chemists' Society, 79(10), 947-953.
  • [24] Ghazani, S.M., Marangoni, A.G. (2013). Minor components in canola oil and effects of refining on these constituents: A review. Journal of the American Oil Chemists' Society, 90(7), 923-932.
  • [25] Pal, U.S., Patra, R.K., Sahoo, N.R., Bakhara, C.K., Panda, M.K. (2015). Effect of refining on quality and composition of sunflower oil. Journal of Food Science and Technology, 52(7), 4613-4618.
  • [26] Durmaz, G., Gökmen, V. (2019). Effect of refining on bioactive composition and oxidative stability of hazelnut oil. Food Research International, 116, 586-591.
  • [27] Mirzaee Ghazani, S. (2012). The Influence of Traditional and Minimal Refining on the Minor Constituents of Canola Oil (Doctoral dissertation).
  • [28] Essid, K., Trabelsi, M., Frikha, M.H. (2006). Effects of neutralization with lime on the quality of acid olive oil. Journal of the American Oil Chemists' Society, 83(10), 879-884.
  • [29] Dunford T.N. (2004). Nutritionally Enhanced Edible Oil and Oilseed Processing. Effects of Processing on Nutritional and Bioactive Components of Oil and Oilseeds. Edited by Dunford T. N., Dunford H. B, AOCS Publishing, USA, 303p.
  • [30] Smith, D., Espino-Montoro, A., Perez-Jimenez, F., Pedro-Botet, J., Pereperez, J.J., Ordovas, J.M. (2000). Effect of a high saturated fat and cholesterol diet supplemented with squalene or β-sitosterol on lipoprotein profile in fib hamsters. Nutrition Research, 20(9), 1309-1318.
  • [31] Nergiz, C., Çelikkale, D. (2011). The effect of consecutive steps of refining on squalene content of vegetable oils. Journal of Food Science and Technology, 48(3), 382-385.
  • [32] Neuman T.D., Dunford T.N. (2004). Nutritionally Enhanced Edible Oil and Oilseed Processing. Edible Oil Bleaching. Edited by Dunford T.N., Dunford H.B, AOCS Publishing, USA, 303p.
  • [33] Fine, F., Brochet, C., Gaud, M., Carre, P., Simon, N., Ramli, F., Joffre, F. (2016). Micronutrients in vegetable oils: the impact of crushing and refining processes on vitamins and antioxidants in sunflower, rapeseed, and soybean oils. European Journal of Lipid Science and Technology, 118(5), 680-697.
  • [34] Alpaslan, M., Tepe, S., Simsek, O. (2001). Effect of refining processes on the total and individual tocopherol content in sunflower oil. International Journal of Food Science and Technology, 36, 737-739.
  • [35] Ergönül P.G, Köseoğlu O. (2014). Changes in α-, β-, γ- and δ- tocopherol contents of mostly consumed vegetable oils during refining process. CyTA-Journal of Food, 12, 199-202.
  • [36] Wu, Y., Zhou, R., Wang, Z., Wang, B., Yang, Y., Ju, X., He, R. (2019). The effect of refining process on the physicochemical properties and micronutrients of rapeseed oils. Plos One, 14(3), e0212879.
  • [37] Abedi, E., Sahari, M.A., Barzegar, M., Azizi, M.H. (2015). Optimisation of soya bean oil bleaching by ultrasonic processing and investigate the physico-chemical properties of bleached soya bean oil. International Journal of Food Science and Technology, 50, 857-863.
  • [38] Verleyen, T., Cortes, E., Verhe, R., Dewettinck, K., Huyghebaert, A., De Greyt, W. (2002). Factors determining the steradiene formation in bleaching and deodorisation. European Journal of Lipid Science and Technology, 104(6), 331-339.
  • [39] Szydłowska-Czerniak, A., Trokowski, K., Karlovits, G., Szłyk, E. (2011). Effect of refining processes on antioxidant capacity, total contents of phenolics and carotenoids in palm oils. Food Chemistry, 129(3), 1187-1192.
  • [40] Rong, N., Ausman, L.M., Nicolosi, R.J. (1997). Oryzanol decreases cholesterol absorption and aortic fatty streaks in hamsters. Lipids, 32, 303-309.
  • [41] Sugano, M., Tsuji, E. (1997). Rice bran oil and cholesterol metabolism. Journal of Nutrition, 127, 521-524.
  • [42] Yokoyama, W.H. (2004). Plasma LDL cholesterol lowering by plant phytosterols in a hamster model. Trends in Food Science and Technology, 15, 528-531.
  • [43] Seetharamaiah, G.S., Krishnakantha, T.P., Chandrasekhara, N. (1990). Influence of oryzanol on platelet aggregation in rats. Journal of Nutritional Science and Vitaminology, 36, 291-297.
  • [44] Juliano C., Cossu M., Alamanni M.C., Piu L. (2005). Antioxidant activity of gamma-oryzanol: Mechanism of action and its effect on oxidative stability of pharmaceutical oils. International Journal of Pharmaceutics, 299, 146-154.
  • [45] Jha A.B., Panchal S.S. (2017). Neuroprotection and cognitive enhancement by treatment with γ-oryzanol in sporadic Alzheimer’s disease. Journal of Applied Biomedicine, 15(4), 265-281.
  • [46] Strieder, M.M., Engelmann, J.I., Pohndorf, R.S., Rodrigues, P.A., Juliano, R.S., Dotto, G.L., Pinto, L.A.A. (2019). The effect of temperature on rice oil bleaching to reduce oxidation and loss in bioactive compounds. Grasas y Aceites, 70(1), e287.
  • [47] Naz S., Sherazi S.T.H., Talpur F.N. (2011). Changes of Total Tocopherol and Tocopherol Species During Sunflower Oil Processing. Journal of the American Oil Chemists' Society, 88(1),127-132.
  • [48] Garcia, J.O., Gamez-Meza, N., Noriega-Rodriguez, J.A., Dennis-Quinonez O., Garcia-Galindo H.S., Angulo-Guerrero J.O., Medina-Juarez L.A. (2006) Refining of High Oleic Safflower Oil: Effect on the Sterols and Tocopherols Content. European Food Research and Technology, 223(6), 775-779.
  • [49] Ferrari, R.A., Schulte, E., Esteves, W., Brühl, L., Mukherjee, K.D. (1996). Minor constituents of vegetable oils during industrial processing. Journal of the American Oil Chemists' Society, 73(5), 587-592.
  • [50] Weißhaar, R., Perz, R. (2010). Fatty acid esters of glycidol in refined fats and oils. European Journal of Lipid Science and Technology, 112(2), 158-165.
  • [51] Hrncirik, K., Van Duijn, G. (2011). An initial study on the formation of 3‐MCPD esters during oil refining. European Journal of Lipid Science and Technology, 113(3), 374-379.
  • [52] Matthäus, B., Pudel, F., Fehling, P., Vosmann, K., Freudenstein, A. (2011). Strategies for the reduction of 3‐MCPD esters and related compounds in vegetable oils. European Journal of Lipid Science and Technology, 113(3), 380-386.
  • [53] Li, C., Zhou, Y., Zhu, J., Wang, S., Nie, S., Xie, M. (2016). Formation of 3-chloropropane-1-2-diol esters in model systems simulating thermal processing of edible oil. LWT-Food Science and Technology, 69, 586-592.
  • [54] Bakhiya, N., Abraham, K., Gürtler, R., Appel, K.E., Lampen, A. (2011). Toxicological assessment of 3‐chloropropane‐1-2‐diol and glycidol fatty acid esters in food. Molecular Nutrition and Food Research, 55(4), 509-521.
  • [55] Collier, P.D., Cromie, D.D.O., Davies, A.P. (1991). Mechanism of formation of chloropropanols present in protein hydrolysates. Journal of the American Oil Chemists Society, 68(10), 785-790.
  • [56] Hamlet, C.G., Sadd, P.A., Gray, D.A. (2004). Generation of monochloropropan ediols (MCPDs) in model dough systems. 2. Unleavened doughs. Journal of Agricultural and Food Chemistry, 52(7), 2067–2072.
  • [57] Matthaus B., Pudel F., Fehling P., Vosmann, K., Freudenstein, A. (2011). Strategies for the reduction of 3-MCPD esters and related compounds in vegetable oils. European Journal of Lipid Science and Technology, 113(3), 380–386.
  • [58] Hrncirik K., Zelinkova Z., Ermacora A. (2011). Critical factors of indirect determination of 3-chloropropane-1-2-diol esters. European Journal of Lipid Science and Technology, 113(3) ,361–367.
  • [59] Velíšek J., Calta P., Crews C., Hasnip, S., Doležal, M. (2003). 3-Chloropropane-1-2-diol in models simulating processed foods: Precursors and agents causing its decomposition. Czech Journal of Food Sciences, 21, 153–161.
  • [60] Zelinková, Z., Svejkovská, B., Velíšek, J., Doležal, M. (2006). Fatty acid esters of 3-chloropropane-1-2-diol in edible oils. Food Additives and Contaminants, 23(12), 1290-1298.
  • [61] Seefelder, W., Varga, N., Studer, N.A., Williamson, G. (2008). Esters of 3-chloro-1-2-propanediol (3-MCPD) in vegetable oils: Significance in the formation of 3-MCPD. Food Additives and Contaminants, 25(4), 391-400.
  • [62] Özdikicierler, O., Yemişçioğlu, F., Gümüşkesen, A. S. (2016). Effects of process parameters on 3-MCPD and glycidyl ester formation during steam distillation of olive oil and olive pomace oil. European Food Research and Technology, 242(5), 805-813.
  • [63] Li, C., Li, L., Jia, H., Wang, Y., Shen, M., Nie, S., Xie, M. (2016). Formation and reduction of 3-monochloropropane-1-2-diol esters in peanut oil during physical refining. Food Chemistry, 199, 605-611.
  • [64] Ramli, M.R., Siew, W.L., Ibrahim, N.A., Hussein, R., Kuntom, A., Abd. Razak, R.A., Nesaretnam, K. (2011). Effects of degumming and bleaching on 3-MCPD esters formation during physical refining. Journal of the American Oil Chemists' Society, 88(11), 1839-1844.
  • [65] Hew, K.S., Asis, A.J., Tan, T.B., Yusoff, M.M., Lai, O.M., Nehdi, I.A., Tan, C.P. (2020). Revising degumming and bleaching processes of palm oil refining for the mitigation of 3-monochloropropane-1-2-diol esters (3-MCPDE) and glycidyl esters (GE) contents in refined palm oil. Food Chemistry, 307, 125545.
  • [66] Strijowski, U., Heinz, V., Franke, K. (2011). Removal of 3‐MCPD esters and related substances after refining by adsorbent material. European Journal of Lipid Science and Technology, 113(3), 387-392.
  • [67] Yemişçioğlu, F., Özdikicierler, O., Gümüşkesen, A.S. (2016). Bitkisel yağ rafinasyonunda yeni bir yaklaşım: minimal rafinasyon. Akademik Gıda, 14(2), 172-179.
Toplam 67 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği
Bölüm Derleme Makaleler
Yazarlar

Şakir Selçuk Seçilmiş 0000-0003-3415-7420

Yayımlanma Tarihi 29 Ekim 2020
Gönderilme Tarihi 20 Şubat 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 18 Sayı: 3

Kaynak Göster

APA Seçilmiş, Ş. S. (2020). Yağ Rafinasyonu Sırasında İnsan Beslenmesinde Önemli Fonksiyonel Bileşenlerde Değişimler ve Zararlı Rafinasyon Bileşenlerinin Oluşumu. Akademik Gıda, 18(3), 331-338. https://doi.org/10.24323/akademik-gida.818207
AMA Seçilmiş ŞS. Yağ Rafinasyonu Sırasında İnsan Beslenmesinde Önemli Fonksiyonel Bileşenlerde Değişimler ve Zararlı Rafinasyon Bileşenlerinin Oluşumu. Akademik Gıda. Ekim 2020;18(3):331-338. doi:10.24323/akademik-gida.818207
Chicago Seçilmiş, Şakir Selçuk. “Yağ Rafinasyonu Sırasında İnsan Beslenmesinde Önemli Fonksiyonel Bileşenlerde Değişimler Ve Zararlı Rafinasyon Bileşenlerinin Oluşumu”. Akademik Gıda 18, sy. 3 (Ekim 2020): 331-38. https://doi.org/10.24323/akademik-gida.818207.
EndNote Seçilmiş ŞS (01 Ekim 2020) Yağ Rafinasyonu Sırasında İnsan Beslenmesinde Önemli Fonksiyonel Bileşenlerde Değişimler ve Zararlı Rafinasyon Bileşenlerinin Oluşumu. Akademik Gıda 18 3 331–338.
IEEE Ş. S. Seçilmiş, “Yağ Rafinasyonu Sırasında İnsan Beslenmesinde Önemli Fonksiyonel Bileşenlerde Değişimler ve Zararlı Rafinasyon Bileşenlerinin Oluşumu”, Akademik Gıda, c. 18, sy. 3, ss. 331–338, 2020, doi: 10.24323/akademik-gida.818207.
ISNAD Seçilmiş, Şakir Selçuk. “Yağ Rafinasyonu Sırasında İnsan Beslenmesinde Önemli Fonksiyonel Bileşenlerde Değişimler Ve Zararlı Rafinasyon Bileşenlerinin Oluşumu”. Akademik Gıda 18/3 (Ekim 2020), 331-338. https://doi.org/10.24323/akademik-gida.818207.
JAMA Seçilmiş ŞS. Yağ Rafinasyonu Sırasında İnsan Beslenmesinde Önemli Fonksiyonel Bileşenlerde Değişimler ve Zararlı Rafinasyon Bileşenlerinin Oluşumu. Akademik Gıda. 2020;18:331–338.
MLA Seçilmiş, Şakir Selçuk. “Yağ Rafinasyonu Sırasında İnsan Beslenmesinde Önemli Fonksiyonel Bileşenlerde Değişimler Ve Zararlı Rafinasyon Bileşenlerinin Oluşumu”. Akademik Gıda, c. 18, sy. 3, 2020, ss. 331-8, doi:10.24323/akademik-gida.818207.
Vancouver Seçilmiş ŞS. Yağ Rafinasyonu Sırasında İnsan Beslenmesinde Önemli Fonksiyonel Bileşenlerde Değişimler ve Zararlı Rafinasyon Bileşenlerinin Oluşumu. Akademik Gıda. 2020;18(3):331-8.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).