Araştırma Makalesi
BibTex RIS Kaynak Göster

Limonlarda Bulunan Bazı Fungisit Kalıntıları Üzerine Evsel Gıda İşleme Yöntemlerinin Etkisi

Yıl 2024, Cilt: 22 Sayı: 4, 288 - 302, 31.12.2024
https://doi.org/10.24323/akademik-gida.1609622

Öz

Bu çalışmanın amacı, limon meyvesi ve ürünlerindeki bazı fungisit kalıntılarına evsel işleme yöntemlerinin etkilerini belirlenmektir. Araştırmada, limon ve işlenmiş ürünlerinde imazalil ve thiophanate-methyl kalıntılarının analizi için QuEChERS (Hızlı, Kolay, Ucuz, Etkili, Sağlam ve Güvenli) yöntemi başarıyla uygulanmıştır. Limonun meyve eti, suyu ve reçel gibi işlenmiş ürünlerinde gerçekleştirilen analizler, pestisit kalıntı seviyelerinin %88 ile %100 arasında önemli ölçüde azaltılabildiğini ortaya koymuştur. Bu durum, pestisitlerin fizikokimyasal özelliklerine (log Po/w değeri, polarite ve çözünürlük gibi) ve limonun biyolojik yapısına bağlanmıştır. Ancak, limon kabuğu ve rendelenmiş dondurulmuş kabuk gibi ürünlerde pestisit kalıntı seviyelerinde artış gözlenmiştir. Bu artış, pestisitlerin kabuk yüzeyinde birikme eğilimiyle ilişkilendirilmiştir. Sonuç olarak, işleme faktörlerinin pestisitlerin fizikokimyasal özelliklerine ve uygulanan işleme yöntemlerine bağlı olarak değiştiği görülmüştür. Meyve eti, limon suyu ve reçel gibi ürünlerde işleme faktörleri 1’den küçük bulunmuş, bu da bu işlemlerin pestisit kalıntılarını azaltmada etkili olduğunu göstermektedir. Öte yandan, kabuklu ürünlerde işleme faktörlerinin 1’den büyük olduğu ve bu işlenmiş ürünlerde kalıntı birikiminin daha fazla olduğu tespit edilmiştir.

Kaynakça

  • [1] Al-Qudah, T. S., Zahra, U., Rehman, R., Majeed, M. I., Sadique, S., Nisar, S., Al-Qudah, T. S., Tahtamouni, R. W. (2018). Lemon as a source of functional and medicinal ingredient: A review. International Journal of Chemical and Biochemical Sciences, 14, 55-61.
  • [2] González-Molina, E., Domínguez-Perles, R., Moreno, D., García-Viguera, C. (2010). Natural bioactive compounds of Citrus lemon for food and health. Journal of Pharmaceutical and Biomedical Analysis, 51, 327-345.
  • [3] Romdhane, N., Bonazzi, C., Kechaou, N., Mihoubi, N. (2015). Effect of air-drying temperature on kinetics of quality attributes of lemon (Citrus limon cv. lunari) peels. Drying Technology, 33, 1581-1589.
  • [4] TÜİK. (2024). Bitkisel Üretim İstatistikleri. Türkiye İstatistik Kurumu. https://www.tuik.gov.tr. (Erişim Tarihi: 1 Kasım 2024).
  • [5] FAO. (2024). Food and Agriculture Organization Corporate Statistical Database http://www.fao.org/faostat/en/#data/qc/visualize (Erişim Tarihi: 1 Kasım 2024).
  • [6] Li, Z., Zhang, Y., Zhao, Q., Wang, C., Cui, Y., Li, J., Jiao, B. (2020). Occurrence, temporal variation, quality and safety assessment of pesticide residues on citrus fruits in China. Chemosphere, 258, Article 127381.
  • [7] Acoglu Çelik, B., Yolci Ömeroglu, P. (2023). Assessing residues of some insecticides during household processing of lemon. Turkiye Entomoloji Dergisi-Turkish Journal of Entomology, 47, 441-456.
  • [8] Rodrigues, A., De Queiroz, M., De Oliveira, A., Neves, A., Heleno, F., Zambolim, L., Freitas, J., Morais, E. (2017). Pesticide residue removal in classic domestic processing of tomato and its effects on product quality. Journal of Environmental Science and Health Part B-Pesticides Food Contaminants and Agricultural Wastes, 52, 850-857.
  • [9] Wu, Y., An, Q., Li, D., Wu, J., Pan, C. (2019). Comparison of different home/commercial washing strategies for ten typical pesticide residue removal effects in kumquat, spinach and cucumber. International Journal of Environmental Research and Public Health, 16, Article 472.
  • [10] Yigit, N., Velioglu, Y. (2020). Effects of processing and storage on pesticide residues in foods. Critical Reviews in Food Science and Nutrition, 60, 3622-3641.
  • [11] Kowalska, G., Pankiewicz, U., Kowalski, R. (2022). Assessment of pesticide content in apples and selected citrus fruits subjected to simple culinary processing. Applied Sciences-Basel, 12, Article 1417.
  • [12] Zarebska, M., Hordyjewicz-Baran, Z., Wasilewski, T., Zajszly-Turko, E., Stanek, N. (2022). A new LC-MS method for evaluating the efficacy of pesticide residue removal from fruit surfaces by washing agents. Processes, 10, Article 793.
  • [13] Avan, M., Kotan, R. (2021). Fungusların mikrobiyal gübre veya biyopestisit olarak tarımda kullanılması. Uluslararası Doğu Anadolu Fen Mühendislik ve Tasarım Dergisi, 3(1), 167-191.
  • [14] Tudi, M., Ruan, H., Wang, L., Lyu, J., Sadler, R., Connell, D., Chu, C., Phung, D. (2021). Agriculture development, pesticide application and its impact on the environment. International Journal of Environmental Research and Public Health, 18, 1112.
  • [15] Zhou, W., Li, M., Achal, V. (2025). A comprehensive review on environmental and human health impacts of chemical pesticide usage. Emerging Contaminants, 11, Article 100410.
  • [16] Acoglu, B., Yolcı Omeroglu, P. (2021). Effectiveness of different type of washing agents on reduction of pesticide residues in orange (Citrus sinensis). LWT-Food Science And Technology, 147, Article 111690.
  • [17] Gormez, E., Golge, O., González-Curbelo, M., Kabak, B. (2023). Pesticide residues in mandarins: three-year monitoring results. Molecules, 28, Article 5611.
  • [18] Ortelli, D., Edder, P., Corvi, C. (2005). Pesticide residues survey in citrus fruits. Food Additives and Contaminants, 22, 423-428.
  • [19] Besil, N., Rezende, S., Alonzo, N., Cesio, M., Rivas, F., Heinzen, H. (2019). Analytical methods for the routinely evaluation of pesticide residues in lemon fruits and by products. Sn Applied Sciences, 1, Article 618.
  • [20] Suárez-Jacobo, A., Alcantar-Rosales, V., Alonso-Segura, D., Heras-Ramírez, M., Elizarragaz-De La Rosa, D., Lugo-Melchor, O., Gaspar-Ramirez, O. (2017). Pesticide residues in orange fruit from citrus orchards in Nuevo Leon State, Mexico. Food Additives & Contaminants Part B-Surveillance, 10, 192-199.
  • [21] Bibi, A., Rafique, N., Khalid, S., Samad, A., Ahad, K., Mehboob, F. (2022). Method optimization and validation for the routine analysis of multi-class pesticide residues in Kinnow Mandarin and fruit quality evaluation. Food Chemistry, 369, Article 130914.
  • [22] Gelaye, Y., Negash, B. (2024). Residue of pesticides in fruits, vegetables, and their management in Ethiopia. Journal of Chemistry, 2024, Article 9948714.
  • [23] Aslantas, S., Golge, O., González-Curbelo, M., Kabak, B. (2023). Determination of 355 pesticides in lemon and lemon juice by LC-MS/MS and GC-MS/MS. Foods, 12, Article 1812.
  • [24] Rodrigues, A., de Queiroz, M., Neves, A., de Oliveira, A., Prates, L., de Freitas, J., Heleno, F., Faroni, L. (2019). Use of ozone and detergent for removal of pesticides and improving storage quality of tomato. Food Research International, 125, Article 108626.
  • [25] Philippe, V., Neveen, A., Marwa, A., Basel, A. (2021). Occurrence of pesticide residues in fruits and vegetables for the Eastern Mediterranean Region and potential impact on public health. Food Control, 119, Article 107457.
  • [26] Rodrigues, A., de Queiroz, M., Faroni, L., Prates, L., Neves, A., de Oliveira, A., Freitas, J., Zambolim, L. (2021). The efficacy of washing strategies in the elimination of fungicide residues and the alterations on the quality of bell peppers. Food Research International, 147, Article 110579.
  • [27] OECD. (2008). OECD Guidelines for the Testing of Chemicals/ Section 5: Other Test Guidelines. Test No. 508: Magnitude of the Pesticide Residues in Processed Commodities. In (pp. 15).
  • [28] Fantke, P., Juraske, R. (2013). Variability of pesticide dissipation half-lives in plants. Environmental Science & Technology, 47, 3548-3562.
  • [29] Acoğlu, B., Yolcı-Ömeroğlu, P., Çopur, Ö. U. (2018). Gıda işleme süreçlerinin pestisit kalıntıları üzerine etkisi ve işleme faktörleri. Gıda ve Yem Bilimi Teknolojisi Dergisi, 19, 42-54.
  • [30] Scholz, R., Herrmann, M., Michalski, B. (2017). Compilation of processing factors and evaluation of quality controlled data of food processing studies. Journal of Consumer Protection and Food Safety, 12, 3-14.
  • [31] Anonim. (2016). Türk Gıda Kodeksi Pestisitlerin Maksimum Kalıntı Limitleri Yönetmeliği. Resmi Gazete (27 Eylül 2021 ve 31611 sayılı), Ankara, 1040 pp (Web adresi: https://kms.kaysis.gov.tr/Home/Kurum/24308110) (Erişim Tarihi: 15 Kasım 2024).
  • [32] Pathak, V., Verma, V., Rawat, B., Kaur, B., Babu, N., Sharma, A., Dewali, S., Yadav, M., Kumari, R., Singh, S., Mohapatra, A., Pandey, V., Rana, N., Cunill, J. (2022). Current status of pesticide effects on environment, human health and it's eco-friendly management as bioremediation: A comprehensive review. Frontiers in Microbiology, 13, Article 962619.
  • [33] EC. (2002). European Commission Directive 2002/63/EC of 11 July 2002 Establishing Community Methods of Sampling for the Official Control of Pesticide Residues in and on Products of Plant and Animal Origin and Repealing Directive 79/700/EEC. Official Journal of the European Communities, 187, 30-43.
  • [34] Hassan, H., Elsayed, E., Abd El-Raouf, A., Salman, S. (2019). Method validation and evaluation of household processing on reduction of pesticide residues in tomato. Journal of Consumer Protection and Food Safety, 14, 31-39.
  • [35] Yolcı Omeroglu, P., Celik, B., & Alibasoglu, E. (2022). The effect of household food processing on pesticide residues in oranges (Citrus sinensis). Foods, 11, Article 3918.
  • [36] AOAC. (2007). Official method 2007.01: Pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate. Journal of AOAC International, 90(2), 485-520.
  • [37] SANTE. (2021). European Commision (EC) Director General for Food and Health Safety. Guidance document on analytical quality control and validation procedures for pesticide residues analysis in food and feed, Document No: SANTE 11813/2017. In. (Web adresi: https://ec.europa.eu/food/sites/food/files/plant/docs/pesticides_mrl_ guidelines_wrkdoc_2017-11813.pdf) (Erişim adresi: 21 Kasım 2024).
  • [38] EURACHEM. (2012). Eurachem/CITAC guide: Quantifying Uncertainty in Analytical Measurement. Third edition. In. (Web adresi: https://www.eurachem.org/images/stories/Guides/pdf/QUAM2012_P1.pdf) (Erişim Tarhi: 20 Kasım 2024).
  • [39] EURACHEM. (2014). The fitness for purpose of analytical methods -a laboratory guide to method validation and related topics. Second Edition. In. Web adresi: https://www.eurachem.org/images/stories/Guides/pdf/MV_guide_2nd_ed_EN.pdf. (Erişim Tarhi: 21 Kasım 2024).
  • [40] PPDB. (2024). International Union of Pure and Applied Chemistry. https://sitem.herts.ac.uk/aeru/iupac/(Erişim Tarhi: 20 Aralık 2024).
  • [41] Yolcı Omeroglu, P., Ambrus, A., Boyacioglu, D. (2018). Uncertainty of pesticide residue concentration determined from ordinary and weighted linear regression curve. Food Additives and Contaminants Part A-Chemistry Analysis Control Exposure & Risk Assessment, 35, 1324-1339.
  • [42] Andrade, G., Monteiro, S., Francisco, J., Figueiredo, L., Rocha, A., Tornisielo, V. (2015). Effects of types of washing and peeling in relation to pesticide residues in tomatoes. Journal of The Brazilian Chemical Society, 26, 1994-2002.
  • [43] Kaushik, G., Satya, S., Naik, S. (2009). Food processing a tool to pesticide residue dissipation - A review. Food Research International, 42, 26-40.
  • [44] Chung, S. (2018). How effective are common household preparations on removing pesticide residues from fruit and vegetables? A review. Journal of the Science of Food and Agriculture, 98, 2857-2870.
  • [45] Calvaruso, E., Cammilleri, G., Pulvirenti, A., Lo Dico, G., Lo Cascio, G., Giaccone, V., Badaco, V., Cipri, V., Alessandra, M., Vella, A., Macaluso, A., Di Bella, C., Ferrantelli, V. (2020). Residues of 165 pesticides in citrus fruits using LC-MS/MS: a study of the pesticides distribution from the peel to the pulp. Natural Product Research, 34, 34-38.
  • [46] Friar, P. M., Reynolds, S. L. (1994). The effect of home processing on postharvest fungicide residues in citrus fruit: residues of imazalil, 2‐phenylphenol and thiabendazole in ‘home‐made’marmalade, prepared from Late Valencia oranges. Food Additives & Contaminants, 11(1), 57-70.
  • [47] Sun, H., Liu, C., Wang, S., Liu, Y., Liu, M. (2013). Dissipation, residues, and risk assessment of spirodiclofen in citrus. Environmental Monitoring and Assessment, 185, 10473-10477.
  • [48] Drabová, L., Mráz, P., Krátky, F., Uttl, L., Vacková, P., Schusterova, D., Zadrazilova, B., Kadlec, V., Kocourek, V., Hajslová, J. (2022). Assessment of pesticide residues in citrus fruit on the Czech market. Food Additives and Contaminants Part A-Chemistry Analysis Control Exposure & Risk Assessment, 39, 311-319.
  • [49] Leili, M., Pirmoghani, A., Samadi, M., Shokoohi, R., Roshanaei, G., Poormohammadi, A. (2016). Determination of pesticides residues in cucumbers grown in greenhouse and the effect of some procedures on their residues. Iranian Journal of Public Health, 45, 1481-1490.
  • [50] Hassanzadeh, N., Bahramifar, N. (2019). Residue content of chlorpyrifos applied to greenhouse cucumbers and its reduction during pre‐harvest interval and post‐harvest household processing. Journal of Agricultural Science and Technology, 21(2), 381-391.
  • [51] Li, Y., Jiao, B., Zhao, Q., Wang, C., Gong, Y., Zhang, Y., Chen, W. (2012). Effect of commercial processing on pesticide residues in orange products. European Food Research and Technology, 234, 449-456.
  • [52] Liu, N., Dong, F., Liu, X., Xu, J., Li, Y., Han, Y., Zhu, Y., Cheng, Y., Chen, Z., Tao, Y., Zheng, Y. (2014). Effect of household canning on the distribution and reduction of thiophanate-methyl and its metabolite carbendazim residues in tomato. Food Control, 43, 115-120.
  • [53] Kwon, H., Kim, T., Hong, S., Se, E., Cho, N., Kyung, K. (2015). Effect of household processing on pesticide residues in field-sprayed tomatoes. Food Science and Biotechnology, 24, 1-6.
  • [54] Holland, P., Hamilton, D., Ohlin, B., Skidmore, M. (1994). Effects of storage and processing on pesticide residues in plant products. Pure and Applied Chemistry, 66(2), 335-356.
  • [55] Kimbara, J., Yoshida, M., Ito, H., Hosoi, K., Kusano, M., Kobayashi, M., Ariizumi, T., Asamizu, E., Ezura, H. (2012). A novel class of sticky peel and light green mutations causes cuticle deficiency in leaves and fruits of tomato (Solanum lycopersicum). Planta, 236, 1559-1570.
  • [56] Liu, Y., Su, X., Jian, Q., Chen, W., Sun, D., Gong, L., Jiang, L., Jiao, B. (2016). Behaviour of spirotetramat residues and its four metabolites in citrus marmalade during home processing. Food Additives and Contaminants Part A-Chemistry Analysis Control Exposure & Risk Assessment, 33, 452-459.
  • [57] Han, Y., Dong, F., Xu, J., Liu, X., Li, Y., Kong, Z., Liang, X., Liu, N., Zheng, Y. (2014). Residue change of pyridaben in apple samples during apple cider processing. Food Control, 37, 240-244.
  • [58] Liu, C., Chen, R., Liu, F., Gao, Z., Li, X., Wang, Y., Wang, S., Li, Y. (2023). Distribution pattern, removal effect, transfer behavior of ten pesticides and one metabolite during the processing of grapes. Food Research International, 164, Article 112398.
  • [59] Boulaid, M., Aguilera, A., Camacho, F., Soussi, M., Valverde, A. (2005). Effect of household processing and unit-to-unit variability of pyrifenox, pyridaben, and tralomethrin residues in tomatoes. Journal of Agricultural and Food Chemistry, 53, 4054-4058.
  • [60] Lozowicka, B., Jankowska, M., Kaczynski, P. (2016). Behaviour of selected pesticide residues in blackcurrants (Ribes nigrum) during technological processing monitored by liquid-chromatography tandem mass spectrometry. Chemical Papers, 70(5), 545-555.
  • [61] Dorđević, T., Đurović-Pejčev, R. (2016). Food processing as a means for pesticide residue dissipation. Pesticidi i Fitomedicina, 31(3-4), 89-105.
  • [62] Gao, Q., Wang, Y., Li, Y., Yang, W., Jiang, W., Liang, Y., Zhang, Z. (2024). Residue behaviors of six pesticides during apple juice production and storage. Food Research International, 177, Article 113894.
  • [63] Zhang, Y., Zhao, Q., Chen, A., Cui, Y., He, Y., Li, J. (2024). Removal residual, commercial processing factor and risk assessment of four fungicides in orange fruit and various processing by-products. Journal of Food Composition and Analysis, 136, Article 106786.
  • [64] Wu, Z., Ma, Y., Xiong, H., An, W., Zhang, Y., Zhao, Q., Li, J. (2023). Simultaneous determination of spiropidion and its five major metabolites in sweet orange fruit and various processing by-products using ultra-high performance liquid chromatography-tandem mass spectrometry. Food Research International, 174, Article 113498.
  • [65] Naman, M., Masoodi, F., Wani, S. M., Ahad, T. (2022). Changes in concentration of pesticide residues in fruits and vegetables during household processing. Toxicology Reports, 9, 1419-1425.
  • [66] ElGamal, R., Song, C., Rayan, A., Liu, C., Al-Rejaie, S., ElMasry, G. (2023). Thermal degradation of bioactive compounds during drying process of horticultural and agronomic products: A comprehensive overview. Agronomy-Basel, 13, Article 1580.
  • [67] Flamminii, F., Minetti, S., Mollica, A., Cichelli, A., Cerretani, L. (2023). The effect of washing, blanching and frozen storage on pesticide residue in spinach. Foods, 12, Article 2806.
  • [68] Alaboudi, A.R., Almashhadany, D.A., Jarrah, B.S. (2021). Effect of cooking and freezing on levels of pesticides residues in local fresh fish. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Animal Science and Biotechnologies, 78, 28-36.
  • [69] Oliva, J., Cermeño, S., Cámara, M., Martínez, G., Barba, A. (2017). Disappearance of six pesticides in fresh and processed zucchini, bioavailability and health risk assessment. Food Chemistry, 229, 172-177.
  • [70] Zhao, F., Liu, J., Han, B., Luo, J. (2019). Investigation and validation of detection of storage stability of difenoconazole residue in mango. Journal of Food Quality, Article 9497402.
  • [71] Wongmaneepratip, W., Gao, X., Yang, H. (2022). Effect of food processing on reduction and degradation pathway of pyrethroid pesticides in mackerel fillet (Scomberomorus commerson). Food Chemistry, 384, Article 132523.
  • [72] Slowik-Borowiec, M., Szpyrka, E. (2020). Selected food processing techniques as a factor for pesticide residue removal in apple fruit. Environmental Science and Pollution Research, 27, 2361-2373.
  • [73] Van der Sman, R. (2020). Impact of processing factors on quality of frozen vegetables and fruits. Food Engineering Reviews, 12, 399-420.
  • [74] Awulachew, M. (2021). Fruit jam production. International Journal of Food Science, Nutrition and Dietetics, 10(4), 532-537.
  • [75] de Oliveira, M., de Oliveira, J., Silva, J., Mendes, L., Silva, F., Alencar, M., Nobre, C., Costa, M.G., Lima, M., Milhome, M. (2024). Effect of thermal processing on the degradation of pesticides in a banana jam partially formulated with banana peel flour. Applied Food Research, 4, Article 100445.
  • [76] El-Sheikh, E., Li, D., Hamed, I., Ashour, M., Hammock, B. (2023). Residue analysis and risk exposure assessment of multiple pesticides in tomato and strawberry and their products from markets. Foods, 12, Article 1936.
  • [77] Reichert, B., Pizzutti, I., Costabeber, I., Uclés, A., Herrera, S., Fernández-Alba, A. (2015). Validation and application of micro flow liquid chromatography-tandem mass spectrometry for the determination of pesticide residues in fruit jams. Talanta, 134, 415-424.
  • [78] Azzazy, M. (2017). Effect of preparing and processing on pesticide residues of some fruits (Orange and Juava). Menoufia Journal of Food and Dairy Sciences, 2(1), 15-22.
  • [79] Jankowska, M., Lozowicka, B., Kaczynski, P. (2019). Comprehensive toxicological study over 160 processing factors of pesticides in selected fruit and vegetables after water, mechanical and thermal processing treatments and their application to human health risk assessment. Science of the Total Environment, 652, 1156-1167.
  • [80] Zhao, L., Liu, F., Ge, J., Ma, L., Wu, L., Xue, X. (2018). Changes in eleven pesticide residues in jujube (Ziziphus jujuba Mill.) during drying processing. Drying Technology, 36(8), 965-972.
  • [81] Bian, Y., Feng, Y., Zhang, A., Qi, X., Pan, J., Han, J., Liang, L. (2023). Residue behaviors, processing factors and transfer rates of pesticides and metabolites in rose from cultivation to consumption. Journal of Hazardous Materials, 442, Article 130104.
  • [82] Polat, B., Tiryaki, O. (2020). Assessing washing methods for reduction of pesticide residues in Capia pepper with LCMS/MS. Journal of Environmental Science and Health, Part B, 55(1), 1-10.
  • [83] Tiryaki, O., Özel, E. (2019). Elma ve işlenmiş ürünlerinde imidacloprid ve indoxacarb kalıntılarının belirlenmesi. Bitki Koruma Bülteni, 59(2), 23-32.
  • [84] Tiryaki, O., Polat, B. (2023). Effects of washing treatments on pesticide residues in agricultural products. Gıda ve Yem Bilimi Teknolojisi Dergisi, 29, 1-11.
  • [85] Yiğit, N., Velioğlu, Y.S. (2023). Effect of processing type and storage time on some pesticide residues in strawberries. Akademik Gıda, 21(1), 1-12.

Effect of Household Food Processing Methods on Some Fungicide Residues in Lemons

Yıl 2024, Cilt: 22 Sayı: 4, 288 - 302, 31.12.2024
https://doi.org/10.24323/akademik-gida.1609622

Öz

The aim of this study is to determine the effects of household processing methods on certain fungicide residues in lemon fruit and its products. In the research, the QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) method was successfully applied for the analysis of imazalil and thiophanate-methyl residues in lemons and processed products. Analyses on the fruit pulp, juice, and processed products like jam revealed that pesticide residue levels could be significantly reduced by 88 to 100%. This was attributed to the physicochemical properties of the pesticides (e.g., log Po/w value, polarity, and solubility) and the biological structure of lemon. However, an increase in pesticide residue levels was observed in products such as lemon peel and grated frozen peel. This increase was associated with the tendency of pesticides to accumulate on peel surface. Consequently, it was observed that processing factors varied depending on the physicochemical properties of the pesticides and the processing methods applied. Processing factors were less than 1 in products such as fruit pulp, lemon juice, and jam, indicating that these processes are effective in reducing pesticide residues. On the other hand, processing factors were greater than 1 in peel-containing products, indicating higher residue accumulation in these processed products.

Kaynakça

  • [1] Al-Qudah, T. S., Zahra, U., Rehman, R., Majeed, M. I., Sadique, S., Nisar, S., Al-Qudah, T. S., Tahtamouni, R. W. (2018). Lemon as a source of functional and medicinal ingredient: A review. International Journal of Chemical and Biochemical Sciences, 14, 55-61.
  • [2] González-Molina, E., Domínguez-Perles, R., Moreno, D., García-Viguera, C. (2010). Natural bioactive compounds of Citrus lemon for food and health. Journal of Pharmaceutical and Biomedical Analysis, 51, 327-345.
  • [3] Romdhane, N., Bonazzi, C., Kechaou, N., Mihoubi, N. (2015). Effect of air-drying temperature on kinetics of quality attributes of lemon (Citrus limon cv. lunari) peels. Drying Technology, 33, 1581-1589.
  • [4] TÜİK. (2024). Bitkisel Üretim İstatistikleri. Türkiye İstatistik Kurumu. https://www.tuik.gov.tr. (Erişim Tarihi: 1 Kasım 2024).
  • [5] FAO. (2024). Food and Agriculture Organization Corporate Statistical Database http://www.fao.org/faostat/en/#data/qc/visualize (Erişim Tarihi: 1 Kasım 2024).
  • [6] Li, Z., Zhang, Y., Zhao, Q., Wang, C., Cui, Y., Li, J., Jiao, B. (2020). Occurrence, temporal variation, quality and safety assessment of pesticide residues on citrus fruits in China. Chemosphere, 258, Article 127381.
  • [7] Acoglu Çelik, B., Yolci Ömeroglu, P. (2023). Assessing residues of some insecticides during household processing of lemon. Turkiye Entomoloji Dergisi-Turkish Journal of Entomology, 47, 441-456.
  • [8] Rodrigues, A., De Queiroz, M., De Oliveira, A., Neves, A., Heleno, F., Zambolim, L., Freitas, J., Morais, E. (2017). Pesticide residue removal in classic domestic processing of tomato and its effects on product quality. Journal of Environmental Science and Health Part B-Pesticides Food Contaminants and Agricultural Wastes, 52, 850-857.
  • [9] Wu, Y., An, Q., Li, D., Wu, J., Pan, C. (2019). Comparison of different home/commercial washing strategies for ten typical pesticide residue removal effects in kumquat, spinach and cucumber. International Journal of Environmental Research and Public Health, 16, Article 472.
  • [10] Yigit, N., Velioglu, Y. (2020). Effects of processing and storage on pesticide residues in foods. Critical Reviews in Food Science and Nutrition, 60, 3622-3641.
  • [11] Kowalska, G., Pankiewicz, U., Kowalski, R. (2022). Assessment of pesticide content in apples and selected citrus fruits subjected to simple culinary processing. Applied Sciences-Basel, 12, Article 1417.
  • [12] Zarebska, M., Hordyjewicz-Baran, Z., Wasilewski, T., Zajszly-Turko, E., Stanek, N. (2022). A new LC-MS method for evaluating the efficacy of pesticide residue removal from fruit surfaces by washing agents. Processes, 10, Article 793.
  • [13] Avan, M., Kotan, R. (2021). Fungusların mikrobiyal gübre veya biyopestisit olarak tarımda kullanılması. Uluslararası Doğu Anadolu Fen Mühendislik ve Tasarım Dergisi, 3(1), 167-191.
  • [14] Tudi, M., Ruan, H., Wang, L., Lyu, J., Sadler, R., Connell, D., Chu, C., Phung, D. (2021). Agriculture development, pesticide application and its impact on the environment. International Journal of Environmental Research and Public Health, 18, 1112.
  • [15] Zhou, W., Li, M., Achal, V. (2025). A comprehensive review on environmental and human health impacts of chemical pesticide usage. Emerging Contaminants, 11, Article 100410.
  • [16] Acoglu, B., Yolcı Omeroglu, P. (2021). Effectiveness of different type of washing agents on reduction of pesticide residues in orange (Citrus sinensis). LWT-Food Science And Technology, 147, Article 111690.
  • [17] Gormez, E., Golge, O., González-Curbelo, M., Kabak, B. (2023). Pesticide residues in mandarins: three-year monitoring results. Molecules, 28, Article 5611.
  • [18] Ortelli, D., Edder, P., Corvi, C. (2005). Pesticide residues survey in citrus fruits. Food Additives and Contaminants, 22, 423-428.
  • [19] Besil, N., Rezende, S., Alonzo, N., Cesio, M., Rivas, F., Heinzen, H. (2019). Analytical methods for the routinely evaluation of pesticide residues in lemon fruits and by products. Sn Applied Sciences, 1, Article 618.
  • [20] Suárez-Jacobo, A., Alcantar-Rosales, V., Alonso-Segura, D., Heras-Ramírez, M., Elizarragaz-De La Rosa, D., Lugo-Melchor, O., Gaspar-Ramirez, O. (2017). Pesticide residues in orange fruit from citrus orchards in Nuevo Leon State, Mexico. Food Additives & Contaminants Part B-Surveillance, 10, 192-199.
  • [21] Bibi, A., Rafique, N., Khalid, S., Samad, A., Ahad, K., Mehboob, F. (2022). Method optimization and validation for the routine analysis of multi-class pesticide residues in Kinnow Mandarin and fruit quality evaluation. Food Chemistry, 369, Article 130914.
  • [22] Gelaye, Y., Negash, B. (2024). Residue of pesticides in fruits, vegetables, and their management in Ethiopia. Journal of Chemistry, 2024, Article 9948714.
  • [23] Aslantas, S., Golge, O., González-Curbelo, M., Kabak, B. (2023). Determination of 355 pesticides in lemon and lemon juice by LC-MS/MS and GC-MS/MS. Foods, 12, Article 1812.
  • [24] Rodrigues, A., de Queiroz, M., Neves, A., de Oliveira, A., Prates, L., de Freitas, J., Heleno, F., Faroni, L. (2019). Use of ozone and detergent for removal of pesticides and improving storage quality of tomato. Food Research International, 125, Article 108626.
  • [25] Philippe, V., Neveen, A., Marwa, A., Basel, A. (2021). Occurrence of pesticide residues in fruits and vegetables for the Eastern Mediterranean Region and potential impact on public health. Food Control, 119, Article 107457.
  • [26] Rodrigues, A., de Queiroz, M., Faroni, L., Prates, L., Neves, A., de Oliveira, A., Freitas, J., Zambolim, L. (2021). The efficacy of washing strategies in the elimination of fungicide residues and the alterations on the quality of bell peppers. Food Research International, 147, Article 110579.
  • [27] OECD. (2008). OECD Guidelines for the Testing of Chemicals/ Section 5: Other Test Guidelines. Test No. 508: Magnitude of the Pesticide Residues in Processed Commodities. In (pp. 15).
  • [28] Fantke, P., Juraske, R. (2013). Variability of pesticide dissipation half-lives in plants. Environmental Science & Technology, 47, 3548-3562.
  • [29] Acoğlu, B., Yolcı-Ömeroğlu, P., Çopur, Ö. U. (2018). Gıda işleme süreçlerinin pestisit kalıntıları üzerine etkisi ve işleme faktörleri. Gıda ve Yem Bilimi Teknolojisi Dergisi, 19, 42-54.
  • [30] Scholz, R., Herrmann, M., Michalski, B. (2017). Compilation of processing factors and evaluation of quality controlled data of food processing studies. Journal of Consumer Protection and Food Safety, 12, 3-14.
  • [31] Anonim. (2016). Türk Gıda Kodeksi Pestisitlerin Maksimum Kalıntı Limitleri Yönetmeliği. Resmi Gazete (27 Eylül 2021 ve 31611 sayılı), Ankara, 1040 pp (Web adresi: https://kms.kaysis.gov.tr/Home/Kurum/24308110) (Erişim Tarihi: 15 Kasım 2024).
  • [32] Pathak, V., Verma, V., Rawat, B., Kaur, B., Babu, N., Sharma, A., Dewali, S., Yadav, M., Kumari, R., Singh, S., Mohapatra, A., Pandey, V., Rana, N., Cunill, J. (2022). Current status of pesticide effects on environment, human health and it's eco-friendly management as bioremediation: A comprehensive review. Frontiers in Microbiology, 13, Article 962619.
  • [33] EC. (2002). European Commission Directive 2002/63/EC of 11 July 2002 Establishing Community Methods of Sampling for the Official Control of Pesticide Residues in and on Products of Plant and Animal Origin and Repealing Directive 79/700/EEC. Official Journal of the European Communities, 187, 30-43.
  • [34] Hassan, H., Elsayed, E., Abd El-Raouf, A., Salman, S. (2019). Method validation and evaluation of household processing on reduction of pesticide residues in tomato. Journal of Consumer Protection and Food Safety, 14, 31-39.
  • [35] Yolcı Omeroglu, P., Celik, B., & Alibasoglu, E. (2022). The effect of household food processing on pesticide residues in oranges (Citrus sinensis). Foods, 11, Article 3918.
  • [36] AOAC. (2007). Official method 2007.01: Pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate. Journal of AOAC International, 90(2), 485-520.
  • [37] SANTE. (2021). European Commision (EC) Director General for Food and Health Safety. Guidance document on analytical quality control and validation procedures for pesticide residues analysis in food and feed, Document No: SANTE 11813/2017. In. (Web adresi: https://ec.europa.eu/food/sites/food/files/plant/docs/pesticides_mrl_ guidelines_wrkdoc_2017-11813.pdf) (Erişim adresi: 21 Kasım 2024).
  • [38] EURACHEM. (2012). Eurachem/CITAC guide: Quantifying Uncertainty in Analytical Measurement. Third edition. In. (Web adresi: https://www.eurachem.org/images/stories/Guides/pdf/QUAM2012_P1.pdf) (Erişim Tarhi: 20 Kasım 2024).
  • [39] EURACHEM. (2014). The fitness for purpose of analytical methods -a laboratory guide to method validation and related topics. Second Edition. In. Web adresi: https://www.eurachem.org/images/stories/Guides/pdf/MV_guide_2nd_ed_EN.pdf. (Erişim Tarhi: 21 Kasım 2024).
  • [40] PPDB. (2024). International Union of Pure and Applied Chemistry. https://sitem.herts.ac.uk/aeru/iupac/(Erişim Tarhi: 20 Aralık 2024).
  • [41] Yolcı Omeroglu, P., Ambrus, A., Boyacioglu, D. (2018). Uncertainty of pesticide residue concentration determined from ordinary and weighted linear regression curve. Food Additives and Contaminants Part A-Chemistry Analysis Control Exposure & Risk Assessment, 35, 1324-1339.
  • [42] Andrade, G., Monteiro, S., Francisco, J., Figueiredo, L., Rocha, A., Tornisielo, V. (2015). Effects of types of washing and peeling in relation to pesticide residues in tomatoes. Journal of The Brazilian Chemical Society, 26, 1994-2002.
  • [43] Kaushik, G., Satya, S., Naik, S. (2009). Food processing a tool to pesticide residue dissipation - A review. Food Research International, 42, 26-40.
  • [44] Chung, S. (2018). How effective are common household preparations on removing pesticide residues from fruit and vegetables? A review. Journal of the Science of Food and Agriculture, 98, 2857-2870.
  • [45] Calvaruso, E., Cammilleri, G., Pulvirenti, A., Lo Dico, G., Lo Cascio, G., Giaccone, V., Badaco, V., Cipri, V., Alessandra, M., Vella, A., Macaluso, A., Di Bella, C., Ferrantelli, V. (2020). Residues of 165 pesticides in citrus fruits using LC-MS/MS: a study of the pesticides distribution from the peel to the pulp. Natural Product Research, 34, 34-38.
  • [46] Friar, P. M., Reynolds, S. L. (1994). The effect of home processing on postharvest fungicide residues in citrus fruit: residues of imazalil, 2‐phenylphenol and thiabendazole in ‘home‐made’marmalade, prepared from Late Valencia oranges. Food Additives & Contaminants, 11(1), 57-70.
  • [47] Sun, H., Liu, C., Wang, S., Liu, Y., Liu, M. (2013). Dissipation, residues, and risk assessment of spirodiclofen in citrus. Environmental Monitoring and Assessment, 185, 10473-10477.
  • [48] Drabová, L., Mráz, P., Krátky, F., Uttl, L., Vacková, P., Schusterova, D., Zadrazilova, B., Kadlec, V., Kocourek, V., Hajslová, J. (2022). Assessment of pesticide residues in citrus fruit on the Czech market. Food Additives and Contaminants Part A-Chemistry Analysis Control Exposure & Risk Assessment, 39, 311-319.
  • [49] Leili, M., Pirmoghani, A., Samadi, M., Shokoohi, R., Roshanaei, G., Poormohammadi, A. (2016). Determination of pesticides residues in cucumbers grown in greenhouse and the effect of some procedures on their residues. Iranian Journal of Public Health, 45, 1481-1490.
  • [50] Hassanzadeh, N., Bahramifar, N. (2019). Residue content of chlorpyrifos applied to greenhouse cucumbers and its reduction during pre‐harvest interval and post‐harvest household processing. Journal of Agricultural Science and Technology, 21(2), 381-391.
  • [51] Li, Y., Jiao, B., Zhao, Q., Wang, C., Gong, Y., Zhang, Y., Chen, W. (2012). Effect of commercial processing on pesticide residues in orange products. European Food Research and Technology, 234, 449-456.
  • [52] Liu, N., Dong, F., Liu, X., Xu, J., Li, Y., Han, Y., Zhu, Y., Cheng, Y., Chen, Z., Tao, Y., Zheng, Y. (2014). Effect of household canning on the distribution and reduction of thiophanate-methyl and its metabolite carbendazim residues in tomato. Food Control, 43, 115-120.
  • [53] Kwon, H., Kim, T., Hong, S., Se, E., Cho, N., Kyung, K. (2015). Effect of household processing on pesticide residues in field-sprayed tomatoes. Food Science and Biotechnology, 24, 1-6.
  • [54] Holland, P., Hamilton, D., Ohlin, B., Skidmore, M. (1994). Effects of storage and processing on pesticide residues in plant products. Pure and Applied Chemistry, 66(2), 335-356.
  • [55] Kimbara, J., Yoshida, M., Ito, H., Hosoi, K., Kusano, M., Kobayashi, M., Ariizumi, T., Asamizu, E., Ezura, H. (2012). A novel class of sticky peel and light green mutations causes cuticle deficiency in leaves and fruits of tomato (Solanum lycopersicum). Planta, 236, 1559-1570.
  • [56] Liu, Y., Su, X., Jian, Q., Chen, W., Sun, D., Gong, L., Jiang, L., Jiao, B. (2016). Behaviour of spirotetramat residues and its four metabolites in citrus marmalade during home processing. Food Additives and Contaminants Part A-Chemistry Analysis Control Exposure & Risk Assessment, 33, 452-459.
  • [57] Han, Y., Dong, F., Xu, J., Liu, X., Li, Y., Kong, Z., Liang, X., Liu, N., Zheng, Y. (2014). Residue change of pyridaben in apple samples during apple cider processing. Food Control, 37, 240-244.
  • [58] Liu, C., Chen, R., Liu, F., Gao, Z., Li, X., Wang, Y., Wang, S., Li, Y. (2023). Distribution pattern, removal effect, transfer behavior of ten pesticides and one metabolite during the processing of grapes. Food Research International, 164, Article 112398.
  • [59] Boulaid, M., Aguilera, A., Camacho, F., Soussi, M., Valverde, A. (2005). Effect of household processing and unit-to-unit variability of pyrifenox, pyridaben, and tralomethrin residues in tomatoes. Journal of Agricultural and Food Chemistry, 53, 4054-4058.
  • [60] Lozowicka, B., Jankowska, M., Kaczynski, P. (2016). Behaviour of selected pesticide residues in blackcurrants (Ribes nigrum) during technological processing monitored by liquid-chromatography tandem mass spectrometry. Chemical Papers, 70(5), 545-555.
  • [61] Dorđević, T., Đurović-Pejčev, R. (2016). Food processing as a means for pesticide residue dissipation. Pesticidi i Fitomedicina, 31(3-4), 89-105.
  • [62] Gao, Q., Wang, Y., Li, Y., Yang, W., Jiang, W., Liang, Y., Zhang, Z. (2024). Residue behaviors of six pesticides during apple juice production and storage. Food Research International, 177, Article 113894.
  • [63] Zhang, Y., Zhao, Q., Chen, A., Cui, Y., He, Y., Li, J. (2024). Removal residual, commercial processing factor and risk assessment of four fungicides in orange fruit and various processing by-products. Journal of Food Composition and Analysis, 136, Article 106786.
  • [64] Wu, Z., Ma, Y., Xiong, H., An, W., Zhang, Y., Zhao, Q., Li, J. (2023). Simultaneous determination of spiropidion and its five major metabolites in sweet orange fruit and various processing by-products using ultra-high performance liquid chromatography-tandem mass spectrometry. Food Research International, 174, Article 113498.
  • [65] Naman, M., Masoodi, F., Wani, S. M., Ahad, T. (2022). Changes in concentration of pesticide residues in fruits and vegetables during household processing. Toxicology Reports, 9, 1419-1425.
  • [66] ElGamal, R., Song, C., Rayan, A., Liu, C., Al-Rejaie, S., ElMasry, G. (2023). Thermal degradation of bioactive compounds during drying process of horticultural and agronomic products: A comprehensive overview. Agronomy-Basel, 13, Article 1580.
  • [67] Flamminii, F., Minetti, S., Mollica, A., Cichelli, A., Cerretani, L. (2023). The effect of washing, blanching and frozen storage on pesticide residue in spinach. Foods, 12, Article 2806.
  • [68] Alaboudi, A.R., Almashhadany, D.A., Jarrah, B.S. (2021). Effect of cooking and freezing on levels of pesticides residues in local fresh fish. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Animal Science and Biotechnologies, 78, 28-36.
  • [69] Oliva, J., Cermeño, S., Cámara, M., Martínez, G., Barba, A. (2017). Disappearance of six pesticides in fresh and processed zucchini, bioavailability and health risk assessment. Food Chemistry, 229, 172-177.
  • [70] Zhao, F., Liu, J., Han, B., Luo, J. (2019). Investigation and validation of detection of storage stability of difenoconazole residue in mango. Journal of Food Quality, Article 9497402.
  • [71] Wongmaneepratip, W., Gao, X., Yang, H. (2022). Effect of food processing on reduction and degradation pathway of pyrethroid pesticides in mackerel fillet (Scomberomorus commerson). Food Chemistry, 384, Article 132523.
  • [72] Slowik-Borowiec, M., Szpyrka, E. (2020). Selected food processing techniques as a factor for pesticide residue removal in apple fruit. Environmental Science and Pollution Research, 27, 2361-2373.
  • [73] Van der Sman, R. (2020). Impact of processing factors on quality of frozen vegetables and fruits. Food Engineering Reviews, 12, 399-420.
  • [74] Awulachew, M. (2021). Fruit jam production. International Journal of Food Science, Nutrition and Dietetics, 10(4), 532-537.
  • [75] de Oliveira, M., de Oliveira, J., Silva, J., Mendes, L., Silva, F., Alencar, M., Nobre, C., Costa, M.G., Lima, M., Milhome, M. (2024). Effect of thermal processing on the degradation of pesticides in a banana jam partially formulated with banana peel flour. Applied Food Research, 4, Article 100445.
  • [76] El-Sheikh, E., Li, D., Hamed, I., Ashour, M., Hammock, B. (2023). Residue analysis and risk exposure assessment of multiple pesticides in tomato and strawberry and their products from markets. Foods, 12, Article 1936.
  • [77] Reichert, B., Pizzutti, I., Costabeber, I., Uclés, A., Herrera, S., Fernández-Alba, A. (2015). Validation and application of micro flow liquid chromatography-tandem mass spectrometry for the determination of pesticide residues in fruit jams. Talanta, 134, 415-424.
  • [78] Azzazy, M. (2017). Effect of preparing and processing on pesticide residues of some fruits (Orange and Juava). Menoufia Journal of Food and Dairy Sciences, 2(1), 15-22.
  • [79] Jankowska, M., Lozowicka, B., Kaczynski, P. (2019). Comprehensive toxicological study over 160 processing factors of pesticides in selected fruit and vegetables after water, mechanical and thermal processing treatments and their application to human health risk assessment. Science of the Total Environment, 652, 1156-1167.
  • [80] Zhao, L., Liu, F., Ge, J., Ma, L., Wu, L., Xue, X. (2018). Changes in eleven pesticide residues in jujube (Ziziphus jujuba Mill.) during drying processing. Drying Technology, 36(8), 965-972.
  • [81] Bian, Y., Feng, Y., Zhang, A., Qi, X., Pan, J., Han, J., Liang, L. (2023). Residue behaviors, processing factors and transfer rates of pesticides and metabolites in rose from cultivation to consumption. Journal of Hazardous Materials, 442, Article 130104.
  • [82] Polat, B., Tiryaki, O. (2020). Assessing washing methods for reduction of pesticide residues in Capia pepper with LCMS/MS. Journal of Environmental Science and Health, Part B, 55(1), 1-10.
  • [83] Tiryaki, O., Özel, E. (2019). Elma ve işlenmiş ürünlerinde imidacloprid ve indoxacarb kalıntılarının belirlenmesi. Bitki Koruma Bülteni, 59(2), 23-32.
  • [84] Tiryaki, O., Polat, B. (2023). Effects of washing treatments on pesticide residues in agricultural products. Gıda ve Yem Bilimi Teknolojisi Dergisi, 29, 1-11.
  • [85] Yiğit, N., Velioğlu, Y.S. (2023). Effect of processing type and storage time on some pesticide residues in strawberries. Akademik Gıda, 21(1), 1-12.
Toplam 85 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Büşra Acoğlu Çelik 0000-0002-6079-1970

Perihan Yolcı Ömeroğlu 0000-0001-8254-3401

Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 26 Kasım 2024
Kabul Tarihi 21 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 22 Sayı: 4

Kaynak Göster

APA Acoğlu Çelik, B., & Yolcı Ömeroğlu, P. (2024). Limonlarda Bulunan Bazı Fungisit Kalıntıları Üzerine Evsel Gıda İşleme Yöntemlerinin Etkisi. Akademik Gıda, 22(4), 288-302. https://doi.org/10.24323/akademik-gida.1609622
AMA Acoğlu Çelik B, Yolcı Ömeroğlu P. Limonlarda Bulunan Bazı Fungisit Kalıntıları Üzerine Evsel Gıda İşleme Yöntemlerinin Etkisi. Akademik Gıda. Aralık 2024;22(4):288-302. doi:10.24323/akademik-gida.1609622
Chicago Acoğlu Çelik, Büşra, ve Perihan Yolcı Ömeroğlu. “Limonlarda Bulunan Bazı Fungisit Kalıntıları Üzerine Evsel Gıda İşleme Yöntemlerinin Etkisi”. Akademik Gıda 22, sy. 4 (Aralık 2024): 288-302. https://doi.org/10.24323/akademik-gida.1609622.
EndNote Acoğlu Çelik B, Yolcı Ömeroğlu P (01 Aralık 2024) Limonlarda Bulunan Bazı Fungisit Kalıntıları Üzerine Evsel Gıda İşleme Yöntemlerinin Etkisi. Akademik Gıda 22 4 288–302.
IEEE B. Acoğlu Çelik ve P. Yolcı Ömeroğlu, “Limonlarda Bulunan Bazı Fungisit Kalıntıları Üzerine Evsel Gıda İşleme Yöntemlerinin Etkisi”, Akademik Gıda, c. 22, sy. 4, ss. 288–302, 2024, doi: 10.24323/akademik-gida.1609622.
ISNAD Acoğlu Çelik, Büşra - Yolcı Ömeroğlu, Perihan. “Limonlarda Bulunan Bazı Fungisit Kalıntıları Üzerine Evsel Gıda İşleme Yöntemlerinin Etkisi”. Akademik Gıda 22/4 (Aralık 2024), 288-302. https://doi.org/10.24323/akademik-gida.1609622.
JAMA Acoğlu Çelik B, Yolcı Ömeroğlu P. Limonlarda Bulunan Bazı Fungisit Kalıntıları Üzerine Evsel Gıda İşleme Yöntemlerinin Etkisi. Akademik Gıda. 2024;22:288–302.
MLA Acoğlu Çelik, Büşra ve Perihan Yolcı Ömeroğlu. “Limonlarda Bulunan Bazı Fungisit Kalıntıları Üzerine Evsel Gıda İşleme Yöntemlerinin Etkisi”. Akademik Gıda, c. 22, sy. 4, 2024, ss. 288-02, doi:10.24323/akademik-gida.1609622.
Vancouver Acoğlu Çelik B, Yolcı Ömeroğlu P. Limonlarda Bulunan Bazı Fungisit Kalıntıları Üzerine Evsel Gıda İşleme Yöntemlerinin Etkisi. Akademik Gıda. 2024;22(4):288-302.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).