Derleme
BibTex RIS Kaynak Göster

A Review on the Simultaneous Electrochemical Determination of Azo Dyes Used as Colorants in Foods and Beverages

Yıl 2025, Cilt: 23 Sayı: 3, 231 - 245, 30.09.2025
https://doi.org/10.24323/akademik-gida.1793629

Öz

Synthetic azo dyes such as sunset yellow, tartrazine, allura red, amaranth, and azorubine have been widely used in foods and beverages as coloring agents. These colorants are frequently preferred in the industry due to their attractive bright colors, low cost, easy availability, and outstanding storage stability against pH and light. In addition to these advantages, synthetic dyes are known to have adverse effects on human health, including carcinogenicity, asthma, allergies, anxiety, and hyperactivity, especially in children. Organizations such as the Joint FAO/WHO Expert Committee on Food Additives (JECFA) and the EU Scientific Committee on Food (SCF) have determined that the acceptable daily intake of these colorants must not exceed 7.5 mg per kg of body weight. Therefore, the quantitative determination of synthetic dyes in foods and beverages is crucial, and their levels must be strictly controlled in foods. Because these azo dyes are electroactive, numerous studies have been conducted recently on their single or simultaneous electrochemical determination, and review articles have generally been published on the determination of single dyes. This review presents recent electrochemical studies on the highly sensitive and selective simultaneous determination of these colorants using voltammetric methods on various modified electrodes. The study discusses the general properties of azo dyes used as colorants; their electrochemical behavior and oxidation/reduction reaction mechanisms; the electrodes used and their modifications; and finally, their simultaneous voltammetric determination.

Kaynakça

  • [1] Banc, R., Filip, L., Cozma-Petrut, A., Ciobârcă, D., Miere, D. (2024). Yellow and red synthetic food dyes and potential health hazards: A mini review. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Food Science and Technology, 81(1), 2024.
  • [2] Vladislavić, N., Buzuk, M., Rončević, I.S., Brinić, S. (2018). Electroanalytical methods for determination of sunset yellow - A review. International Journal of Electrochemical Science, 13(7), 7008 -7019.
  • [3] State, R.S., van Staden, J.F., van Staden, R.I.S. (2022). Review-recent trends on the electrochemical sensors used for the determination of tartrazine and sunset yellow FCF from food and beverage products. Journal of The Electrochemical Society,169(1), 017509.
  • [4] Silva, M.M., Reboredo F.H., Lidon, F.C. (2022). Food colour additives: A synoptical overview on their chemical properties, applications in food products, and health side effects. Foods, 11(3), 379.
  • [5] Alves, S.P., Brum, D.M., de Andrade, E.C.B., Netto, A.D.P. (2008). Determination of synthetic dyes in selected foodstuffs by high performance liquid chromatography with UV-DAD detection. Food Chemistry, 107(1), 489-496.
  • [6] Benkhaya, S., M'rabet, S., El Harfi, A. (2020). Classifications, properties, recent synthesis and applications of azo dyes. Heliyon, 6(1), e03271.
  • [7] Sultana, S., Rahman, M.M., Aovi, F.I., Jahan, F.I., Hossain, M.S., Brishti, S.A., Yamin, M., Ahmed, M., Rauf, A., Sharma, R. (2023). Food color additives in hazardous consequences of human health: An overview. Current Topics in Medicinal Chemistry, 23(14), 1380-1393.
  • [8] Ramos-Souza, C., Bandoni, D.H., Bragotto, A.P.A., De Rosso, V.V. (2023). Risk assessment of azo dyes as food additives: Revision and discussion of data gaps toward their improvement. Comprehensive Reviews in Food Science and Food Safety, 22(1), 380-407.
  • [9] Monisha, B., Sridharan, R., Kumar, P.S., Rangasamy, G., Krishnaswamy V.G., Subhashree, S. (2023). Sensing of azo toxic dyes using nanomaterials and its health effects - A review. Chemosphere, 313, 137614.
  • [10] Thomas, O.E., Adegoke O.A. (2015). Toxicity of food colours and additives: A review. African Journal of Pharmacy and Pharmacology, 9(36), 900-914.
  • [11] Doell, D.L., Folmer, D.E., Lee, H.S., Butts, K.M., Carberry, S.E. (2016). Exposure estimate for FD&C colour additives for the US population. Food Additives & Contaminants: Part A, 33(5), 782-797.
  • [12] Kaya, S.I., Cetinkaya, A., Ozkan, S.A. (2021). Latest advances on the nanomaterials-based electrochemical analysis of azo toxic dyes sunset yellow and tartrazine in food samples. Food and Chemical Toxicology, 156, 112524.
  • [13] Martins, N., Roriz, C.L., Morales, P., Barros, L., Ferreira, I.C.F.R. (2016). Food colorants: challenges, opportunities and current desires of agro-industries to ensure consumer expectations and regulatory practices. Trends in Food Science & Technology, 52, 1-15.
  • [14] EFSA. (2014). Reconsideration of the temporary ADI and refined exposure assessment for sunset yellow FCF (E 110). EFSA Journal, 12(7), 3765.
  • [15] EFSA. (2009). Scientific opinion on the re-evaluation tartrazine (E 102). EFSA Journal, 7(11), 1331.
  • [16] EFSA. (2009). Scientific opinion on the re-evaluation of Allura red AC (E 129) as a food additive. EFSA Journal, 7(11), 1327.
  • [17] EFSA. (2013). Refined exposure assessment for amaranth (E 123). EFSA Journal, 11(10), 3442.
  • [18] EFSA. (2015). Refined exposure assessment for azorubine/carmoisine (E 122). EFSA Journal, 13(3), 4072.
  • [19] Amchova, P., Kotolova, H., Ruda-Kucerova, J., (2015). Health safety issues of synthetic food colorants. Regulatory Toxicology and Pharmacology, 73(3), 914-922.
  • [20] Chung, S.W.C. (2021). Quantification of permitted synthetic colours in food by liquid chromatographic methods: A review on analytical methods and their performance. Food Additives & Contaminants: Part A, 38(10), 1636-1655.
  • [21] Perez-Urquiza, M., Beltran, J.L. (2000). Determination of dyes in foodstuffs by capillary zone electrophoresis. Journal of Chromatography A, 898(2), 271-275.
  • [22] Tamer, F.S., Oymak, T., Dura, E. (2024). Determination of seven synthetic colourants in pharmaceutics, foods, and beverages by a validated HPLC-PDA method: A risk assessment study. Journal of Food Composition and Analysis, 136, 106797.
  • [23] Cheibuba, A.M.S.S, de Lyraa, E.S.B., Alvesa, B.J., Donagemma, R.A., Netto, A.D.P. (2020). Development and validation of a multipurpose and multicomponent method for the simultaneous determination of six synthetic dyes in different foodstuffs by HPLC-UV-DAD. Food Chemistry, 323, 126811.
  • [24] Alp, H., Başkan, D., Yaşar, A., Yaylı, N., Ocak, Ü., Ocak, M. (2018). Simultaneous determination of sunset yellow FCF, Allura red AC, quinoline yellow WS, and tartrazine in food samples by RP-HPLC. Journal of Chemistry, 2018, 6486250.
  • [25] Dmitrieva, E., Gashimova, E. (2025). Simultaneous quantification of 13 synthetic food dyes in dietary supplements and sports nutrition by high-performance thin-layer chromatography with densitometric detection. Food and Humanity, 4,100548.
  • [26] Al Shamari, Y.M.G., Alwarthan, A.A., Wabaidur, S.M., Khan, M.A., Alqadami, A.A., Siddiqui, M.R. (2019). New ultra performance liquid chromatography-mass spectrometric method for the determination of allura red in soft drinks using corncob as solid phase extraction sorbent: Analysis and food waste management approach, Journal of King Saud University - Science, 32(1), 1135-1141.
  • [27] Martin M., Oberson, J.M., Meschiari, M., Munari, C. (2016). Determination of 18 water-soluble artificial dyes by LC–MS in selected matrices. Food Chemistry,197, 1249-1255.
  • [28] Wu, L., Wu, T., Zeng, W., Zhou, S., Zhang, W., Ma, J. (2023). A new ratiometric molecularly imprinted electrochemical sensor for the detection of sunset yellow based on gold nanoparticles. Food Chemistry, 413, 135600.
  • [29] Kaur, A., Gupta, U. (2012). The review on spectrophotometric determination of synthetic food dyes and lakes. Gazi University Journal of Science, 25(3), 579-588.
  • [30] Piton, G.R., Augusto, K.K.L., Santos, D.J.A, Fatibello‑Filho, O. (2021). Spectrophotometric determination of allura red AC and tartrazine in food products using hydrophobic deep eutectic solvents as an environmentally sustainable micro-extractor. Journal of the Brazilian Chemical Society, 32(3), 564-571.
  • [31] Safaei, A., Giyahban, F., Ebrahimzadeh, H. (2025). Development of a ratiometric fluorescence sensor based on blue- and orange-emissive carbon dots for the determination of tartrazine in food products. Food Chemistry, 477, 143582.
  • [32] Tahtaisleyen, S., Gorduk, O., Sahin, Y. (2021). Electrochemical determination of sunset yellow using an electrochemically prepared graphene oxide modified–pencil graphite electrode (EGO-PGE). Analytical Letters, 54(3), 394-416.
  • [33] Xu, L., Yang, F., Dias, A.C.P., Zhang, X. (2022). Development of quantum dot-linked immunosorbent assay (QLISA) and ELISA for the detection of sunset yellow in foods and beverages. Food Chemistry, 385, 132648.
  • [34] Ou, Y., Wang, X., Lai, K., Huang, Y., Rasco, B.A., Fan, Y. (2018). Gold nanorods as surface-enhanced Raman spectroscopy substrates for rapid and sensitive analysis of allura red and sunset yellow in beverages. Journal of Agricultural and Food Chemistry, 66(11), 2954-2961.
  • [35] Shen, Y., Zhao, S., Chen, F., Lv, Y., Fu, L. (2024). Enhancing sensitivity and selectivity: Current trends in electrochemical immunosensors for organophosphate analysis. Biosensors, 14(10), 496.
  • [36] Liu, W., Yin, X.B. (2016). Metal–organic frameworks for electrochemical applications. TrAC Trends in Analytical Chemistry, 75, 86-96.
  • [37] Tajik, S., Beitollah, H., Nejad, F.G., Shoaiec, I.S., Khalilzadeh, M.A., Asle, M.S., Le, Q.V., Zhang, K., Jang, H.W., Shokouhimehr, M. (2020). Recent developments in conducting polymers: applications for electrochemistry. RSC Advances, 10, 37834-37856.
  • [38] Wang, Y., Zhao, S., Li, M., Li, W., Zhao, Y., Qi, J., Cui, X. (2017). Graphene quantum dots decorated graphene as an enhanced sensing platform for sensitive and selective detection of copper(II). Journal of Electroanalytical Chemistry, 797, 113-120.
  • [39] George, J.M., Antony, A., Mathew, B. (2018). Metal oxide nanoparticles in electrochemical sensing and biosensing: a review. Microchimica Acta, 185, 358.
  • [40] Cardenas-Riojas, A.A., Calderon-Zavaleta, S.L., Quiroz-Aguinaga, U., Muedas-Taipe, G., Carhuayal-Alvarez, S.M., Ascencio-Flores, Y.F., Ponce-Vargas, M., Baena-Moncada, A.M. (2024). Modified electrochemical sensors for the detection of selected food azo dyes: A review. ChemElectroChem, 11(4), e202300490.
  • [41] Kavitha, M.K., Sankararajan, R., Suseela, S.B., Kailasam M. (2025). Highly sensitive, environmentally friendly nanosensor for detecting sunset yellow in food products. Journal of Materials Science: Materials in Electronics, 36, 166.
  • [42] Kumari, R., Kumar, H., Sharma, R., Kumar, G., Tundwal, A., Dhayal, A., Yadav, A., Khatkar, A. (2024). Highly efficient and reliable voltammetry food sensor for tartrazine dye using a nanocomposite reformed electrode. Microchemical Journal, 196, 109583.
  • [43] Zeng, Y., Tang, Y., Gan, T., Wu, C. (2024). Flexible self-supporting laser-induced graphene electrode devices for highly sensitive electrochemical analysis of allura red. Carbon Letters, 34, 985-995.
  • [44] Karaboduk, K., Karaboduk, H. (2025). Rapid and simple electrochemical approximation for the determination of the food additive amaranth using voltammetric sensor. Journal of Food Measurement and Characterization, 19, 390-400.
  • [45] Murali, A.S., Sreelekshmi, Saraswathyamma, B. (2024). Chapter 15 - Utilization of surfactant-based electrode for the study of food dyes. Surfactant Based Electrochemical Sensors and Biosensors, 363-385.
  • [46] Rovina, K., Acung, L.A., Siddiquee, S., Akanda, J.H., Md Shaarani, S. (2017). Extraction and analytical methods for determination of sunset yellow (E110)-a review. Food Analytical Methods, 10, 773-787.
  • [47] Abbey, J. Fields, O’Mullane, B., Tomaska, L.D. (2014). Food additives: Colorants. Reference Module in Food Science Encyclopedia of Food Safety, 2, 459-465.
  • [48] Allam, K.V., Kumar, G.P. (2011). Colorants—the cosmetics for the pharmaceutical dosage forms. International Journal of Pharmacy and Pharmaceutical Sciences, 3(3), 13-21.
  • [49] Biberoğlu, Ö. (2025). Azo dye toxicity: Sunset yellow toxicity in foods. International Journal of Innovative Research and Reviews, 9(1), 32-38.
  • [50] Rovina, K., Siddiquee, S., Shaarani, S.M. (2017). A review of extraction and analytical methods for the determination of tartrazine (E 102) in foodstuffs. Critical Reviews in Analytical Chemistry, 47(4), 309-324.
  • [51] Amin, K.A., Al-Shehri, F.S. (2018). Toxicological and safety assessment of tartrazine as a synthetic food additive on health biomarkers: A review. African Journal of Biotechnology, 17(6),139-149.
  • [52] Rovina, K., Siddiquee, S., Shaarani, S.M. (2016). Extraction, analytical and advanced methods for detection of allura red AC (E129) in food and beverages products. Frontiers in Microbiology, 7, 798.
  • [53] Dodevska, T., Hadzhiev, D., Shterev, I. (2024). A brief review on recent high-performance platforms for electrochemical sensing of azo dye Allura red (E129): food safety and pharmaceutical applications. Journal of Electrochemical Science and Engineering, 14(6), 737-756.
  • [54] Durigon, A.M.M., da Silveira, G.D., Sokal, F.R., Pires, R.A.C.V., Dias, D. (2020). Food dyes screening using electrochemistry approach in solid state: the case of sunset yellow dye electrochemical behavior. Journal of Solid State Electrochemistry, 24, 2907-2921.
  • [55] Yu, L., Shi, M., Yue, X., Qu, L. (2016). Detection of allura red based on the composite of poly (diallyldimethylammonium chloride) functionalized graphene and nickel nanoparticles modified electrode. Sensors and Actuators B: Chemical, 225, 398-404.
  • [56] Claux, B. Vittori, O. (2007). Bismuth film electrode as an alternative for mercury electrodes: Determination of azo dyes and application for detection in food stuffs. Electroanalysis, 19(21), 2243-2246.
  • [57] Stozhko, N.Y., Khamzina, E.I., Bukharinova, M.A., Tarasov, A.V. (2022). An electrochemical sensor based on carbon paper modified with graphite powder for sensitive determination of sunset yellow and tartrazine in drinks. Sensors, 22(11), 4092.
  • [58] Lipskikh, O.I., Nikolaeva, A.A., Korotkova, E.I. (2017). Voltammetric determination of tartrazine in food. Journal of Analytical Chemistry, 72(4), 396-401.
  • [59] Baig, N., Sajid M., Saleh, T.A. (2019). Recent trends in nanomaterial-modified electrodes for electroanalytical applications. TrAC Trends in Analytical Chemistry, 111, 47-61.
  • [60] Fritea, L., Banica, F., Costea, T.O., Moldovan, L., Dobjanschi, L., Muresan, M., Cavalu, S. (2021). Metal nanoparticles and carbon-based nanomaterials for improved performances of electrochemical (bio)sensors with biomedical applications. Materials, 14(21), 6319.
  • [61] Rajendrachari, S., Basavegowda, N., Adimule, V.M., Avar, B., Somu, P., Saravana Kumar R.M., Baek, K.H. (2022). Assessing the food quality using carbon nanomaterial based electrodes by voltammetric techniques. Biosensors, 12(12), 1173.
  • [62] Lipskikh, O.I., Korotkova, E.I., Khristunova, Y.P., Barek, J., Kratochvil, B. (2018). Sensors for voltammetric determination of food azo dyes - A critical review. Electrochimica Acta, 260, 974-985.
  • [63] Wu, J.H., Lee, H.L. (2020). Determination of sunset yellow and tartrazine in drinks using screen-printed carbon electrodes modified with reduced graphene oxide and NiBTC frameworks. Microchemical Journal, 158, 105133.
  • [64] Kolozof, P.A., Florou, A.B., Spyrou, K., Hrbac, J., Prodromidis, M.I. (2020). In-situ tailoring of the electrocatalytic properties of screen-printed graphite electrodes with sparked generated molybdenum nanoparticles for the simultaneous voltammetric determination of sunset yellow and tartrazine. Sensors and Actuators B: Chemical, 304,127268.
  • [65] Taei, M., Salavati, H., Fouladgar, M., Abbaszadeh, E. (2020). Simultaneous determination of sunset yellow and tartrazine in soft drinks samples using nanocrystallites of spinel ferrite modified electrode. Iranian Chemical Communication, 8(1), 67-79.
  • [66] Alves, G.F., de Faria, L.V., Lisboa, T.P., de Souza, C.C., Fernandes, B.L.M., Matos, M.A.C., Mat, R.C. (2022). A portable and affordable paper electrochemical platform for the simultaneous detection of sunset yellow and tartrazine in food beverages and desserts. Microchemical Journal, 181, 107799.
  • [67] Wu, T., Wang, Qi., Peng, X.Y., Guo, Y. (2022). Facile synthesis of gold/graphene nanocomposites for simultaneous determination of sunset yellow and tartrazine in soft drinks. Electroanalysis, 34, 83-90.
  • [68] Zhao, S., Wang, J., Bai, X., Liu, T., Li, T. (2024). A dual-functional Cu-BTC/COOH-MWCNTs ratiometric electrochemical sensing device for the detection of sunset yellow and tartrazine. Microchemical Journal, 200, 110349.
  • [69] Shume, W.M., Zereffa, E.A., Fakrudeen, S.P., Al-Farraj, S., Sillanpa, M., Murthy, H.C.A. (2023). Ni1Zn1-xLayFe2-yO4@rGO nanocomposite as electrochemical sensor for simultaneous analysis of food colorants-sunset yellow and tartrazine. Inorganic Chemistry Communications, 155, 111071.
  • [70] Lin, Z., Wen, C., Huang, L., Qin, S., Wang, Y. (2024). Differential pulse voltammetry detection of sunset yellow and tartrazine in beverages using rGO-BaMoO4 composite. Applied Physics A, 130, 684.
  • [71] Li, G., Zhang, Y., Xia, Y., Wang, T., Jin, Y. (2025). Multiwalled carbon nanotubes decorated dandelion-like α-MnO2 microspheres for simultaneous and sensitive detection of sunset yellow and tartrazine. Microchemical Journal, 210, 113040.
  • [72] Ziyatdinova, G., Titova, M., Davletshin, R. (2022). Electropolymerized 4-aminobenzoic acid based voltammetric sensor for the simultaneous determination of food azo dyes. Polymers, 14(24), 5429.
  • [73] Li, C., Xia, S., Qian, X., Zheng, M., Deng, K. (2025). Fe3O4/CoFe nanoparticles decorated 3D hierarchical nitrogen‑doped carbon nanosheets for synchronous measurement of sunset yellow and tartrazine. Ionics, 31, 7361-7372.
  • [74] Senthilkumar, D., Kuo, C.Y., Aldossari, S.A., Govindasamy, M. (2025). Advanced highly precise simultaneous electrochemical detection of toxic azo dyes with Nanoengineered yttrium Iron oxide decorated functionalized carbon nanofibers. Food Chemistry, 486, 144607.
  • [75] Li, J., Liu, M., Jiang, J., Liu, B., Tong, H., Xu, Z., Yange, C., Qian, D. (2019). Morphology-controlled electrochemical sensing properties of CuS crystals for tartrazine and sunset yellow. Sensors and Actuators B: Chemical, 288, 552-563.
  • [76] Khanfar, M.F., Abu-Nameh, E.S.M., Azizi, N.A., Zurayk, R.A., Khalaf, A., Saketa, M.M., Alnuman, A. (2020). Electrochemical determination of sunset yellow and tartrazine at carbon electrodes modified by Fe-Zr oxide. Jordan Journal of Chemistry, 15(3), 119-126.
  • [77] Dorraji, P.S., Jalali, F. (2017). Electrochemical fabrication of a novel ZnO/cysteic acid nanocomposite modified electrode and its application to simultaneous determination of sunset yellow and tartrazine. Food Chemistry, 227, 73-77.
  • [78] Majidi, M.R., Pournaghi-Azar, M.H., Baj, R.F.B., Naseri, A., (2015). Formation of graphene nanoplatelet-like structures on carbon–ceramic electrode surface: application for simultaneous determination of sunset yellow and tartrazine in some food samples. Ionics, 21, 863-875.
  • [79] Deng, K., Li, C., Li, X., Huang, H. (2016). Simultaneous detection of sunset yellow and tartrazine using the nanohybrid of gold nanorods decorated graphene oxide. Journal of Electroanalytical Chemistry, 780, 296-302.
  • [80] Ji, L., Cheng, Q., Wu, K., Yang, X. (2016). Cu-BTC frameworks-based electrochemical sensing platform for rapid and simple determination of sunset yellow and tartrazine. Sensors and Actuators B: Chemical, 231, 12-17.
  • [81] Yu, L., Zheng, Z., Shi, M., Jing, S., Qu, L. (2017). A novel electrochemical sensor based on poly (diallyldimethylammonium chloride)-dispersed graphene supported palladium nanoparticles for simultaneous determination of sunset yellow and tartrazine in soft drinks. Food Analytical Methods, 10, 200-209.
  • [82] Yeh, C.L., Ceng, Y.J., Huang, M.X., Zac R.A.T., Wu, B.C., Lee, H.L. (2025). Triazine-based COF/CNTs as an electrochemical sensor for the simultaneous detection of sunset yellow and tartrazine in food samples. Analytical Methods, 17, 5392-5399.
  • [83] Cheng, S., Lin, Z., Qin, S., Huang, L., Yang, J., Wang, Y. (2023). A modified electrode based on a 3D reduced graphene oxide and MoS2 composite for simultaneous detection of sunset yellow and tartrazine. Analytical Methods, 15, 4142-4148.
  • [84] Moarefdoust, M.M., Jahani, S., Moradalizadeh, M., Motaghia, M.M., Foroughi, M.M. (2021). An electrochemical sensor based on hierarchical nickel oxide nanostructures doped with indium ions for voltammetric simultaneous determination of sunset yellow and tartrazine colorants in soft drink powders. Analytical Methods, 13, 2396-2404.
  • [85] Jampasa, S., Siangproh, W., Duangmal, K., Chailapakul, O. (2016). Electrochemically reduced graphene oxide-modified screen-printed carbon electrodes for a simple and highly sensitive electrochemical detection of synthetic colorants in beverages. Talanta, 160,113-124.
  • [86] Puneeth, Kumara Swamy, B.E., Sharma, S.C. (2025). Immobilized triton X-100 voltammetric sensor for the simultaneous detection of sunset yellow and tartrazine. Journal of Electrochemical Science and Engineering, 15(3), 2589.
  • [87] Qiu, X., Lu, L., Leng, J., Yu, Y., Wang, W., Jiang, M., Bai, L. (2016). An enhanced electrochemical platform based on graphene oxide and multi-walled carbon nanotubes nanocomposite for sensitive determination of sunset yellow and tartrazine. Food Chemistry, 190, 889-895.
  • [88] Arvand, M., Parhizi, Y., Mirfathi, S.Y. (2015). Simultaneous voltammetric determination of synthetic colorants in foods using a magnetic core-shell Fe3O4@SiO2/MWCNTs nanocomposite modified carbon paste electrode. Food Analytical Methods, 9, 863-875.
  • [89] Nagles, E., Ceroni, M., Hurtado, J. (2020). Simultaneous detection of tartrazine-sunset yellow in food samples using bioxide/carbon paste microcomposite with lanthanum and titanium. Journal of Electrochemical Science and Technology, 11(4), 421-429.
  • [90] Afşar, M.C., Dursun, Z. (2025). Simultaneous determination of sunset yellow and tartrazine in real samples on an n-butylamine-graphite/polyaminophenol composite electrode. Turkish Journal Chemistry, 49, 103-117.
  • [91] Baytak, A.K., Arslanoğlu, M. (2023). Praseodymium doped dysprosium oxide-carbon nanofibers based voltammetric platform for the simultaneous determination of sunset yellow and tartrazine. Electroanalysis, 35, 2200136.
  • [92] Ascencio-Flores, Y.F., Carhuayal-Alvarez, S.M., Quiroz-Aguinaga, U., Calderon-Zavaleta, S.L., Lopez, E.O, Ponce-Vargas, M., CardenasRiojas, A.A., Baena-Moncada, A.M. (2023). Simultaneous square wave voltammetry detection of azo dyes using silver nanoparticles assembled on carbon nanofibers. Electrochimica Acta, 441, 141782.
  • [93] Chebotarev, A., Koicheva, A., Bevziuk, K., Pliuta, K., Snigur, D. (2019). Simultaneous determination of sunset yellow and tartrazine in soft drinks on carbon-paste electrode modified by silica impregnated with cetylpyridinium chloride. Journal of Food Measurement and Characterization,13,1964-1972.
  • [94] Marquez-Marino, K., Penagos-Llanos, J., García-Beltran, O., Nagles, E., Hurtado, J.J. (2018). Development of a novel electrochemical sensor based on a carbon paste electrode decorated with Nd2O3 for the simultaneous detection of tartrazine and sunset yellow. Electroanalysis, 30, 2760-2767.
  • [95] Wang, M., Zhao, J. (2015). Facile synthesis of Au supported on ionic liquid functionalized reduced graphene oxide for simultaneous determination of sunset yellow and tartrazine in drink. Sensors and Actuators B: Chemical, 216, 578-585.
  • [96] Garsed, R., Vazquez, L., Casero, E., Petit-Domínguez, M.D., Quintana, C., del Pozo, M. (2023). 2D-ReS2&diamond nanoparticles-based sensor for the simultaneous determination of sunset yellow and tartrazine in a multiple-pulse amperometry FIA system. Talanta, 265,124842.
  • [97] Puneeth, Kumara Swamy, B.E., Manjunatha, L.S., Sharma, S.C. (2025). Simultaneous validation of oncogenic dyes allura red and tartrazine using a poly (martius yellow) pencil graphite electrode: A voltammetric investigation. Inorganic Chemistry Communications, 177, 114377.
  • [98] Buharinova, M.A., Khamzina, E.I., Kolotygina, V.Y., Stozhko, N.Y. (2023). Voltammetric sensor based on carbon veil modified with graphene and phytosynthesized cobalt oxide nanoparticles for the determination of food dyes tartrazine (E102) and allura red (E129). Journal of Analytical Chemistry, 78(12),1679-1687.
  • [99] Zhang, Y., Hu, L., Liu, X., Liu, B., Wu, K. (2015). Highly-sensitive and rapid detection of ponceau 4R and tartrazine in drinks using alumina microfibers-based electrochemical sensor. Food Chemistry, 166, 352-357.
  • [100] Karami, M., Shabani-Nooshabadi, M. (2024). Electro-sensing of carmoisine and tartrazine in foodstuffs based on triple-shell CaMgFe2O4 hollow spheres-modified sensor. Materials Chemistry and Physics, 318, 129289.
  • [101] Beitollahi, H., Nejad, F.G., Dourandish, Z., Aflatoonian, M.Z. (2023). Electrochemical detection of carmoisine in the presence of tartrazine on the surface of screen-printed graphite electrode modified with nickel-cobalt layered double hydroxide ultrathin nanosheets. Chemosphere, 337, 139369.
  • [102] Bijad, M., Karimi‑Maleh, H., Farsi, M., Shahidi, S.A. (2018). An electrochemical-amplified-platform based on the nanostructure voltammetric sensor for the determination of carmoisine in the presence of tartrazine in dried fruit and soft drink samples. Journal of Food Measurement and Characterization, 12, 634-640.
  • [103] Nuñez-Dallos, N., Macías, M.A., García-Beltrán, O., Calderón, J.A., Nagles, E., Hurtado, J. (2018). Voltammetric determination of amaranth and tartrazine with a new double-stranded copper(I) helicate-single-walled carbon nanotube modified screen printed electrode. Journal of Electroanalytical Chemistry, 822, 95-104.
  • [104] Penagos-Llanos, J., García-Beltran, O., Calderon, J.A., Hurtado-Murillo, J.J., Nagles, E., Hurtado, J.J. (2019). Simultaneous determination of tartrazine, sunset yellow and Allura red in foods using a new cobalt-decorated carbon paste electrode. Journal of Electroanalytical Chemistry, 852,113517.
  • [105] Penagos-Llanos, J., García-Beltran, O., Nagles, E., Hurtado, J.J. (2020). A New electrochemical method to detect sunset yellow, tartrazine and thiomersal in a pharmaceutical dose using a carbon paste electrode decorated with molybdenum oxide. Electroanalysis, 32, 2174-2182.
  • [106] Wang, M., Zhao, J. (2015). Facile method used for simultaneous determination of ponceau 4R, Allura red and tartrazine in alcoholic beverages. Journal of The Electrochemical Society, 162(6), H321-H327.
  • [107] Ghanbari, H., Chamjangali, M., Faraji, M. (2025). Voltammetric sensor for simultaneous determination of ponceau 4r, amaranth, and tartrazine as additives in foodstuffs. Electrocatalysis, 16, 587-599.

Gıda ve İçeceklerde Renklendirici Olarak Kullanılan Azo Boyalarının Eş Zamanlı Elektrokimyasal Tayini Üzerine Bir Derleme

Yıl 2025, Cilt: 23 Sayı: 3, 231 - 245, 30.09.2025
https://doi.org/10.24323/akademik-gida.1793629

Öz

Gün batımı sarısı, tartrazin, allura kırmızısı, amarant ve azorubin gibi sentetik azo boyaları, gıda ve içeceklerde renklendirici olarak yaygın şekilde kullanılmaktadır. Bu renklendiriciler çekici parlak renkleri, düşük maliyetleri, kolay bulunabilirlikleri, pH ve ışığa karşı üstü depolama kararlılıkları nedeniyle gıda ve içecek endüstrisinde sıkça tercih edilmektedir. Bu avantajlarına rağmen, sentetik boyaların özellikle çocuklarda kanserojenlik, astım, alerji, anksiyete ve hiperaktivite dahil olmak üzere insan sağlığı üzerinde olumsuz etkilerinin olduğu bilinmektedir. Gıda Katkı Maddeleri Ortak FAO/WHO Uzman Komitesi (JECFA) ve AB Gıda Bilimsel Komitesi (SCF) gibi kuruluşlar, bu renklendiricilerin kabul edilebilir günlük alım düzeyinin 7,5 mg/kg vücut ağırlığı değerini aşmaması gerektiğini bildirmiştir. Bu nedenle, gıda ve içeceklerdeki bu sentetik boyaların belirlenmesi çok önemlidir ve düzeyleri sıkı bir şekilde kontrol edilmelidir. Bu azo boyaları elektroaktif olduklarından, son yıllarda tek veya eş zamanlı elektrokimyasal tayinleri üzerine çok sayıda çalışma yürütülmüş ve genellikle tek boyaların tayini üzerine derleme makaleler yayınlanmıştır. Bu derleme, çeşitli modifiye elektrotlarda voltametrik yöntemler kullanılarak bu renklendiricilerin oldukça hassas ve seçici eş zamanlı tayini üzerine son zamanlarda yapılan elektrokimyasal çalışmaları sunmaktadır. Bu çalışmada, renklendirici olarak kullanılan azo boyalarının genel özellikleri; elektrokimyasal davranışları ve yükseltgenme/indirgenme reaksiyon mekanizmaları; kullanılan elektrotlar ve modifikasyonlar ve son olarak eş zamanlı voltametrik tayinleri ele alınmıştır.

Kaynakça

  • [1] Banc, R., Filip, L., Cozma-Petrut, A., Ciobârcă, D., Miere, D. (2024). Yellow and red synthetic food dyes and potential health hazards: A mini review. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Food Science and Technology, 81(1), 2024.
  • [2] Vladislavić, N., Buzuk, M., Rončević, I.S., Brinić, S. (2018). Electroanalytical methods for determination of sunset yellow - A review. International Journal of Electrochemical Science, 13(7), 7008 -7019.
  • [3] State, R.S., van Staden, J.F., van Staden, R.I.S. (2022). Review-recent trends on the electrochemical sensors used for the determination of tartrazine and sunset yellow FCF from food and beverage products. Journal of The Electrochemical Society,169(1), 017509.
  • [4] Silva, M.M., Reboredo F.H., Lidon, F.C. (2022). Food colour additives: A synoptical overview on their chemical properties, applications in food products, and health side effects. Foods, 11(3), 379.
  • [5] Alves, S.P., Brum, D.M., de Andrade, E.C.B., Netto, A.D.P. (2008). Determination of synthetic dyes in selected foodstuffs by high performance liquid chromatography with UV-DAD detection. Food Chemistry, 107(1), 489-496.
  • [6] Benkhaya, S., M'rabet, S., El Harfi, A. (2020). Classifications, properties, recent synthesis and applications of azo dyes. Heliyon, 6(1), e03271.
  • [7] Sultana, S., Rahman, M.M., Aovi, F.I., Jahan, F.I., Hossain, M.S., Brishti, S.A., Yamin, M., Ahmed, M., Rauf, A., Sharma, R. (2023). Food color additives in hazardous consequences of human health: An overview. Current Topics in Medicinal Chemistry, 23(14), 1380-1393.
  • [8] Ramos-Souza, C., Bandoni, D.H., Bragotto, A.P.A., De Rosso, V.V. (2023). Risk assessment of azo dyes as food additives: Revision and discussion of data gaps toward their improvement. Comprehensive Reviews in Food Science and Food Safety, 22(1), 380-407.
  • [9] Monisha, B., Sridharan, R., Kumar, P.S., Rangasamy, G., Krishnaswamy V.G., Subhashree, S. (2023). Sensing of azo toxic dyes using nanomaterials and its health effects - A review. Chemosphere, 313, 137614.
  • [10] Thomas, O.E., Adegoke O.A. (2015). Toxicity of food colours and additives: A review. African Journal of Pharmacy and Pharmacology, 9(36), 900-914.
  • [11] Doell, D.L., Folmer, D.E., Lee, H.S., Butts, K.M., Carberry, S.E. (2016). Exposure estimate for FD&C colour additives for the US population. Food Additives & Contaminants: Part A, 33(5), 782-797.
  • [12] Kaya, S.I., Cetinkaya, A., Ozkan, S.A. (2021). Latest advances on the nanomaterials-based electrochemical analysis of azo toxic dyes sunset yellow and tartrazine in food samples. Food and Chemical Toxicology, 156, 112524.
  • [13] Martins, N., Roriz, C.L., Morales, P., Barros, L., Ferreira, I.C.F.R. (2016). Food colorants: challenges, opportunities and current desires of agro-industries to ensure consumer expectations and regulatory practices. Trends in Food Science & Technology, 52, 1-15.
  • [14] EFSA. (2014). Reconsideration of the temporary ADI and refined exposure assessment for sunset yellow FCF (E 110). EFSA Journal, 12(7), 3765.
  • [15] EFSA. (2009). Scientific opinion on the re-evaluation tartrazine (E 102). EFSA Journal, 7(11), 1331.
  • [16] EFSA. (2009). Scientific opinion on the re-evaluation of Allura red AC (E 129) as a food additive. EFSA Journal, 7(11), 1327.
  • [17] EFSA. (2013). Refined exposure assessment for amaranth (E 123). EFSA Journal, 11(10), 3442.
  • [18] EFSA. (2015). Refined exposure assessment for azorubine/carmoisine (E 122). EFSA Journal, 13(3), 4072.
  • [19] Amchova, P., Kotolova, H., Ruda-Kucerova, J., (2015). Health safety issues of synthetic food colorants. Regulatory Toxicology and Pharmacology, 73(3), 914-922.
  • [20] Chung, S.W.C. (2021). Quantification of permitted synthetic colours in food by liquid chromatographic methods: A review on analytical methods and their performance. Food Additives & Contaminants: Part A, 38(10), 1636-1655.
  • [21] Perez-Urquiza, M., Beltran, J.L. (2000). Determination of dyes in foodstuffs by capillary zone electrophoresis. Journal of Chromatography A, 898(2), 271-275.
  • [22] Tamer, F.S., Oymak, T., Dura, E. (2024). Determination of seven synthetic colourants in pharmaceutics, foods, and beverages by a validated HPLC-PDA method: A risk assessment study. Journal of Food Composition and Analysis, 136, 106797.
  • [23] Cheibuba, A.M.S.S, de Lyraa, E.S.B., Alvesa, B.J., Donagemma, R.A., Netto, A.D.P. (2020). Development and validation of a multipurpose and multicomponent method for the simultaneous determination of six synthetic dyes in different foodstuffs by HPLC-UV-DAD. Food Chemistry, 323, 126811.
  • [24] Alp, H., Başkan, D., Yaşar, A., Yaylı, N., Ocak, Ü., Ocak, M. (2018). Simultaneous determination of sunset yellow FCF, Allura red AC, quinoline yellow WS, and tartrazine in food samples by RP-HPLC. Journal of Chemistry, 2018, 6486250.
  • [25] Dmitrieva, E., Gashimova, E. (2025). Simultaneous quantification of 13 synthetic food dyes in dietary supplements and sports nutrition by high-performance thin-layer chromatography with densitometric detection. Food and Humanity, 4,100548.
  • [26] Al Shamari, Y.M.G., Alwarthan, A.A., Wabaidur, S.M., Khan, M.A., Alqadami, A.A., Siddiqui, M.R. (2019). New ultra performance liquid chromatography-mass spectrometric method for the determination of allura red in soft drinks using corncob as solid phase extraction sorbent: Analysis and food waste management approach, Journal of King Saud University - Science, 32(1), 1135-1141.
  • [27] Martin M., Oberson, J.M., Meschiari, M., Munari, C. (2016). Determination of 18 water-soluble artificial dyes by LC–MS in selected matrices. Food Chemistry,197, 1249-1255.
  • [28] Wu, L., Wu, T., Zeng, W., Zhou, S., Zhang, W., Ma, J. (2023). A new ratiometric molecularly imprinted electrochemical sensor for the detection of sunset yellow based on gold nanoparticles. Food Chemistry, 413, 135600.
  • [29] Kaur, A., Gupta, U. (2012). The review on spectrophotometric determination of synthetic food dyes and lakes. Gazi University Journal of Science, 25(3), 579-588.
  • [30] Piton, G.R., Augusto, K.K.L., Santos, D.J.A, Fatibello‑Filho, O. (2021). Spectrophotometric determination of allura red AC and tartrazine in food products using hydrophobic deep eutectic solvents as an environmentally sustainable micro-extractor. Journal of the Brazilian Chemical Society, 32(3), 564-571.
  • [31] Safaei, A., Giyahban, F., Ebrahimzadeh, H. (2025). Development of a ratiometric fluorescence sensor based on blue- and orange-emissive carbon dots for the determination of tartrazine in food products. Food Chemistry, 477, 143582.
  • [32] Tahtaisleyen, S., Gorduk, O., Sahin, Y. (2021). Electrochemical determination of sunset yellow using an electrochemically prepared graphene oxide modified–pencil graphite electrode (EGO-PGE). Analytical Letters, 54(3), 394-416.
  • [33] Xu, L., Yang, F., Dias, A.C.P., Zhang, X. (2022). Development of quantum dot-linked immunosorbent assay (QLISA) and ELISA for the detection of sunset yellow in foods and beverages. Food Chemistry, 385, 132648.
  • [34] Ou, Y., Wang, X., Lai, K., Huang, Y., Rasco, B.A., Fan, Y. (2018). Gold nanorods as surface-enhanced Raman spectroscopy substrates for rapid and sensitive analysis of allura red and sunset yellow in beverages. Journal of Agricultural and Food Chemistry, 66(11), 2954-2961.
  • [35] Shen, Y., Zhao, S., Chen, F., Lv, Y., Fu, L. (2024). Enhancing sensitivity and selectivity: Current trends in electrochemical immunosensors for organophosphate analysis. Biosensors, 14(10), 496.
  • [36] Liu, W., Yin, X.B. (2016). Metal–organic frameworks for electrochemical applications. TrAC Trends in Analytical Chemistry, 75, 86-96.
  • [37] Tajik, S., Beitollah, H., Nejad, F.G., Shoaiec, I.S., Khalilzadeh, M.A., Asle, M.S., Le, Q.V., Zhang, K., Jang, H.W., Shokouhimehr, M. (2020). Recent developments in conducting polymers: applications for electrochemistry. RSC Advances, 10, 37834-37856.
  • [38] Wang, Y., Zhao, S., Li, M., Li, W., Zhao, Y., Qi, J., Cui, X. (2017). Graphene quantum dots decorated graphene as an enhanced sensing platform for sensitive and selective detection of copper(II). Journal of Electroanalytical Chemistry, 797, 113-120.
  • [39] George, J.M., Antony, A., Mathew, B. (2018). Metal oxide nanoparticles in electrochemical sensing and biosensing: a review. Microchimica Acta, 185, 358.
  • [40] Cardenas-Riojas, A.A., Calderon-Zavaleta, S.L., Quiroz-Aguinaga, U., Muedas-Taipe, G., Carhuayal-Alvarez, S.M., Ascencio-Flores, Y.F., Ponce-Vargas, M., Baena-Moncada, A.M. (2024). Modified electrochemical sensors for the detection of selected food azo dyes: A review. ChemElectroChem, 11(4), e202300490.
  • [41] Kavitha, M.K., Sankararajan, R., Suseela, S.B., Kailasam M. (2025). Highly sensitive, environmentally friendly nanosensor for detecting sunset yellow in food products. Journal of Materials Science: Materials in Electronics, 36, 166.
  • [42] Kumari, R., Kumar, H., Sharma, R., Kumar, G., Tundwal, A., Dhayal, A., Yadav, A., Khatkar, A. (2024). Highly efficient and reliable voltammetry food sensor for tartrazine dye using a nanocomposite reformed electrode. Microchemical Journal, 196, 109583.
  • [43] Zeng, Y., Tang, Y., Gan, T., Wu, C. (2024). Flexible self-supporting laser-induced graphene electrode devices for highly sensitive electrochemical analysis of allura red. Carbon Letters, 34, 985-995.
  • [44] Karaboduk, K., Karaboduk, H. (2025). Rapid and simple electrochemical approximation for the determination of the food additive amaranth using voltammetric sensor. Journal of Food Measurement and Characterization, 19, 390-400.
  • [45] Murali, A.S., Sreelekshmi, Saraswathyamma, B. (2024). Chapter 15 - Utilization of surfactant-based electrode for the study of food dyes. Surfactant Based Electrochemical Sensors and Biosensors, 363-385.
  • [46] Rovina, K., Acung, L.A., Siddiquee, S., Akanda, J.H., Md Shaarani, S. (2017). Extraction and analytical methods for determination of sunset yellow (E110)-a review. Food Analytical Methods, 10, 773-787.
  • [47] Abbey, J. Fields, O’Mullane, B., Tomaska, L.D. (2014). Food additives: Colorants. Reference Module in Food Science Encyclopedia of Food Safety, 2, 459-465.
  • [48] Allam, K.V., Kumar, G.P. (2011). Colorants—the cosmetics for the pharmaceutical dosage forms. International Journal of Pharmacy and Pharmaceutical Sciences, 3(3), 13-21.
  • [49] Biberoğlu, Ö. (2025). Azo dye toxicity: Sunset yellow toxicity in foods. International Journal of Innovative Research and Reviews, 9(1), 32-38.
  • [50] Rovina, K., Siddiquee, S., Shaarani, S.M. (2017). A review of extraction and analytical methods for the determination of tartrazine (E 102) in foodstuffs. Critical Reviews in Analytical Chemistry, 47(4), 309-324.
  • [51] Amin, K.A., Al-Shehri, F.S. (2018). Toxicological and safety assessment of tartrazine as a synthetic food additive on health biomarkers: A review. African Journal of Biotechnology, 17(6),139-149.
  • [52] Rovina, K., Siddiquee, S., Shaarani, S.M. (2016). Extraction, analytical and advanced methods for detection of allura red AC (E129) in food and beverages products. Frontiers in Microbiology, 7, 798.
  • [53] Dodevska, T., Hadzhiev, D., Shterev, I. (2024). A brief review on recent high-performance platforms for electrochemical sensing of azo dye Allura red (E129): food safety and pharmaceutical applications. Journal of Electrochemical Science and Engineering, 14(6), 737-756.
  • [54] Durigon, A.M.M., da Silveira, G.D., Sokal, F.R., Pires, R.A.C.V., Dias, D. (2020). Food dyes screening using electrochemistry approach in solid state: the case of sunset yellow dye electrochemical behavior. Journal of Solid State Electrochemistry, 24, 2907-2921.
  • [55] Yu, L., Shi, M., Yue, X., Qu, L. (2016). Detection of allura red based on the composite of poly (diallyldimethylammonium chloride) functionalized graphene and nickel nanoparticles modified electrode. Sensors and Actuators B: Chemical, 225, 398-404.
  • [56] Claux, B. Vittori, O. (2007). Bismuth film electrode as an alternative for mercury electrodes: Determination of azo dyes and application for detection in food stuffs. Electroanalysis, 19(21), 2243-2246.
  • [57] Stozhko, N.Y., Khamzina, E.I., Bukharinova, M.A., Tarasov, A.V. (2022). An electrochemical sensor based on carbon paper modified with graphite powder for sensitive determination of sunset yellow and tartrazine in drinks. Sensors, 22(11), 4092.
  • [58] Lipskikh, O.I., Nikolaeva, A.A., Korotkova, E.I. (2017). Voltammetric determination of tartrazine in food. Journal of Analytical Chemistry, 72(4), 396-401.
  • [59] Baig, N., Sajid M., Saleh, T.A. (2019). Recent trends in nanomaterial-modified electrodes for electroanalytical applications. TrAC Trends in Analytical Chemistry, 111, 47-61.
  • [60] Fritea, L., Banica, F., Costea, T.O., Moldovan, L., Dobjanschi, L., Muresan, M., Cavalu, S. (2021). Metal nanoparticles and carbon-based nanomaterials for improved performances of electrochemical (bio)sensors with biomedical applications. Materials, 14(21), 6319.
  • [61] Rajendrachari, S., Basavegowda, N., Adimule, V.M., Avar, B., Somu, P., Saravana Kumar R.M., Baek, K.H. (2022). Assessing the food quality using carbon nanomaterial based electrodes by voltammetric techniques. Biosensors, 12(12), 1173.
  • [62] Lipskikh, O.I., Korotkova, E.I., Khristunova, Y.P., Barek, J., Kratochvil, B. (2018). Sensors for voltammetric determination of food azo dyes - A critical review. Electrochimica Acta, 260, 974-985.
  • [63] Wu, J.H., Lee, H.L. (2020). Determination of sunset yellow and tartrazine in drinks using screen-printed carbon electrodes modified with reduced graphene oxide and NiBTC frameworks. Microchemical Journal, 158, 105133.
  • [64] Kolozof, P.A., Florou, A.B., Spyrou, K., Hrbac, J., Prodromidis, M.I. (2020). In-situ tailoring of the electrocatalytic properties of screen-printed graphite electrodes with sparked generated molybdenum nanoparticles for the simultaneous voltammetric determination of sunset yellow and tartrazine. Sensors and Actuators B: Chemical, 304,127268.
  • [65] Taei, M., Salavati, H., Fouladgar, M., Abbaszadeh, E. (2020). Simultaneous determination of sunset yellow and tartrazine in soft drinks samples using nanocrystallites of spinel ferrite modified electrode. Iranian Chemical Communication, 8(1), 67-79.
  • [66] Alves, G.F., de Faria, L.V., Lisboa, T.P., de Souza, C.C., Fernandes, B.L.M., Matos, M.A.C., Mat, R.C. (2022). A portable and affordable paper electrochemical platform for the simultaneous detection of sunset yellow and tartrazine in food beverages and desserts. Microchemical Journal, 181, 107799.
  • [67] Wu, T., Wang, Qi., Peng, X.Y., Guo, Y. (2022). Facile synthesis of gold/graphene nanocomposites for simultaneous determination of sunset yellow and tartrazine in soft drinks. Electroanalysis, 34, 83-90.
  • [68] Zhao, S., Wang, J., Bai, X., Liu, T., Li, T. (2024). A dual-functional Cu-BTC/COOH-MWCNTs ratiometric electrochemical sensing device for the detection of sunset yellow and tartrazine. Microchemical Journal, 200, 110349.
  • [69] Shume, W.M., Zereffa, E.A., Fakrudeen, S.P., Al-Farraj, S., Sillanpa, M., Murthy, H.C.A. (2023). Ni1Zn1-xLayFe2-yO4@rGO nanocomposite as electrochemical sensor for simultaneous analysis of food colorants-sunset yellow and tartrazine. Inorganic Chemistry Communications, 155, 111071.
  • [70] Lin, Z., Wen, C., Huang, L., Qin, S., Wang, Y. (2024). Differential pulse voltammetry detection of sunset yellow and tartrazine in beverages using rGO-BaMoO4 composite. Applied Physics A, 130, 684.
  • [71] Li, G., Zhang, Y., Xia, Y., Wang, T., Jin, Y. (2025). Multiwalled carbon nanotubes decorated dandelion-like α-MnO2 microspheres for simultaneous and sensitive detection of sunset yellow and tartrazine. Microchemical Journal, 210, 113040.
  • [72] Ziyatdinova, G., Titova, M., Davletshin, R. (2022). Electropolymerized 4-aminobenzoic acid based voltammetric sensor for the simultaneous determination of food azo dyes. Polymers, 14(24), 5429.
  • [73] Li, C., Xia, S., Qian, X., Zheng, M., Deng, K. (2025). Fe3O4/CoFe nanoparticles decorated 3D hierarchical nitrogen‑doped carbon nanosheets for synchronous measurement of sunset yellow and tartrazine. Ionics, 31, 7361-7372.
  • [74] Senthilkumar, D., Kuo, C.Y., Aldossari, S.A., Govindasamy, M. (2025). Advanced highly precise simultaneous electrochemical detection of toxic azo dyes with Nanoengineered yttrium Iron oxide decorated functionalized carbon nanofibers. Food Chemistry, 486, 144607.
  • [75] Li, J., Liu, M., Jiang, J., Liu, B., Tong, H., Xu, Z., Yange, C., Qian, D. (2019). Morphology-controlled electrochemical sensing properties of CuS crystals for tartrazine and sunset yellow. Sensors and Actuators B: Chemical, 288, 552-563.
  • [76] Khanfar, M.F., Abu-Nameh, E.S.M., Azizi, N.A., Zurayk, R.A., Khalaf, A., Saketa, M.M., Alnuman, A. (2020). Electrochemical determination of sunset yellow and tartrazine at carbon electrodes modified by Fe-Zr oxide. Jordan Journal of Chemistry, 15(3), 119-126.
  • [77] Dorraji, P.S., Jalali, F. (2017). Electrochemical fabrication of a novel ZnO/cysteic acid nanocomposite modified electrode and its application to simultaneous determination of sunset yellow and tartrazine. Food Chemistry, 227, 73-77.
  • [78] Majidi, M.R., Pournaghi-Azar, M.H., Baj, R.F.B., Naseri, A., (2015). Formation of graphene nanoplatelet-like structures on carbon–ceramic electrode surface: application for simultaneous determination of sunset yellow and tartrazine in some food samples. Ionics, 21, 863-875.
  • [79] Deng, K., Li, C., Li, X., Huang, H. (2016). Simultaneous detection of sunset yellow and tartrazine using the nanohybrid of gold nanorods decorated graphene oxide. Journal of Electroanalytical Chemistry, 780, 296-302.
  • [80] Ji, L., Cheng, Q., Wu, K., Yang, X. (2016). Cu-BTC frameworks-based electrochemical sensing platform for rapid and simple determination of sunset yellow and tartrazine. Sensors and Actuators B: Chemical, 231, 12-17.
  • [81] Yu, L., Zheng, Z., Shi, M., Jing, S., Qu, L. (2017). A novel electrochemical sensor based on poly (diallyldimethylammonium chloride)-dispersed graphene supported palladium nanoparticles for simultaneous determination of sunset yellow and tartrazine in soft drinks. Food Analytical Methods, 10, 200-209.
  • [82] Yeh, C.L., Ceng, Y.J., Huang, M.X., Zac R.A.T., Wu, B.C., Lee, H.L. (2025). Triazine-based COF/CNTs as an electrochemical sensor for the simultaneous detection of sunset yellow and tartrazine in food samples. Analytical Methods, 17, 5392-5399.
  • [83] Cheng, S., Lin, Z., Qin, S., Huang, L., Yang, J., Wang, Y. (2023). A modified electrode based on a 3D reduced graphene oxide and MoS2 composite for simultaneous detection of sunset yellow and tartrazine. Analytical Methods, 15, 4142-4148.
  • [84] Moarefdoust, M.M., Jahani, S., Moradalizadeh, M., Motaghia, M.M., Foroughi, M.M. (2021). An electrochemical sensor based on hierarchical nickel oxide nanostructures doped with indium ions for voltammetric simultaneous determination of sunset yellow and tartrazine colorants in soft drink powders. Analytical Methods, 13, 2396-2404.
  • [85] Jampasa, S., Siangproh, W., Duangmal, K., Chailapakul, O. (2016). Electrochemically reduced graphene oxide-modified screen-printed carbon electrodes for a simple and highly sensitive electrochemical detection of synthetic colorants in beverages. Talanta, 160,113-124.
  • [86] Puneeth, Kumara Swamy, B.E., Sharma, S.C. (2025). Immobilized triton X-100 voltammetric sensor for the simultaneous detection of sunset yellow and tartrazine. Journal of Electrochemical Science and Engineering, 15(3), 2589.
  • [87] Qiu, X., Lu, L., Leng, J., Yu, Y., Wang, W., Jiang, M., Bai, L. (2016). An enhanced electrochemical platform based on graphene oxide and multi-walled carbon nanotubes nanocomposite for sensitive determination of sunset yellow and tartrazine. Food Chemistry, 190, 889-895.
  • [88] Arvand, M., Parhizi, Y., Mirfathi, S.Y. (2015). Simultaneous voltammetric determination of synthetic colorants in foods using a magnetic core-shell Fe3O4@SiO2/MWCNTs nanocomposite modified carbon paste electrode. Food Analytical Methods, 9, 863-875.
  • [89] Nagles, E., Ceroni, M., Hurtado, J. (2020). Simultaneous detection of tartrazine-sunset yellow in food samples using bioxide/carbon paste microcomposite with lanthanum and titanium. Journal of Electrochemical Science and Technology, 11(4), 421-429.
  • [90] Afşar, M.C., Dursun, Z. (2025). Simultaneous determination of sunset yellow and tartrazine in real samples on an n-butylamine-graphite/polyaminophenol composite electrode. Turkish Journal Chemistry, 49, 103-117.
  • [91] Baytak, A.K., Arslanoğlu, M. (2023). Praseodymium doped dysprosium oxide-carbon nanofibers based voltammetric platform for the simultaneous determination of sunset yellow and tartrazine. Electroanalysis, 35, 2200136.
  • [92] Ascencio-Flores, Y.F., Carhuayal-Alvarez, S.M., Quiroz-Aguinaga, U., Calderon-Zavaleta, S.L., Lopez, E.O, Ponce-Vargas, M., CardenasRiojas, A.A., Baena-Moncada, A.M. (2023). Simultaneous square wave voltammetry detection of azo dyes using silver nanoparticles assembled on carbon nanofibers. Electrochimica Acta, 441, 141782.
  • [93] Chebotarev, A., Koicheva, A., Bevziuk, K., Pliuta, K., Snigur, D. (2019). Simultaneous determination of sunset yellow and tartrazine in soft drinks on carbon-paste electrode modified by silica impregnated with cetylpyridinium chloride. Journal of Food Measurement and Characterization,13,1964-1972.
  • [94] Marquez-Marino, K., Penagos-Llanos, J., García-Beltran, O., Nagles, E., Hurtado, J.J. (2018). Development of a novel electrochemical sensor based on a carbon paste electrode decorated with Nd2O3 for the simultaneous detection of tartrazine and sunset yellow. Electroanalysis, 30, 2760-2767.
  • [95] Wang, M., Zhao, J. (2015). Facile synthesis of Au supported on ionic liquid functionalized reduced graphene oxide for simultaneous determination of sunset yellow and tartrazine in drink. Sensors and Actuators B: Chemical, 216, 578-585.
  • [96] Garsed, R., Vazquez, L., Casero, E., Petit-Domínguez, M.D., Quintana, C., del Pozo, M. (2023). 2D-ReS2&diamond nanoparticles-based sensor for the simultaneous determination of sunset yellow and tartrazine in a multiple-pulse amperometry FIA system. Talanta, 265,124842.
  • [97] Puneeth, Kumara Swamy, B.E., Manjunatha, L.S., Sharma, S.C. (2025). Simultaneous validation of oncogenic dyes allura red and tartrazine using a poly (martius yellow) pencil graphite electrode: A voltammetric investigation. Inorganic Chemistry Communications, 177, 114377.
  • [98] Buharinova, M.A., Khamzina, E.I., Kolotygina, V.Y., Stozhko, N.Y. (2023). Voltammetric sensor based on carbon veil modified with graphene and phytosynthesized cobalt oxide nanoparticles for the determination of food dyes tartrazine (E102) and allura red (E129). Journal of Analytical Chemistry, 78(12),1679-1687.
  • [99] Zhang, Y., Hu, L., Liu, X., Liu, B., Wu, K. (2015). Highly-sensitive and rapid detection of ponceau 4R and tartrazine in drinks using alumina microfibers-based electrochemical sensor. Food Chemistry, 166, 352-357.
  • [100] Karami, M., Shabani-Nooshabadi, M. (2024). Electro-sensing of carmoisine and tartrazine in foodstuffs based on triple-shell CaMgFe2O4 hollow spheres-modified sensor. Materials Chemistry and Physics, 318, 129289.
  • [101] Beitollahi, H., Nejad, F.G., Dourandish, Z., Aflatoonian, M.Z. (2023). Electrochemical detection of carmoisine in the presence of tartrazine on the surface of screen-printed graphite electrode modified with nickel-cobalt layered double hydroxide ultrathin nanosheets. Chemosphere, 337, 139369.
  • [102] Bijad, M., Karimi‑Maleh, H., Farsi, M., Shahidi, S.A. (2018). An electrochemical-amplified-platform based on the nanostructure voltammetric sensor for the determination of carmoisine in the presence of tartrazine in dried fruit and soft drink samples. Journal of Food Measurement and Characterization, 12, 634-640.
  • [103] Nuñez-Dallos, N., Macías, M.A., García-Beltrán, O., Calderón, J.A., Nagles, E., Hurtado, J. (2018). Voltammetric determination of amaranth and tartrazine with a new double-stranded copper(I) helicate-single-walled carbon nanotube modified screen printed electrode. Journal of Electroanalytical Chemistry, 822, 95-104.
  • [104] Penagos-Llanos, J., García-Beltran, O., Calderon, J.A., Hurtado-Murillo, J.J., Nagles, E., Hurtado, J.J. (2019). Simultaneous determination of tartrazine, sunset yellow and Allura red in foods using a new cobalt-decorated carbon paste electrode. Journal of Electroanalytical Chemistry, 852,113517.
  • [105] Penagos-Llanos, J., García-Beltran, O., Nagles, E., Hurtado, J.J. (2020). A New electrochemical method to detect sunset yellow, tartrazine and thiomersal in a pharmaceutical dose using a carbon paste electrode decorated with molybdenum oxide. Electroanalysis, 32, 2174-2182.
  • [106] Wang, M., Zhao, J. (2015). Facile method used for simultaneous determination of ponceau 4R, Allura red and tartrazine in alcoholic beverages. Journal of The Electrochemical Society, 162(6), H321-H327.
  • [107] Ghanbari, H., Chamjangali, M., Faraji, M. (2025). Voltammetric sensor for simultaneous determination of ponceau 4r, amaranth, and tartrazine as additives in foodstuffs. Electrocatalysis, 16, 587-599.
Toplam 107 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Mühendisliği, Gıda Kimyası ve Gıda Sensör Bilimi
Bölüm Derleme Makaleler
Yazarlar

Didem Giray Dilgin 0000-0002-3487-3470

Yayımlanma Tarihi 30 Eylül 2025
Gönderilme Tarihi 28 Haziran 2025
Kabul Tarihi 10 Eylül 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 23 Sayı: 3

Kaynak Göster

APA Giray Dilgin, D. (2025). A Review on the Simultaneous Electrochemical Determination of Azo Dyes Used as Colorants in Foods and Beverages. Akademik Gıda, 23(3), 231-245. https://doi.org/10.24323/akademik-gida.1793629
AMA Giray Dilgin D. A Review on the Simultaneous Electrochemical Determination of Azo Dyes Used as Colorants in Foods and Beverages. Akademik Gıda. Eylül 2025;23(3):231-245. doi:10.24323/akademik-gida.1793629
Chicago Giray Dilgin, Didem. “A Review on the Simultaneous Electrochemical Determination of Azo Dyes Used as Colorants in Foods and Beverages”. Akademik Gıda 23, sy. 3 (Eylül 2025): 231-45. https://doi.org/10.24323/akademik-gida.1793629.
EndNote Giray Dilgin D (01 Eylül 2025) A Review on the Simultaneous Electrochemical Determination of Azo Dyes Used as Colorants in Foods and Beverages. Akademik Gıda 23 3 231–245.
IEEE D. Giray Dilgin, “A Review on the Simultaneous Electrochemical Determination of Azo Dyes Used as Colorants in Foods and Beverages”, Akademik Gıda, c. 23, sy. 3, ss. 231–245, 2025, doi: 10.24323/akademik-gida.1793629.
ISNAD Giray Dilgin, Didem. “A Review on the Simultaneous Electrochemical Determination of Azo Dyes Used as Colorants in Foods and Beverages”. Akademik Gıda 23/3 (Eylül2025), 231-245. https://doi.org/10.24323/akademik-gida.1793629.
JAMA Giray Dilgin D. A Review on the Simultaneous Electrochemical Determination of Azo Dyes Used as Colorants in Foods and Beverages. Akademik Gıda. 2025;23:231–245.
MLA Giray Dilgin, Didem. “A Review on the Simultaneous Electrochemical Determination of Azo Dyes Used as Colorants in Foods and Beverages”. Akademik Gıda, c. 23, sy. 3, 2025, ss. 231-45, doi:10.24323/akademik-gida.1793629.
Vancouver Giray Dilgin D. A Review on the Simultaneous Electrochemical Determination of Azo Dyes Used as Colorants in Foods and Beverages. Akademik Gıda. 2025;23(3):231-45.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).

Akademik Gıda has been published by Sidas Medya Ltd. Sti. (Sidas Media Agency Advertisement Consultation Ltd.) since 2003.