İki boyutlu (2B) doğrusal dönüşümler Harita (Geomatik) mühendisliğinin birçok alanında geniş bir kullanım alanı bulmuştur. Bunlardan en çok kullanılanları, iki dik koordinat sistemi arasındaki benzerlik (Helmert) ya da eğik ve dik koordinat sistemleri arasında yapılan afin dönüşümdür. Birçok kullanıcı bu dönüşüm türlerinden birini seçerken yaptığı (kaynak-hedef koordinat sistemleri arasındaki dönüşüm dikten-dike ya da eğikten-dike veya dikten-eğiğe olsun şeklindeki) geometrik kabule dikkat etmez. Yanlış geometrik model ile elde edilen dönüşüm parametreleri kullanılarak üretilen eşlenik olmayan nokta koordinatlar hatalı olurlar. Dönüşümün temel geometrisi doğru seçilmiş ise dönüşüm sonuçları gerçeği yansıtır. Aksi durumda, istatistik testler dahi yanıltıcı sonuçlar verebilir. Bu çalışmada, kullanıcının seçebileceği doğrusal dönüşümlerin geometrik yapısı incelenmiş ve kendi problemine uygun dönüşüm türünü seçmesi için önerilerde bulunulmuştur. Çalışmada ilk olarak iki boyutlu doğrusal dönüşümün en genel hali olan iki eğik koordinat sistemi arasındaki dönüşüm türü olan tam afin bağıntıları çıkarılmıştır. Uygulamada geniş bir kulanım alanı bulan eğik-dik (afin) ve dik-dik koordinat (benzerlik) sistemleri arasındaki dönüşümün türünün, iki eğik koordinat sistemi arasındaki dönüşüm türünün özel halleri olduğu geometrik olarak gösterilmiş ve bu dönüşümlerin genel bağıntıları çıkarılmıştır. Uygulamada yaygın olarak kullanılan eğik-dik (afin) ya da dik-dik (benzerlik) koordinat dönüşümü seçiminin nasıl bir yanılgı doğuracağı gerçek bir sayısal örnek üzerinde gösterilmiştir.
Birincil Dil | Türkçe |
---|---|
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 30 Nisan 2018 |
Gönderilme Tarihi | 27 Aralık 2017 |
Yayımlandığı Sayı | Yıl 2018 Cilt: 18 Sayı: 1 |
Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.