Research Article
BibTex RIS Cite

Characterization of the Volatile Profile of Bee Venom from Different Regions in Türkiye Using Gas Chromatography-Mass Spectrometry

Year 2025, Volume: 31 Issue: 1, 22 - 32, 14.01.2025

Abstract

The volatile organic compounds of bee venoms from four different populations of Apis mellifera anatoliaca, came from different regions in Türkiye, were analyzed using solid phase microextraction technique combined with gas chromatography-mass spectrometry. A total of 144 volatile compounds were identified in the bee venom samples. The identified volatile compounds included esters, terpenoids, alcohols, acid esters, aldehydes, ketones, and hydrocarbons. It was determined that ester-type volatile compounds characterized the bee venom obtained from the Central Anatolia Region, while bee venom from the Western Black Sea Region had a higher amount of volatile terpenes with spicy and woody aromas. Further studies are required to understand the volatile profile of bee venom, which consists of plant and animal secondary metabolites.

Ethical Statement

This research does not require ethical approval.

Thanks

The authors are greatly indebted to Prof. Dr. Yonca Karagül YÜCEER for her support and permitting our access to her laboratory infrastructure.

References

  • Abd El-Wahed A A, Farag M A, Eraqi W A, Mersal G A, Zhao, C, Khalifa, S A & El-Seedi H R (2021). Unravelling the beehive air volatiles profile as analysed via solid phase microextraction (SPME) and chemometrics. Journal of King Saud University Science 33(5): 101449. https://doi.org/10.1016/j.jksus.2021.101449
  • Ağan A F & Kekeçoglu M (2020). Melittin and cancer treatment: Nanotechnological perspective. Uludağ Arıcılık Dergisi 20(2): 221-231. https://doi.org/10.31467/uluaricilik.784365
  • Al-Ghamdi A A, Al-Khaibari A M & Omar M O M (2011). Effect of honeybee race and worker age on development and histological structure of hypopharyngeal glands of honeybee. Saudi Journal of Biological Sciences 18(2): 113-116. https://doi.org/10.1016/j.sjbs.2011.01.001
  • Ali E M (2014). Contributions of some biological activities of honey bee venom. Journal of Apicultural Research 53(4): 441-451. https://doi.org/10.3896/IBRA.1.53.4.13
  • Ali H, Alqarni A S, Iqbal J, Owayss A A, Raweh H S & Smith B H (2019). Effect of season and behavioral activity on the hypopharyngeal glands of three honeybee Apis mellifera L. races under stressful climatic conditions of central Saudi Arabia. Journal of Hymenoptera Research 68: 85-101. https://doi.org/doi: 10.3897/jhr.68.29678
  • Ali S H & Sayed A R (2021). Review of the synthesis and biological activity of thiazoles. Synthetic Communications 51(5): 670-700. https://doi.org/10.1080/00397911.2020.1854787
  • Anandakumar P, Kamaraj S & Vanitha M K (2021). D‐limonene: A multifunctional compound with potent therapeutic effects. Journal of Food Biochemistry 45(1), e13566. https://doi.org/10.1111/jfbc.13566
  • Anonymous, (2024). The goodscents company. https://www.thegoodscentscompany.com/search2.html Ando H, Kurata A & Kishimoto N (2015). Antimicrobial properties and mechanism of volatile isoamyl acetate, a main flavor component of Japanese sake (Ginjo‐shu). Journal of Applied Microbiology 118(4): 873-880. https://doi.org/10.1111/jam.12764
  • Avsar Y K, Karagul-Yuceer Y, Drake M A, Singh T K, Yoon Y & Cadwallader K R (2004). Characterization of nutty flavor in Cheddar cheese. Journal of Dairy Science 87(7): 1999-2010. https://doi.org/10.3168/jds.S0022-0302(04)70017-X
  • Bhadra S, Zhang Z, Zhou W, Ochieng F, Rockwood G A, Lippner D & Logue B A (2019). Analysis of potential cyanide antidote, dimethyl trisulfide, in whole blood by dynamic headspace gas chromatography–mass spectroscopy. Journal of Chromatography A 1591: 71-78. https://doi.org/10.1016/j.chroma.2019.01.058
  • Bogdanov S (2016). Bee Venom: Production, composition, quality. In S. Bogdanov (Ed.), The bee venom (pp.1-8). Bee product science. https://www.bee-hexagon.net/english/bee-products/venom/
  • Çaprazlı T & Kekeçoğlu M (2021). Bal arisi zehrinin kompozisyonunu ve üretim miktarini etkileyen faktörler. Uludag Arıcılık Dergisi (1): 132-145. https://doi.org/10.31467/uluaricilik.901279
  • Castro-Vázquez L, Díaz-Maroto M C, González-Viñas M A, De La Fuente E & Pérez-Coello M S (2008). Influence of storage conditions on chemical composition and sensory properties of citrus honey. Journal of Agricultural and Food Chemistry 56(6): 1999-2006. https://doi.org/10.1021/jf072227k
  • Caputi L & Aprea E (2011). Use of terpenoids as natural flavouring compounds in food industry. Recent Patents on Food, Nutrition & Agriculture 3(1): 9-16. https://doi.org/10.2174/2212798411103010009
  • Chung E S, Kim H, Lee G, Park S, Kim H & Bae H (2012). Neuro-protective effects of bee venom by suppression of neuroinflammatory responses in a mouse model of Parkinson’s disease: role of regulatory T cells. Brain, Behavior, and Immunity 26(8): 1322-1330. https://doi.org/10.1016/j.bbi.2012.08.013
  • Ding Q, Sheikh A R, Gu X, Li J, Xia K, Sun N & Ma H (2021). Chinese propolis: Ultrasound‐assisted enhanced ethanolic extraction, volatile compounds analysis, antioxidant and antibacterial activity comparison. Food Science and Nutririton 9(1): 313-330. https://doi.org/10.1002/fsn3.1997
  • El-Didamony S E, Amer R I & El-Osaily G H (2022). Formulation, characterization and cellular toxicity assessment of a novel bee-venom microsphere in prostate cancer treatment. Scientific Reports 12(1): 13213. https://doi.org/10.1038/s41598-022-17391-w
  • El-Saeady A A, Diab A, Shehata I A A, Nafea E A & Metwaly A A A (2016). Effect of bee venom collecting on the behavior of honeybee colonies. Journal of Plant Protection and Pathology 7(6): 347– 351. https://doi.org/10.21608/JPPP.2016.50576
  • El Sharkawi F Z, Saleh S S & El Sayed A F M (2015). Potential anti cancer activity of snake venom, bee venom and their components in liver and breast carcinoma. International Journal of Pharmaceutical Sciences and Research 6(8): 3224. https://doi.org/10.13040/IJPSR.0975-8232
  • Flanjak I, Kovačić M, Primorac L, Soldić A, Puškadija Z & Rajs B B (2021). Comparison between the quantity and quality of honey bee venom collected in the front and inside of the hive. Journal of Apicultural Research pp. 1-6. https://doi.org/10.1080/00218839.2021.1994262
  • Götz M E, Sachse B, Schäfer B & Eisenreich A (2022). Myristicin and elemicin: Potentially toxic alkenylbenzenes in food. Foods 11(13): 1988. https://doi.org/10.3390/foods11131988
  • Güneşer O & Yüceer Y K (2017). Biosynthesis of eight-carbon volatiles from tomato and pepper pomaces by fungi: Trichoderma atroviride and Aspergillus sojae. Journal of Bioscience and Bioengineering 123(4): 451-459. https://doi.org/10.1016/j.jbiosc.2016.11.013
  • Huigens III R W, Brummel B R, Tenneti S, Garrison A T & Xiao T (2022). Pyrazine and phenazine heterocycles: Platforms for total synthesis and drug discovery. Molecules 27(3): 1112. https://doi.org/10.3390/molecules27031112
  • Hussein A, El-Ansari M & Zahra A (2019). Effect of the honeybee hybrid and geographic region on the honeybee venom production. Journal of Plant Protection and Pathology 10(3): 171–176. https://doi.org/10.21608/jppp.2019.40922
  • Hwang D S, Kim S K & Bae H (2015). Therapeutic effects of bee venom on immunological and neurological diseases. Toxins 7(7): 2413-2421. https://doi.org/10.3390/toxins7072413
  • Isidorov V, Zalewski A, Zambrowski G & Swiecicka I (2023). Chemical Composition and Antimicrobial Properties of Honeybee Venom. Molecules 28(10): 4135. https://doi.org/10.3390/ molecules28104135
  • Jeleń H & Gracka A (2016). Characterization of aroma compounds: Structure, physico‐chemical and sensory properties. In E. Guichard, C. Salles, M. Morzel, & AM. Le Bon (Eds.), Flavour: from food to perception (pp. 126-153). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118929384.ch6
  • Jung G B, Huh J E, Lee H J, Kim D, Lee G J Park H K & Lee J D (2018). Anti-cancer effect of bee venom on human MDA-MB-231 breast cancer cells using Raman spectroscopy. Biomedical Optics Express 9(11): 5703-5718. https://doi.org/10.1364/BOE.9.005703
  • Kaziur-Cegla W, Jochmann M A, Molt K, Bruchmann A & Schmidt T C (2022). In-tube dynamic extraction for analysis of volatile organic compounds in honey samples. Food Chemistry X, 14, Article 100337. https://doi.org/10.1016/j.fochx.2022.100337
  • Kekeçoğlu M, Çaprazlı T, Samancı A E T, Samancı T & Önder E Y (2022). Factors affecting quality of honeybee venom. Journal of Apicultural Science 66(1): 5-14. https://doi.org/10.2478/jas-2022-0001
  • Kekecoglu M, Sonmez E, Acar M K & Karaoglu S A (2021). Pollen analysis, chemical composition and antibacterial activity of Anatolian chestnut propolis collected from Yıgılca region. Biology Bulletin 48(7): 21-728. https://doi.org/10.1134/S106235902106011X
  • Kumar N R, Devi A, Kriti H & Kriti N (2014). Comparative biochemical studies on the poison glad and poison sac of the worker bees of three different apis species (Apis dorsata, Apis mellifera and Apis florea). International Journal of Therapeutic Applications 16: 8–16
  • Kumar S & Aggarwal R (2019). Thiazole: A privileged motif in marine natural products. Mini-Reviews in Organic Chemistry 16(1): 26-34. https://doi.org/10.2174/1570193X15666180412152743
  • Maga J A & Sizer C E (1973). Pyrazines in foods. Review. Journal of Agricultural and Food Chemistry 21(1): 22-30.https://doi.org/10.1021/jf60185a006
  • Melda A, Kalaycioğlu Z, Kolayli S & Berker B (2021). Comparative determination of melittin by capillary electrophoretic methods. Journal of the Turkish Chemical Society Section A: Chemistry 8(4): 1211-1216. https://doi.org/10.18596/jotcsa.949188
  • Miguel M G & Antunes M D (2011). Is propolis safe as an alternative medicine? Journal of Pharmacy and Bioallied Sciences 3(4): 479-495. https://doi.org/10.4103/0975-7406.90101
  • Mortzfeld F B, Hashem C, Vranková K, Winkler M & Rudroff F (2020). Pyrazines: Synthesis and industrial application of these valuable flavor and fragrance compounds. Biotechnology Journal 15(11): 2000064. https://doi.org/10.1002/biot.202000064
  • Ouradi H, Hanine H, Fauconnier M L, Kenne T, Rizki H, Ennahli S & Hssaini L (2021). Determination of physico-biochemical proprieties and composition in volatile constituents by solid phase micro-extraction of honey samples from different botanical and geographical origins in Morocco. Journal of Apicultural Research 60(1): 84-98. https://doi.org/10.1080/00218839.2020.1718339
  • Özkök A (2018). Türkiye’de hızla büyüyen sektör: Arı ürünlerine genel bir bakış. Palme Yayın Dağıtım. Paulino B N, Silva G N, Araújo F F, Néri-Numa I A, Pastore G M, Bicas J L & Molina G (2022). Beyond natural aromas: The bioactive and technological potential of monoterpenes. Trends in Food Science & Technology 128: 188-201
  • Pawliszyn J (1999). Quantitative aspects of SPME. In: J. Pawliszyn (Ed.), Applications of solid phase microextraction (pp. 3-21). Royal Society of Chemistry. https://doi.org/10.1039/9781847550149
  • Ramos O Y, Salomón V, Libonatti C, Cepeda R, Maldonado L & Basualdo M (2018). Effect of botanical and physicochemical composition of Argentinean honeys on the inhibitory action against food pathogens. LWT 87: 457-463. https://doi.org/10.1016/j.lwt.2017.09.014.
  • Rockwood G A, Thompson D E & Petrikovics I (2016). Dimethyl trisulfide: A novel cyanide countermeasure. Toxicology & Industrial Health, 32(12): 2009-2016. https://doi.org/10.1177/0748233715622713
  • Salehi B, Upadhyay S, Erdogan Orhan I, Kumar Jugran A, Jayaweera L D S A, Dias D, Sharopov F, Taheri Y, Martins N, Baghalpour N, Cho W C & Sharifi-Rad J (2019). Therapeutic potential of α-and β-pinene: A miracle gift of nature. Biomolecules 9(11): 738. https://doi.org/10.3390/biom9110738
  • Samancı T & Kekeçoglu M (2019). Comparison of commercial and Anatolian bee venom in terms of chemical composition. Uludag Arıcılık Dergisi 19(1): 60-67. https://doi.org/10.31467/uluaricilik.527986
  • Seneme E F, Dos Santos D C, Silva E M R, Franco Y E M & Longato G B (2021). Pharmacological and therapeutic potential of myristicin: A literature review. Molecules, 26 (19), 5914. https://doi.org/10.3390/molecules26195914
  • Somwongin S, Chantawannakul P & Chaiyana W (2018). Antioxidant activity and irritation property of venoms from Apis species. Toxicon, 145: 32–39. https://doi.org/10.1016/j.toxicon.2018.02.049
  • Souza-Silva ÉA, Gionfriddo E & Pawliszyn J (2015). A critical review of the state of the art of solid-phase microextraction of complex matrices II. Food analysis. TrAC Trends in Analytical Chemistry 71: 236-248.https://doi.org/10.1016/j.trac.2015.04.018
  • Tanugur-Samanci A E & Kekeçoglu M (2021). An evaluation of the chemical content and microbiological contamination of Anatolian bee venom. Plos One, 16, 1-14, https://doi.org/10.1371/journalpone.0255161
  • Uzuner S Ç, Birinci E, Tetikoğlu S, Birinci C & Kolaylı S (2021). Distinct epigenetic reprogramming, mitochondrial patterns, cellular morphology, and cytotoxicity after bee venom treatment. Recent Patents on Anti-Cancer Drug Discovery 16(3): 377-392. https://doi.org/10.2174/1574892816666210422125058
  • Wager B R & Breed M D (2000). Does honey bee sting alarm pheromone give orientation information to defensive bees? Annals of the Entomological Society of America 93(6): 1329-1332.https://doi.org/10.1603/0013-8746(2000)093[1329:DHBSAP]2.0.CO;2
  • Yehye W A, Rahman N A, Ariffin A, Abd Hamid S B, Alhadi A A, Kadir F A & Yaeghoobi M (2015). Understanding the chemistry behind the antioxidant activities of butylated hydroxytoluene (BHT): A review. European Journal of Medicinal Chemistry 101: 295-312. https://doi.org/10.1016/j.ejmech.2015.06.026
  • Zidan H A E G, Mostafa Z K, Ibrahim M A, Haggag S I, Darwish D A & Elfiky A A (2018). Venom composition of Egyptian and Carniolan honeybee. Apis mellifera L. affected by collection methods. Egyptian Academic Journal of Biological Sciences 11(4): 59–71. https://doi.org/10.21608/EAJBSA.2018.17733
Year 2025, Volume: 31 Issue: 1, 22 - 32, 14.01.2025

Abstract

References

  • Abd El-Wahed A A, Farag M A, Eraqi W A, Mersal G A, Zhao, C, Khalifa, S A & El-Seedi H R (2021). Unravelling the beehive air volatiles profile as analysed via solid phase microextraction (SPME) and chemometrics. Journal of King Saud University Science 33(5): 101449. https://doi.org/10.1016/j.jksus.2021.101449
  • Ağan A F & Kekeçoglu M (2020). Melittin and cancer treatment: Nanotechnological perspective. Uludağ Arıcılık Dergisi 20(2): 221-231. https://doi.org/10.31467/uluaricilik.784365
  • Al-Ghamdi A A, Al-Khaibari A M & Omar M O M (2011). Effect of honeybee race and worker age on development and histological structure of hypopharyngeal glands of honeybee. Saudi Journal of Biological Sciences 18(2): 113-116. https://doi.org/10.1016/j.sjbs.2011.01.001
  • Ali E M (2014). Contributions of some biological activities of honey bee venom. Journal of Apicultural Research 53(4): 441-451. https://doi.org/10.3896/IBRA.1.53.4.13
  • Ali H, Alqarni A S, Iqbal J, Owayss A A, Raweh H S & Smith B H (2019). Effect of season and behavioral activity on the hypopharyngeal glands of three honeybee Apis mellifera L. races under stressful climatic conditions of central Saudi Arabia. Journal of Hymenoptera Research 68: 85-101. https://doi.org/doi: 10.3897/jhr.68.29678
  • Ali S H & Sayed A R (2021). Review of the synthesis and biological activity of thiazoles. Synthetic Communications 51(5): 670-700. https://doi.org/10.1080/00397911.2020.1854787
  • Anandakumar P, Kamaraj S & Vanitha M K (2021). D‐limonene: A multifunctional compound with potent therapeutic effects. Journal of Food Biochemistry 45(1), e13566. https://doi.org/10.1111/jfbc.13566
  • Anonymous, (2024). The goodscents company. https://www.thegoodscentscompany.com/search2.html Ando H, Kurata A & Kishimoto N (2015). Antimicrobial properties and mechanism of volatile isoamyl acetate, a main flavor component of Japanese sake (Ginjo‐shu). Journal of Applied Microbiology 118(4): 873-880. https://doi.org/10.1111/jam.12764
  • Avsar Y K, Karagul-Yuceer Y, Drake M A, Singh T K, Yoon Y & Cadwallader K R (2004). Characterization of nutty flavor in Cheddar cheese. Journal of Dairy Science 87(7): 1999-2010. https://doi.org/10.3168/jds.S0022-0302(04)70017-X
  • Bhadra S, Zhang Z, Zhou W, Ochieng F, Rockwood G A, Lippner D & Logue B A (2019). Analysis of potential cyanide antidote, dimethyl trisulfide, in whole blood by dynamic headspace gas chromatography–mass spectroscopy. Journal of Chromatography A 1591: 71-78. https://doi.org/10.1016/j.chroma.2019.01.058
  • Bogdanov S (2016). Bee Venom: Production, composition, quality. In S. Bogdanov (Ed.), The bee venom (pp.1-8). Bee product science. https://www.bee-hexagon.net/english/bee-products/venom/
  • Çaprazlı T & Kekeçoğlu M (2021). Bal arisi zehrinin kompozisyonunu ve üretim miktarini etkileyen faktörler. Uludag Arıcılık Dergisi (1): 132-145. https://doi.org/10.31467/uluaricilik.901279
  • Castro-Vázquez L, Díaz-Maroto M C, González-Viñas M A, De La Fuente E & Pérez-Coello M S (2008). Influence of storage conditions on chemical composition and sensory properties of citrus honey. Journal of Agricultural and Food Chemistry 56(6): 1999-2006. https://doi.org/10.1021/jf072227k
  • Caputi L & Aprea E (2011). Use of terpenoids as natural flavouring compounds in food industry. Recent Patents on Food, Nutrition & Agriculture 3(1): 9-16. https://doi.org/10.2174/2212798411103010009
  • Chung E S, Kim H, Lee G, Park S, Kim H & Bae H (2012). Neuro-protective effects of bee venom by suppression of neuroinflammatory responses in a mouse model of Parkinson’s disease: role of regulatory T cells. Brain, Behavior, and Immunity 26(8): 1322-1330. https://doi.org/10.1016/j.bbi.2012.08.013
  • Ding Q, Sheikh A R, Gu X, Li J, Xia K, Sun N & Ma H (2021). Chinese propolis: Ultrasound‐assisted enhanced ethanolic extraction, volatile compounds analysis, antioxidant and antibacterial activity comparison. Food Science and Nutririton 9(1): 313-330. https://doi.org/10.1002/fsn3.1997
  • El-Didamony S E, Amer R I & El-Osaily G H (2022). Formulation, characterization and cellular toxicity assessment of a novel bee-venom microsphere in prostate cancer treatment. Scientific Reports 12(1): 13213. https://doi.org/10.1038/s41598-022-17391-w
  • El-Saeady A A, Diab A, Shehata I A A, Nafea E A & Metwaly A A A (2016). Effect of bee venom collecting on the behavior of honeybee colonies. Journal of Plant Protection and Pathology 7(6): 347– 351. https://doi.org/10.21608/JPPP.2016.50576
  • El Sharkawi F Z, Saleh S S & El Sayed A F M (2015). Potential anti cancer activity of snake venom, bee venom and their components in liver and breast carcinoma. International Journal of Pharmaceutical Sciences and Research 6(8): 3224. https://doi.org/10.13040/IJPSR.0975-8232
  • Flanjak I, Kovačić M, Primorac L, Soldić A, Puškadija Z & Rajs B B (2021). Comparison between the quantity and quality of honey bee venom collected in the front and inside of the hive. Journal of Apicultural Research pp. 1-6. https://doi.org/10.1080/00218839.2021.1994262
  • Götz M E, Sachse B, Schäfer B & Eisenreich A (2022). Myristicin and elemicin: Potentially toxic alkenylbenzenes in food. Foods 11(13): 1988. https://doi.org/10.3390/foods11131988
  • Güneşer O & Yüceer Y K (2017). Biosynthesis of eight-carbon volatiles from tomato and pepper pomaces by fungi: Trichoderma atroviride and Aspergillus sojae. Journal of Bioscience and Bioengineering 123(4): 451-459. https://doi.org/10.1016/j.jbiosc.2016.11.013
  • Huigens III R W, Brummel B R, Tenneti S, Garrison A T & Xiao T (2022). Pyrazine and phenazine heterocycles: Platforms for total synthesis and drug discovery. Molecules 27(3): 1112. https://doi.org/10.3390/molecules27031112
  • Hussein A, El-Ansari M & Zahra A (2019). Effect of the honeybee hybrid and geographic region on the honeybee venom production. Journal of Plant Protection and Pathology 10(3): 171–176. https://doi.org/10.21608/jppp.2019.40922
  • Hwang D S, Kim S K & Bae H (2015). Therapeutic effects of bee venom on immunological and neurological diseases. Toxins 7(7): 2413-2421. https://doi.org/10.3390/toxins7072413
  • Isidorov V, Zalewski A, Zambrowski G & Swiecicka I (2023). Chemical Composition and Antimicrobial Properties of Honeybee Venom. Molecules 28(10): 4135. https://doi.org/10.3390/ molecules28104135
  • Jeleń H & Gracka A (2016). Characterization of aroma compounds: Structure, physico‐chemical and sensory properties. In E. Guichard, C. Salles, M. Morzel, & AM. Le Bon (Eds.), Flavour: from food to perception (pp. 126-153). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118929384.ch6
  • Jung G B, Huh J E, Lee H J, Kim D, Lee G J Park H K & Lee J D (2018). Anti-cancer effect of bee venom on human MDA-MB-231 breast cancer cells using Raman spectroscopy. Biomedical Optics Express 9(11): 5703-5718. https://doi.org/10.1364/BOE.9.005703
  • Kaziur-Cegla W, Jochmann M A, Molt K, Bruchmann A & Schmidt T C (2022). In-tube dynamic extraction for analysis of volatile organic compounds in honey samples. Food Chemistry X, 14, Article 100337. https://doi.org/10.1016/j.fochx.2022.100337
  • Kekeçoğlu M, Çaprazlı T, Samancı A E T, Samancı T & Önder E Y (2022). Factors affecting quality of honeybee venom. Journal of Apicultural Science 66(1): 5-14. https://doi.org/10.2478/jas-2022-0001
  • Kekecoglu M, Sonmez E, Acar M K & Karaoglu S A (2021). Pollen analysis, chemical composition and antibacterial activity of Anatolian chestnut propolis collected from Yıgılca region. Biology Bulletin 48(7): 21-728. https://doi.org/10.1134/S106235902106011X
  • Kumar N R, Devi A, Kriti H & Kriti N (2014). Comparative biochemical studies on the poison glad and poison sac of the worker bees of three different apis species (Apis dorsata, Apis mellifera and Apis florea). International Journal of Therapeutic Applications 16: 8–16
  • Kumar S & Aggarwal R (2019). Thiazole: A privileged motif in marine natural products. Mini-Reviews in Organic Chemistry 16(1): 26-34. https://doi.org/10.2174/1570193X15666180412152743
  • Maga J A & Sizer C E (1973). Pyrazines in foods. Review. Journal of Agricultural and Food Chemistry 21(1): 22-30.https://doi.org/10.1021/jf60185a006
  • Melda A, Kalaycioğlu Z, Kolayli S & Berker B (2021). Comparative determination of melittin by capillary electrophoretic methods. Journal of the Turkish Chemical Society Section A: Chemistry 8(4): 1211-1216. https://doi.org/10.18596/jotcsa.949188
  • Miguel M G & Antunes M D (2011). Is propolis safe as an alternative medicine? Journal of Pharmacy and Bioallied Sciences 3(4): 479-495. https://doi.org/10.4103/0975-7406.90101
  • Mortzfeld F B, Hashem C, Vranková K, Winkler M & Rudroff F (2020). Pyrazines: Synthesis and industrial application of these valuable flavor and fragrance compounds. Biotechnology Journal 15(11): 2000064. https://doi.org/10.1002/biot.202000064
  • Ouradi H, Hanine H, Fauconnier M L, Kenne T, Rizki H, Ennahli S & Hssaini L (2021). Determination of physico-biochemical proprieties and composition in volatile constituents by solid phase micro-extraction of honey samples from different botanical and geographical origins in Morocco. Journal of Apicultural Research 60(1): 84-98. https://doi.org/10.1080/00218839.2020.1718339
  • Özkök A (2018). Türkiye’de hızla büyüyen sektör: Arı ürünlerine genel bir bakış. Palme Yayın Dağıtım. Paulino B N, Silva G N, Araújo F F, Néri-Numa I A, Pastore G M, Bicas J L & Molina G (2022). Beyond natural aromas: The bioactive and technological potential of monoterpenes. Trends in Food Science & Technology 128: 188-201
  • Pawliszyn J (1999). Quantitative aspects of SPME. In: J. Pawliszyn (Ed.), Applications of solid phase microextraction (pp. 3-21). Royal Society of Chemistry. https://doi.org/10.1039/9781847550149
  • Ramos O Y, Salomón V, Libonatti C, Cepeda R, Maldonado L & Basualdo M (2018). Effect of botanical and physicochemical composition of Argentinean honeys on the inhibitory action against food pathogens. LWT 87: 457-463. https://doi.org/10.1016/j.lwt.2017.09.014.
  • Rockwood G A, Thompson D E & Petrikovics I (2016). Dimethyl trisulfide: A novel cyanide countermeasure. Toxicology & Industrial Health, 32(12): 2009-2016. https://doi.org/10.1177/0748233715622713
  • Salehi B, Upadhyay S, Erdogan Orhan I, Kumar Jugran A, Jayaweera L D S A, Dias D, Sharopov F, Taheri Y, Martins N, Baghalpour N, Cho W C & Sharifi-Rad J (2019). Therapeutic potential of α-and β-pinene: A miracle gift of nature. Biomolecules 9(11): 738. https://doi.org/10.3390/biom9110738
  • Samancı T & Kekeçoglu M (2019). Comparison of commercial and Anatolian bee venom in terms of chemical composition. Uludag Arıcılık Dergisi 19(1): 60-67. https://doi.org/10.31467/uluaricilik.527986
  • Seneme E F, Dos Santos D C, Silva E M R, Franco Y E M & Longato G B (2021). Pharmacological and therapeutic potential of myristicin: A literature review. Molecules, 26 (19), 5914. https://doi.org/10.3390/molecules26195914
  • Somwongin S, Chantawannakul P & Chaiyana W (2018). Antioxidant activity and irritation property of venoms from Apis species. Toxicon, 145: 32–39. https://doi.org/10.1016/j.toxicon.2018.02.049
  • Souza-Silva ÉA, Gionfriddo E & Pawliszyn J (2015). A critical review of the state of the art of solid-phase microextraction of complex matrices II. Food analysis. TrAC Trends in Analytical Chemistry 71: 236-248.https://doi.org/10.1016/j.trac.2015.04.018
  • Tanugur-Samanci A E & Kekeçoglu M (2021). An evaluation of the chemical content and microbiological contamination of Anatolian bee venom. Plos One, 16, 1-14, https://doi.org/10.1371/journalpone.0255161
  • Uzuner S Ç, Birinci E, Tetikoğlu S, Birinci C & Kolaylı S (2021). Distinct epigenetic reprogramming, mitochondrial patterns, cellular morphology, and cytotoxicity after bee venom treatment. Recent Patents on Anti-Cancer Drug Discovery 16(3): 377-392. https://doi.org/10.2174/1574892816666210422125058
  • Wager B R & Breed M D (2000). Does honey bee sting alarm pheromone give orientation information to defensive bees? Annals of the Entomological Society of America 93(6): 1329-1332.https://doi.org/10.1603/0013-8746(2000)093[1329:DHBSAP]2.0.CO;2
  • Yehye W A, Rahman N A, Ariffin A, Abd Hamid S B, Alhadi A A, Kadir F A & Yaeghoobi M (2015). Understanding the chemistry behind the antioxidant activities of butylated hydroxytoluene (BHT): A review. European Journal of Medicinal Chemistry 101: 295-312. https://doi.org/10.1016/j.ejmech.2015.06.026
  • Zidan H A E G, Mostafa Z K, Ibrahim M A, Haggag S I, Darwish D A & Elfiky A A (2018). Venom composition of Egyptian and Carniolan honeybee. Apis mellifera L. affected by collection methods. Egyptian Academic Journal of Biological Sciences 11(4): 59–71. https://doi.org/10.21608/EAJBSA.2018.17733
There are 52 citations in total.

Details

Primary Language English
Subjects Food Sciences (Other)
Journal Section Makaleler
Authors

Buket Aydeniz-güneşer 0000-0003-2197-5504

Onur Güneşer 0000-0002-3927-4469

Meral Kekeçoğlu 0000-0002-2564-8343

Sevgi Kolaylı 0000-0003-0437-6139

Publication Date January 14, 2025
Submission Date February 1, 2024
Acceptance Date July 29, 2024
Published in Issue Year 2025 Volume: 31 Issue: 1

Cite

APA Aydeniz-güneşer, B., Güneşer, O., Kekeçoğlu, M., Kolaylı, S. (2025). Characterization of the Volatile Profile of Bee Venom from Different Regions in Türkiye Using Gas Chromatography-Mass Spectrometry. Journal of Agricultural Sciences, 31(1), 22-32. https://doi.org/10.15832/ankutbd.1430185

Journal of Agricultural Sciences is published open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).