Araştırma Makalesi
BibTex RIS Kaynak Göster

OKUL ÖNCESİ ÖĞRETMENİ ADAYLARININ GELİŞTİRDİKLERİ STEM MODÜLÜNÜ DEĞERLENDİRMELERİNE YÖNELİK BİR İNCELEME

Yıl 2021, Sayı: 42, 51 - 79, 30.06.2021
https://doi.org/10.33418/ataunikkefd.818849

Öz

Son yıllarda yapılan çalışmalar, bütünleşik STEM (Fen, Teknoloji, Mühendislik, Matematik) eğitim yaklaşımının temel bilimlerin öğrenilmesinde ve birbirleri ile olan ilişkilerinin anlaşılmasında önemli bir role sahip olduğunu göstermektedir. STEM eğitim alanındaki çalışmaların çoğunluğu ilkokul ve ortaokul seviyesinde yoğunlaşmakta olup, erken çocukluk döneminde de önemi gün geçtikçe anlaşılmaktadır. Bu çalışmanın amacı, okul öncesi öğretmeni adaylarının Seçmeli ders olarak yürütülen STEM eğitimi dersinde geliştirdikleri STEM modülünü, STEM analiz kriterlerine göre değerlendirmelerini incelemektir. Bu çalışmada nitel araştırma yöntemlerinden durum çalışması yöntemi kullanılmıştır. Öğretmen adayları 14 hafta süresince okul öncesi çocuklarına yönelik olarak grupça STEM modülü geliştirmiş ve sonrasında geliştirdikleri STEM modülünü, araştırmada veri toplama aracı olarak kullanılan değerlendirme formuna göre bireysel şekilde değerlendirmişlerdir. Elde edilen verilerin analizinde içerik analizi kullanılmıştır. Araştırmanın bulgularına göre, öğretmen adaylarının hazırladıkları STEM modülünün birçok STEM analiz kriterini içerdiği gözlemlenmiştir. Özellikle, geliştirilen modülünün gerçek yaşam problemi içermesi, disiplinler arası entegrasyonu içermesi, öğrenci merkezli olması, açık uçlu sorularla düşünme ve sorgulama becerilerini geliştirmesi, küçük gruplar ve sınıf içi iletişime imkan tanıması, kanıta dayalı açıklamalar ile öğrenilen bilginin kalıcılığının sağlanması erken çocukluk döneminde verilecek STEM eğitimi için önemli olduğu vurgulanmıştır.

Kaynakça

  • Aranda, M. L., Lie, R., Guzey, S. S., Akarsu, M., Johnston, A., & Moore, T. J. (2018). Examining teacher talk in an engineering design-based science curricular unit. Research in Science Education, 1-19.
  • Aranda, M. L., Lie, R., & Guzey, S. S. (2019). Productive thinking in middle school science students’ design conversations in a design-based engineering challenge. International Journal of Technology and Design Education, 1-15.
  • Atman, C. J., Adams, R. S., Cardella, M. E., Turns, J., Mosborg, S., & Saleem, J. (2007). Engineering design processes: A comparison of students and expert practitioners. Journal of Engineering Education, 96(4), 359-379.
  • Aydın-Günbatar, S. (2019). Fen, Teknoloji, Mühendislik ve Matematik (FeTeMM) Yaklaşımı ve FeTeMM’e Uygun Etkinlik Hazırlama Rehberi. H. Artun & Aydın-Günbatar (Eds.), Çağdaş Yaklaşımlarla Destekli Fen Öğretimi: Teoriden Uygulamaya Etkinlik Örnekleri içinde, (s. 2-23). Pegem Akademi: Ankara.
  • Beane, J. (1991). The Middle School: The Natural Home of Integrated Curriculum. Educational Leadership, 49(2), 9-13.
  • Beane, J. A. (1995). Curriculum integration and the disciplines of knowledge. The Phi Delta Kappan, 76(8), 616-622.
  • Benken, B. M., & Stevenson, H. J. (2014). STEM education: Educating teachers for a new world. Issues in Teacher Education, 23(1), 3.
  • Berlin, D. F. (1994). The integration of science and mathematics education: Highlights from the NSF/SSMA Wingspread conference plenary papers. School Science and Mathematics, 94(1), 32-35.
  • Blair, C. (2002). School readiness: Integrating cognition and emotion in a neurobiological conceptualization of children's functioning at school entry. American Psychologist, 57(2), 111-127.
  • Bodner, G., & Elmas, R. (2020). The Impact of Inquiry-Based, Group-Work Approaches to Instruction on Both Students and Their Peer Leaders. European Journal of Science and Mathematics Education, 8(1), 51-66.
  • Breiner, J. M., Harkness, S. S., Johnson, C. C., & Koehler, C. M. (2012). What is STEM? A discussion about conceptions of STEM in education and partnerships. School Science and Mathematics, 112(1), 3-11.
  • Brophy, S., Klein, S., Portsmore, M., & Rogers, C. (2008). Advancing engineering education in P‐12 classrooms. Journal of Engineering Education, 97(3), 369-387.
  • Bryan, L. A., Moore, T. J., Johnson, C. C., & Roehrig, G. H. (2016). Integrated STEM education. In C. C. Johnson, E. E. Peters-Burton, & T. J. Moore (Eds.), STEM road map: A framework for integrated STEM education (pp. 23–37). New York, NY: Routledge
  • Burke, L., Francis, K., & Shanahan, M. (2014). A horizon of possibilities: a definition of STEM education. In STEM 2014 Conference, Vancouver, July (pp. 12-15). Büyüköztürk, Ş., Akgün, Ö. E., Demirel, F., Karadeniz, Ş., & Çakmak, E. K. (2015). Bilimsel araştırma yöntemleri. Ankara: Pegem Akademi.
  • Bybee, R. (2013). The case of STEM education: Challenges and opportunities. Arlington, VA: NSTA Press.
  • Campbell, F. A., Pungello, E. P., Miller-Johnson, S., Burchinal, M., & Ramey, C. T. (2001). The development of cognitive and academic abilities: growth curves from an early childhood educational experiment. Developmental Psychology, 37(2), 231.
  • Clandinin, D. J., & Connelly, F. M. (1992). Teacher as curriculum maker. In, P. W. Jackson (Ed.), Handbook of research on curriculum (pp. 363–401). New York: Macmillan.
  • Common Core State Standards Initiative. (2010). Common Core State Standards for Mathematics. Washington, DC: National Governors Association Center for Best Practices and the Council of Chief State School Officers.
  • Craig, C. J., Ross, V. D., Conle, C., & Richardson, V. (2008). Cultivating the image of teachers as curriculum makers. In The Sage handbook of curriculum and instruction (pp. 282-305). SAGE Publications Inc.
  • Crismond, D. P., & Adams, R. S. (2012). The informed design teaching and learning matrix. Journal of Engineering Education, 101(4), 738-797.
  • Czerniak, C. M., Weber Jr, W. B., Sandmann, A., & Ahern, J. (1999). A literature review of science and mathematics integration. School Science and Mathematics, 99(8), 421-430.
  • Drake, S. M., & Burns, R. C. (2004). Meeting standards through integrated curriculum. Alexandria, VA: Association for Supervision and Curriculum Development.
  • Education Audiovisual and Culture Executive Agency. (2009). Early childhood education and care in Europe: Tackling social and cultural inequalities. Brussels, Belgium: Euridyce Network.
  • English, L. D. (2015). STEM: Challenges and opportunities for mathematics education. In Proceedings of the 39th Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 4-18). PME.
  • English, L. D., & Gainsburg, J. (2015). 12 Problem Solving in a 21st-Century Mathematics Curriculum. Handbook of international research in mathematics education, 313.
  • Furner, J. M., & Kumar, D. D. (2007). The mathematics and science integration argument: A stand for teacher education. Eurasia Journal of Mathematics, Science and Technology Education, 3(3), 185-189.
  • Garrett, J. L. (2008). STEM: The 21st century sputnik. Kappa Delta Pi Record, 44(4), 152-153.
  • Guzey, S. S., Tank, K., Wang, H. H., Roehrig, G., & Moore, T. (2014). A high‐quality professional development for teachers of grades 3–6 for implementing engineering into classrooms. School Science and Mathematics, 114(3), 139-149.
  • Guzey, S. S., Moore, T. J., Harwell, M., & Moreno, M. (2016). STEM integration in middle school life science: Student learning and attitudes. Journal of Science Education and Technology, 25(4), 550-560.
  • Hadzigeorgiou, Y. (2002). A study of the development of the concept of mechanical stability in preschool children. Research in Science Education, 32(3), 373-391.
  • Honey, M., Pearson, G., & Schweingruber, H. A. (Eds.). (2014). STEM integration in K-12 education: Status, prospects, and an agenda for research (Vol. 500). Washington, DC: National Academies Press.
  • Hurley, M. M. (2001). Reviewing integrated science and mathematics: The search for evidence and definitions from new perspectives. School Science and Mathematics, 101(5), 259-268.
  • Jacobs, H. H. (1989). Interdisciplinary curriculum: Design and implementation. Association for Supervision and Curriculum Development, 1250 N. Pitt Street, Alexandria, VA 22314.
  • Johnston, A. C., Akarsu, M., Moore, T. J., & Guzey, S. S. (2019). Engineering as the integrator: A case study of one middle school science teacher's talk. Journal of Engineering Education, 108(3), 418-440.
  • Kennedy, T. J., & Odell, M. R. L. (2014). Engaging Students in STEM Education. Science Education International, 25(3), 246-258.
  • Kolodner, J. L., Camp, P. J., Crismond, D., Fasse, B., Gray, J., Holbrook, J., & Ryan, M. (2003). Problem-based learning meets case-based reasoning in the middle-school science classroom: Putting learning by design (tm) into practice. The Journal of the Learning Sciences, 12(4), 495-547.
  • Krajcik, J., McNeill, K. L., & Reiser, B. J. (2008). Learning‐goals‐driven design model: Developing curriculum materials that align with national standards and incorporate project‐based pedagogy. Science Education, 92(1), 1-32.
  • Lantz, H. B. (2009). Science, technology, engineering, and mathematics (STEM) education: What form? What function. Report, CurrTech Integrations.
  • Lederman, N. G., & Niess, M. L. (1997). Integrated, interdisciplinary, or thematic instruction? Is this a question or is it questionable semantics? School Science and Mathematics, 97(2), 57-58.
  • Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. Sage.
  • Moore, T. J., & Smith, K. A. (2014). Advancing the state of the art of STEM integration. Journal of STEM Education: Innovations and Research, 15(1), 5.
  • Moore, T. J., Stohlmann, M. S., Wang, H. H., Tank, K. M., Glancy, A. W., & Roehrig, G. H. (2014). Implementation and integration of engineering in K-12 STEM education. In Engineering in pre-college settings: Synthesizing research, policy, and practices (pp. 35-60). Purdue University Press.
  • National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards for school mathematics. Reston, VA: Author.
  • National Research Council. (2009). Engineering in K–12 Education:Understanding the status and improving the prospects.Washington, DC: The National Academies Press.
  • National Research Council. (2011). Successful K–12 STEM Education: Identifying effective approaches in science, technology, engineering, and mathematics. Washington, DC: The National Academies Press.
  • National Research Council. (2012). A framework for K–12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press.
  • National Research Council. (2013). Monitoring progress toward successful K–12 STEM education: A nation advancing? Washington, DC: The National Academies Press.
  • NGSS Lead States. (2013). Next generation science standards: For states, by states. Washington, DC: The National Academies Press.
  • Nowikowski, S. H. (2017). Successful with STEM? A qualitative case study of pre-service teacher perceptions. The Qualitative Report, 22(9), 2312.
  • Parke, H. M., & Coble, C. R. (1997). Teachers designing curriculum as professional development: A model for transformational science teaching. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 34(8), 773-789.
  • Smyrnaiou, Z., Petropoulou, E., & Sotiriou, M. (2015). Applying argumentation approach in STEM education: A case study of the European student parliaments project in Greece. American Journal of Educational Research, 3(12), 1618-1628.
  • Stake, R. (2010). E.(1995) The art of case study research. CA: Thousand Oaks.
  • Tippett, C. D., & Milford, T. M. (2017). Findings from a pre-kindergarten classroom: Making the case for STEM in early childhood education. International Journal of Science and Mathematics Education, 15(1), 67-86.
  • Thornburg, D. (2009). Hands and minds: Why engineering is the glue holding STEM together. Thornburg Center for Space Exploration. Retrieved from http://www. tcse-k12. org/pages/hands. pdf.
  • Wendell, K., & Rogers, C. (2013). Engineering design‐based science, science content performance, and science attitudes in elementary school. Journal of Engineering Education, 102(4), 513-540.
  • Vasquez, J. A., Sneider, C. I., & Comer, M. W. (2013). STEM lesson essentials, grades 3-8: Integrating science, technology, engineering, and mathematics (pp. 58-76). Portsmouth, NH: Heinemann.
  • Yıldırım, A., & Şimşek, H. (2006). Qualitative research methods in social sciences. Ankara: Seckin Publications.
  • Yin, R. K. (2003). Case study research: Design and methods (3. Baskı). CA: Thousand Oaks.

AN INVESTIGATION OF THE ASSESSMENT OF THE STEM MODULE DEVELOPED BY PRESCHOOL TEACHERS

Yıl 2021, Sayı: 42, 51 - 79, 30.06.2021
https://doi.org/10.33418/ataunikkefd.818849

Öz

Son yıllarda yapılan çalışmalar, bütünleşik STEM (Fen, Teknoloji, Mühendislik, Matematik) eğitim yaklaşımının temel bilimlerin öğrenilmesinde ve birbirleri ile olan ilişkilerinin anlaşılmasında önemli bir role sahip olduğunu göstermektedir. STEM eğitim alanındaki çalışmaların çoğunluğu ilkokul ve ortaokul seviyesinde yoğunlaşmakta olup, erken çocukluk döneminde de önemi gün geçtikçe anlaşılmaktadır. Bu çalışmanın amacı, okul öncesi öğretmeni adaylarının Seçmeli ders olarak yürütülen STEM eğitimi dersinde geliştirdikleri STEM modülünü, STEM analiz kriterlerine göre değerlendirmelerini incelemektir. Bu çalışmada nitel araştırma yöntemlerinden durum çalışması yöntemi kullanılmıştır. Öğretmen adayları 14 hafta süresince okul öncesi çocuklarına yönelik olarak grupça STEM modülü geliştirmiş ve sonrasında geliştirdikleri STEM modülünü, araştırmada veri toplama aracı olarak kullanılan değerlendirme formuna göre bireysel şekilde değerlendirmişlerdir. Elde edilen verilerin analizinde içerik analizi kullanılmıştır. Araştırmanın bulgularına göre, öğretmen adaylarının hazırladıkları STEM modülünün birçok STEM analiz kriterini içerdiği gözlemlenmiştir. Özellikle, geliştirilen modülünün gerçek yaşam problemi içermesi, disiplinler arası entegrasyonu içermesi, öğrenci merkezli olması, açık uçlu sorularla düşünme ve sorgulama becerilerini geliştirmesi, küçük gruplar ve sınıf içi iletişime imkan tanıması, kanıta dayalı açıklamalar ile öğrenilen bilginin kalıcılığının sağlanması erken çocukluk döneminde verilecek STEM eğitimi için önemli olduğu vurgulanmıştır.

Kaynakça

  • Aranda, M. L., Lie, R., Guzey, S. S., Akarsu, M., Johnston, A., & Moore, T. J. (2018). Examining teacher talk in an engineering design-based science curricular unit. Research in Science Education, 1-19.
  • Aranda, M. L., Lie, R., & Guzey, S. S. (2019). Productive thinking in middle school science students’ design conversations in a design-based engineering challenge. International Journal of Technology and Design Education, 1-15.
  • Atman, C. J., Adams, R. S., Cardella, M. E., Turns, J., Mosborg, S., & Saleem, J. (2007). Engineering design processes: A comparison of students and expert practitioners. Journal of Engineering Education, 96(4), 359-379.
  • Aydın-Günbatar, S. (2019). Fen, Teknoloji, Mühendislik ve Matematik (FeTeMM) Yaklaşımı ve FeTeMM’e Uygun Etkinlik Hazırlama Rehberi. H. Artun & Aydın-Günbatar (Eds.), Çağdaş Yaklaşımlarla Destekli Fen Öğretimi: Teoriden Uygulamaya Etkinlik Örnekleri içinde, (s. 2-23). Pegem Akademi: Ankara.
  • Beane, J. (1991). The Middle School: The Natural Home of Integrated Curriculum. Educational Leadership, 49(2), 9-13.
  • Beane, J. A. (1995). Curriculum integration and the disciplines of knowledge. The Phi Delta Kappan, 76(8), 616-622.
  • Benken, B. M., & Stevenson, H. J. (2014). STEM education: Educating teachers for a new world. Issues in Teacher Education, 23(1), 3.
  • Berlin, D. F. (1994). The integration of science and mathematics education: Highlights from the NSF/SSMA Wingspread conference plenary papers. School Science and Mathematics, 94(1), 32-35.
  • Blair, C. (2002). School readiness: Integrating cognition and emotion in a neurobiological conceptualization of children's functioning at school entry. American Psychologist, 57(2), 111-127.
  • Bodner, G., & Elmas, R. (2020). The Impact of Inquiry-Based, Group-Work Approaches to Instruction on Both Students and Their Peer Leaders. European Journal of Science and Mathematics Education, 8(1), 51-66.
  • Breiner, J. M., Harkness, S. S., Johnson, C. C., & Koehler, C. M. (2012). What is STEM? A discussion about conceptions of STEM in education and partnerships. School Science and Mathematics, 112(1), 3-11.
  • Brophy, S., Klein, S., Portsmore, M., & Rogers, C. (2008). Advancing engineering education in P‐12 classrooms. Journal of Engineering Education, 97(3), 369-387.
  • Bryan, L. A., Moore, T. J., Johnson, C. C., & Roehrig, G. H. (2016). Integrated STEM education. In C. C. Johnson, E. E. Peters-Burton, & T. J. Moore (Eds.), STEM road map: A framework for integrated STEM education (pp. 23–37). New York, NY: Routledge
  • Burke, L., Francis, K., & Shanahan, M. (2014). A horizon of possibilities: a definition of STEM education. In STEM 2014 Conference, Vancouver, July (pp. 12-15). Büyüköztürk, Ş., Akgün, Ö. E., Demirel, F., Karadeniz, Ş., & Çakmak, E. K. (2015). Bilimsel araştırma yöntemleri. Ankara: Pegem Akademi.
  • Bybee, R. (2013). The case of STEM education: Challenges and opportunities. Arlington, VA: NSTA Press.
  • Campbell, F. A., Pungello, E. P., Miller-Johnson, S., Burchinal, M., & Ramey, C. T. (2001). The development of cognitive and academic abilities: growth curves from an early childhood educational experiment. Developmental Psychology, 37(2), 231.
  • Clandinin, D. J., & Connelly, F. M. (1992). Teacher as curriculum maker. In, P. W. Jackson (Ed.), Handbook of research on curriculum (pp. 363–401). New York: Macmillan.
  • Common Core State Standards Initiative. (2010). Common Core State Standards for Mathematics. Washington, DC: National Governors Association Center for Best Practices and the Council of Chief State School Officers.
  • Craig, C. J., Ross, V. D., Conle, C., & Richardson, V. (2008). Cultivating the image of teachers as curriculum makers. In The Sage handbook of curriculum and instruction (pp. 282-305). SAGE Publications Inc.
  • Crismond, D. P., & Adams, R. S. (2012). The informed design teaching and learning matrix. Journal of Engineering Education, 101(4), 738-797.
  • Czerniak, C. M., Weber Jr, W. B., Sandmann, A., & Ahern, J. (1999). A literature review of science and mathematics integration. School Science and Mathematics, 99(8), 421-430.
  • Drake, S. M., & Burns, R. C. (2004). Meeting standards through integrated curriculum. Alexandria, VA: Association for Supervision and Curriculum Development.
  • Education Audiovisual and Culture Executive Agency. (2009). Early childhood education and care in Europe: Tackling social and cultural inequalities. Brussels, Belgium: Euridyce Network.
  • English, L. D. (2015). STEM: Challenges and opportunities for mathematics education. In Proceedings of the 39th Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 4-18). PME.
  • English, L. D., & Gainsburg, J. (2015). 12 Problem Solving in a 21st-Century Mathematics Curriculum. Handbook of international research in mathematics education, 313.
  • Furner, J. M., & Kumar, D. D. (2007). The mathematics and science integration argument: A stand for teacher education. Eurasia Journal of Mathematics, Science and Technology Education, 3(3), 185-189.
  • Garrett, J. L. (2008). STEM: The 21st century sputnik. Kappa Delta Pi Record, 44(4), 152-153.
  • Guzey, S. S., Tank, K., Wang, H. H., Roehrig, G., & Moore, T. (2014). A high‐quality professional development for teachers of grades 3–6 for implementing engineering into classrooms. School Science and Mathematics, 114(3), 139-149.
  • Guzey, S. S., Moore, T. J., Harwell, M., & Moreno, M. (2016). STEM integration in middle school life science: Student learning and attitudes. Journal of Science Education and Technology, 25(4), 550-560.
  • Hadzigeorgiou, Y. (2002). A study of the development of the concept of mechanical stability in preschool children. Research in Science Education, 32(3), 373-391.
  • Honey, M., Pearson, G., & Schweingruber, H. A. (Eds.). (2014). STEM integration in K-12 education: Status, prospects, and an agenda for research (Vol. 500). Washington, DC: National Academies Press.
  • Hurley, M. M. (2001). Reviewing integrated science and mathematics: The search for evidence and definitions from new perspectives. School Science and Mathematics, 101(5), 259-268.
  • Jacobs, H. H. (1989). Interdisciplinary curriculum: Design and implementation. Association for Supervision and Curriculum Development, 1250 N. Pitt Street, Alexandria, VA 22314.
  • Johnston, A. C., Akarsu, M., Moore, T. J., & Guzey, S. S. (2019). Engineering as the integrator: A case study of one middle school science teacher's talk. Journal of Engineering Education, 108(3), 418-440.
  • Kennedy, T. J., & Odell, M. R. L. (2014). Engaging Students in STEM Education. Science Education International, 25(3), 246-258.
  • Kolodner, J. L., Camp, P. J., Crismond, D., Fasse, B., Gray, J., Holbrook, J., & Ryan, M. (2003). Problem-based learning meets case-based reasoning in the middle-school science classroom: Putting learning by design (tm) into practice. The Journal of the Learning Sciences, 12(4), 495-547.
  • Krajcik, J., McNeill, K. L., & Reiser, B. J. (2008). Learning‐goals‐driven design model: Developing curriculum materials that align with national standards and incorporate project‐based pedagogy. Science Education, 92(1), 1-32.
  • Lantz, H. B. (2009). Science, technology, engineering, and mathematics (STEM) education: What form? What function. Report, CurrTech Integrations.
  • Lederman, N. G., & Niess, M. L. (1997). Integrated, interdisciplinary, or thematic instruction? Is this a question or is it questionable semantics? School Science and Mathematics, 97(2), 57-58.
  • Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. Sage.
  • Moore, T. J., & Smith, K. A. (2014). Advancing the state of the art of STEM integration. Journal of STEM Education: Innovations and Research, 15(1), 5.
  • Moore, T. J., Stohlmann, M. S., Wang, H. H., Tank, K. M., Glancy, A. W., & Roehrig, G. H. (2014). Implementation and integration of engineering in K-12 STEM education. In Engineering in pre-college settings: Synthesizing research, policy, and practices (pp. 35-60). Purdue University Press.
  • National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards for school mathematics. Reston, VA: Author.
  • National Research Council. (2009). Engineering in K–12 Education:Understanding the status and improving the prospects.Washington, DC: The National Academies Press.
  • National Research Council. (2011). Successful K–12 STEM Education: Identifying effective approaches in science, technology, engineering, and mathematics. Washington, DC: The National Academies Press.
  • National Research Council. (2012). A framework for K–12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press.
  • National Research Council. (2013). Monitoring progress toward successful K–12 STEM education: A nation advancing? Washington, DC: The National Academies Press.
  • NGSS Lead States. (2013). Next generation science standards: For states, by states. Washington, DC: The National Academies Press.
  • Nowikowski, S. H. (2017). Successful with STEM? A qualitative case study of pre-service teacher perceptions. The Qualitative Report, 22(9), 2312.
  • Parke, H. M., & Coble, C. R. (1997). Teachers designing curriculum as professional development: A model for transformational science teaching. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 34(8), 773-789.
  • Smyrnaiou, Z., Petropoulou, E., & Sotiriou, M. (2015). Applying argumentation approach in STEM education: A case study of the European student parliaments project in Greece. American Journal of Educational Research, 3(12), 1618-1628.
  • Stake, R. (2010). E.(1995) The art of case study research. CA: Thousand Oaks.
  • Tippett, C. D., & Milford, T. M. (2017). Findings from a pre-kindergarten classroom: Making the case for STEM in early childhood education. International Journal of Science and Mathematics Education, 15(1), 67-86.
  • Thornburg, D. (2009). Hands and minds: Why engineering is the glue holding STEM together. Thornburg Center for Space Exploration. Retrieved from http://www. tcse-k12. org/pages/hands. pdf.
  • Wendell, K., & Rogers, C. (2013). Engineering design‐based science, science content performance, and science attitudes in elementary school. Journal of Engineering Education, 102(4), 513-540.
  • Vasquez, J. A., Sneider, C. I., & Comer, M. W. (2013). STEM lesson essentials, grades 3-8: Integrating science, technology, engineering, and mathematics (pp. 58-76). Portsmouth, NH: Heinemann.
  • Yıldırım, A., & Şimşek, H. (2006). Qualitative research methods in social sciences. Ankara: Seckin Publications.
  • Yin, R. K. (2003). Case study research: Design and methods (3. Baskı). CA: Thousand Oaks.
Toplam 58 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Alan Eğitimleri
Bölüm Research Article
Yazarlar

Murat Akarsu 0000-0002-5883-5911

Nilüfer Okur Akçay 0000-0002-3276-5564

Mehmet Fatih Öçal 0000-0003-0428-6176

Yayımlanma Tarihi 30 Haziran 2021
Gönderilme Tarihi 4 Kasım 2020
Kabul Tarihi 8 Şubat 2021
Yayımlandığı Sayı Yıl 2021 Sayı: 42

Kaynak Göster

APA Akarsu, M., Okur Akçay, N., & Öçal, M. F. (2021). OKUL ÖNCESİ ÖĞRETMENİ ADAYLARININ GELİŞTİRDİKLERİ STEM MODÜLÜNÜ DEĞERLENDİRMELERİNE YÖNELİK BİR İNCELEME. Atatürk Üniversitesi Kazım Karabekir Eğitim Fakültesi Dergisi(42), 51-79. https://doi.org/10.33418/ataunikkefd.818849