Phenolic compound content and antioxidant activity of different polarity solvent extracts of Maraş tobacco combined with various plant species
Yıl 2025,
Cilt: 6 Sayı: 2, 107 - 113, 30.08.2025
İbrahim Sefa Okumuş
,
Duygu Mısırlı
,
Mahfuz Elmastas
Öz
This study aims to comparatively evaluate the phenolic compound contents and antioxidant activities of extracts prepared with solvents of different polarities (ethanol:water and water) from Maraş tobacco (Nicotiana rustica), which is widely consumed in the Kahramanmaraş region of Türkiye, in combination with oak ash and poplar ash traditionally used together with it. For this purpose, prepared Maraş tobacco mixtures (Nicotiana rustica + oak ash [NRM] and Nicotiana rustica + poplar ash [NRK]) were subjected to extraction using different solvents, and the antioxidant capacities of the resulting extracts were analyzed by the DPPH• radical scavenging activity assay and the Cupric Ion Reducing Antioxidant Capacity (CUPRAC) method. Four different extracts (NRM-water extract, NRK-water extract, NRM-ethanol:water extract, and NRK-ethanol:water extract) were prepared, and their phenolic compound profiles were determined and evaluated using High-Performance Liquid Chromatography with Photodiode Array Detection (HPLC-PDA). The results revealed that ethanol:water extracts exhibited higher phenolic compound content and antioxidant capacity compared to water extracts. In particular, the NRM-ethanol:water extract demonstrated the highest activity in both antioxidant assays. These findings indicate that the antioxidant activity of Maraş tobacco can vary significantly depending on the type of plant ash combination and the solvent used.
Kaynakça
-
Apak, R., Güçlü, K., Özyürek, M., & Karademir, S. E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of agricultural and food chemistry, 52(26), 7970-7981.
-
Apak, R., Güçlü, K., Özyürek, M., Karademir, S. E. N., & Altun, M. (2005). Total antioxidant capacity assay of human serum using copper (II)-neocuproine as chromogenic oxidant: the CUPRAC method. Free radical research, 39(9), 949-961.
-
Ataseven, S., Misirli, D., Fatıma, U. Z. A. R., Türkan, N. N., & Elmastaş, M. (2021). Determination of phenolic compound composition of water and ethanol extracts of horsetail (Equisetum arvense). Journal of Integrative and Anatolian Medicine, 2(2), 3-9.
-
Balasundram, N., Sundram, K., & Samman, S. (2006). Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food chemistry, 99(1), 191-203.
-
Benowitz, N. L., Hukkanen, J., & Jacob III, P. (2009). Nicotine chemistry, metabolism, kinetics and biomarkers. Nicotine psychopharmacology, 29-60.
-
Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181(4617), 1199-1200.
-
Brand-Williams, W. (1999). Use of a free radical method to evaluate antioxidant activity. Food Sci. Technol., 28, 1231-1237.
-
Dai, J., & Mumper, R. J. (2010). Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules, 15(10), 7313-7352.
-
Docheva, M. H., Popova, V. T., Ivanova, T. A., Nikolova, V. V., Hristeva, T. H., & Nikolov, N. N. (2018). Polyphenol content and antioxidant activity of aqueous/methanol extracts from different tobacco species (Nicotiana). Bulgarian Chemical Communications, 50(4), 553-559.
-
Kurtul, N., & Gökpınar, E. (2012). Salivary lipid peroxidation and total sialic acid levels in smokers and smokeless tobacco users as Maraş powder. Mediators of inflammation, 2012(1), 619293.
-
Li, Y., Guo, C., Yang, J., Wei, J., Xu, J., & Cheng, S. (2006). Evaluation of antioxidant properties of pomegranate peel extract in comparison with pomegranate pulp extract. Food chemistry, 96(2), 254-260.
-
Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: an overview. Journal of nutritional science, 5, e47.
-
Prior, R. L., Wu, X., & Schaich, K. (2005). Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of agricultural and food chemistry, 53(10), 4290-4302.
-
Rice-Evans, C. A., Miller, N. J., & Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free radical biology and medicine, 20(7), 933-956.
-
Rice-Evans, C., Miller, N., & Paganga, G. (1997). Antioxidant properties of phenolic compounds. Trends in plant science, 2(4), 152-159.
-
Rosenthal, D. G., Weitzman, M., & Benowitz, N. L. (2011). Nicotine addiction: mechanisms and consequences. International Journal of Mental Health, 40(1), 22-38.
-
Stepanov, I., Jensen, J., Hatsukami, D., & Hecht, S. S. (2008). New and traditional smokeless tobacco: comparison of toxicant and carcinogen levels. Nicotine & tobacco research, 10(12), 1773-1782.
-
Tanriverdi, G. (2022). Dumansız Tütün Maraş Otunun Sağlığa Zararları: Geleneksel Derleme. Halk Sağlığı Hemşireliği Dergisi, 4(3), 284-292.
-
World Health Organization (2012). International Agency for Research on Cancer. Review of Human Carcinogens: Personal Habits and Indoor Combustions (Vol. 100).
-
Xiang, Z., Liu, L., Xu, Z., Kong, Q., Feng, S., Chen, T., & Ding, C. (2024). Solvent effects on the phenolic compounds and antioxidant activity associated with Camellia polyodonta flower extracts. ACS omega, 9(25), 27192-27203.
-
Zhao, Y. S., Eweys, A. S., Zhang, J. Y., Zhu, Y., Bai, J., Darwesh, O. M., & Xiao, X. (2021). Fermentation affects the antioxidant activity of plant-based food material through the release and production of bioactive components. Antioxidants, 10(12), 2004.
Farklı bitki türleri ile kombine edilen Maraş otunun farklı polaritedeki çözücü ekstrelerinin fenolik bileşik içeriği ve antioksidan aktivitesi
Yıl 2025,
Cilt: 6 Sayı: 2, 107 - 113, 30.08.2025
İbrahim Sefa Okumuş
,
Duygu Mısırlı
,
Mahfuz Elmastas
Öz
Bu çalışma, Türkiye’nin Kahramanmaraş bölgesinde yaygın olarak tüketilen Maraş otu (Nicotiana rustica) ile geleneksel olarak birlikte kullanılan meşe ve kavak külü kombinasyonlarının, farklı polaritedeki çözücüler (etanol:su ve su) ile hazırlanmış ekstrelerinin fenolik bileşik içeriklerinin ve antioksidan aktivitelerinin karşılaştırmalı olarak değerlendirilmesini amaçlamaktadır. Bu amaçla, hazırlanan Maraş otu karışımları (Nicotiana rustica + meşe külü [NRM] ve Nicotiana rustica + kavak külü [NRK]) farklı çözücüler kullanılarak ekstraksiyon işlemine tabi tutulmuş; elde edilen ekstrelerin antioksidan kapasiteleri, DPPH• radikal giderme aktivitesi ve Bakır(II) İyonu İndirgeyici Antioksidan Kapasite (CUPRAC) yöntemleriyle analiz edilmiştir. Çalışmada dört farklı ekstre (NRM-su ekstresi, NRK-su ekstresi, NRM-etanol:su ekstresi, NRK-etanol:su ekstresi) hazırlanmış; fenolik bileşik profilleri Yüksek Performanslı Sıvı Kromatografisi – Fotodiyot Dizi Dedektörü (HPLC-PDA) ile belirlenerek değerlendirilmiştir. Bulgularda, etanol:su ekstrelerinin su ile hazırlanan ekstreye kıyasla daha yüksek fenolik bileşik içeriğine ve antioksidan kapasiteye sahip olduğu gözlemlenmiştir. Özellikle NRM-etanol:su ekstresi, her iki antioksidan testinde de en yüksek aktiviteyi göstermiştir. Elde edilen sonuçlarda, Maraş otunun farklı bitki külü kombinasyonları ve çözücü tipleri ile antioksidan aktivitesinin önemli ölçüde değişebileceği görülmüştür.
Kaynakça
-
Apak, R., Güçlü, K., Özyürek, M., & Karademir, S. E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of agricultural and food chemistry, 52(26), 7970-7981.
-
Apak, R., Güçlü, K., Özyürek, M., Karademir, S. E. N., & Altun, M. (2005). Total antioxidant capacity assay of human serum using copper (II)-neocuproine as chromogenic oxidant: the CUPRAC method. Free radical research, 39(9), 949-961.
-
Ataseven, S., Misirli, D., Fatıma, U. Z. A. R., Türkan, N. N., & Elmastaş, M. (2021). Determination of phenolic compound composition of water and ethanol extracts of horsetail (Equisetum arvense). Journal of Integrative and Anatolian Medicine, 2(2), 3-9.
-
Balasundram, N., Sundram, K., & Samman, S. (2006). Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food chemistry, 99(1), 191-203.
-
Benowitz, N. L., Hukkanen, J., & Jacob III, P. (2009). Nicotine chemistry, metabolism, kinetics and biomarkers. Nicotine psychopharmacology, 29-60.
-
Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181(4617), 1199-1200.
-
Brand-Williams, W. (1999). Use of a free radical method to evaluate antioxidant activity. Food Sci. Technol., 28, 1231-1237.
-
Dai, J., & Mumper, R. J. (2010). Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules, 15(10), 7313-7352.
-
Docheva, M. H., Popova, V. T., Ivanova, T. A., Nikolova, V. V., Hristeva, T. H., & Nikolov, N. N. (2018). Polyphenol content and antioxidant activity of aqueous/methanol extracts from different tobacco species (Nicotiana). Bulgarian Chemical Communications, 50(4), 553-559.
-
Kurtul, N., & Gökpınar, E. (2012). Salivary lipid peroxidation and total sialic acid levels in smokers and smokeless tobacco users as Maraş powder. Mediators of inflammation, 2012(1), 619293.
-
Li, Y., Guo, C., Yang, J., Wei, J., Xu, J., & Cheng, S. (2006). Evaluation of antioxidant properties of pomegranate peel extract in comparison with pomegranate pulp extract. Food chemistry, 96(2), 254-260.
-
Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: an overview. Journal of nutritional science, 5, e47.
-
Prior, R. L., Wu, X., & Schaich, K. (2005). Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of agricultural and food chemistry, 53(10), 4290-4302.
-
Rice-Evans, C. A., Miller, N. J., & Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free radical biology and medicine, 20(7), 933-956.
-
Rice-Evans, C., Miller, N., & Paganga, G. (1997). Antioxidant properties of phenolic compounds. Trends in plant science, 2(4), 152-159.
-
Rosenthal, D. G., Weitzman, M., & Benowitz, N. L. (2011). Nicotine addiction: mechanisms and consequences. International Journal of Mental Health, 40(1), 22-38.
-
Stepanov, I., Jensen, J., Hatsukami, D., & Hecht, S. S. (2008). New and traditional smokeless tobacco: comparison of toxicant and carcinogen levels. Nicotine & tobacco research, 10(12), 1773-1782.
-
Tanriverdi, G. (2022). Dumansız Tütün Maraş Otunun Sağlığa Zararları: Geleneksel Derleme. Halk Sağlığı Hemşireliği Dergisi, 4(3), 284-292.
-
World Health Organization (2012). International Agency for Research on Cancer. Review of Human Carcinogens: Personal Habits and Indoor Combustions (Vol. 100).
-
Xiang, Z., Liu, L., Xu, Z., Kong, Q., Feng, S., Chen, T., & Ding, C. (2024). Solvent effects on the phenolic compounds and antioxidant activity associated with Camellia polyodonta flower extracts. ACS omega, 9(25), 27192-27203.
-
Zhao, Y. S., Eweys, A. S., Zhang, J. Y., Zhu, Y., Bai, J., Darwesh, O. M., & Xiao, X. (2021). Fermentation affects the antioxidant activity of plant-based food material through the release and production of bioactive components. Antioxidants, 10(12), 2004.